
Chapter 10 
Improvement of Task-Oriented Visual 
Interpretation of VGI Point Data 

Martin Knura and Jochen Schiewe 

Abstract VGI is often generated as point data representing points of interest (POIs) 
and semantic qualities (such as accident locations) or quantities (such as noise 
levels), which can lead to geometric and thematic clutter in visual presentations 
of regions with numerous VGI contributions. As a solution, cartography provides 
several point generalization operations that reduce the total number of points 
and therefore increase the readability of a map. However, these operations are 
applied rather general and could remove specific spatial pattern, possibly leading 
to false interpretations in tasks where these spatial patterns are of interest. In this 
chapter, we want to tackle this problem by defining task-oriented sets of map 
generalization constraints that help to maintain spatial pattern characteristics during 
the generalization process. Therefore, we conduct a study to analyze the user 
behavior while solving interpretation tasks and use the findings as constraints in the 
following point generalization process, which is implemented through agent-based 
modeling. 

Keywords Point generalization · Constraints · Agent-based modeling 

10.1 Introduction 

As shown by the variety of different aspects and applications which are observed in 
this book, the volume and relevance of Volunteered Geographic Information (VGI) 
have immensely increased in recent years. In many cases, this VGI data is generated 
and visualized as point data, e.g., representing the location of a point of interest 
(POI), an event, or a data source. However, utilizing VGI data needs to take some 
specific characteristics into account in comparison to geospatial data acquired and 
processed in the “traditional” way. In particular, VGI “is produced by heteroge-
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Fig. 10.1 Examples for VGI point data with point clutter. (a) Parked bikes in the city of Dresden, 
detected on Flickr images between 2004 and 2014 according to Knura et al. (2021). (b) Sightings 
of selected antelope species in Kruger National Park uploaded on the platform iNaturalist 

neous contributors, using various technologies and tools, having different levels of 
details and precision, serving heterogeneous purposes, and a lack of gatekeepers” 
(Senaratne et al. 2017), leading to an enormous volume and heterogeneity within 
the data. All of these characteristics could harm the usability of the data, especially 
when it comes to the visual presentation and exploration of very dense and even 
overlapping point markers or symbols (see Fig. 10.1a and b), commonly known as 
geometric point clutter (Moacdieh and Sarter 2015). 

As a solution to this clutter problem, cartography provides several point general-
ization operations such as selection, aggregation, or displacement, which rearrange 
or reduce the total number of points and therefore increase the readability of a map. 
However, these operations are applied rather general and could remove a specific 
spatial pattern, possibly leading to false interpretations in tasks where these spatial 
patterns are of interest.
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The aim of the TOVIP project is to tackle this problem by defining a set of 
cartographic constraints—i.e., conditions a generalized map should satisfy—that 
preserve these spatial patterns throughout the whole generalization process. The 
first research question we want to answer in this chapter is therefore: 

• What is the minimum set of constraints and constraint measures that should be 
used to evaluate interpretation tasks based on VGI point visualizations, such as 
pattern identification, pattern comparison, or relation seeking? 

Different cartographic constraints often describe contradicting aspects with no 
optimal solution, as it is not possible during map generalization to maintain all 
information—i.e., fulfill all information preservation constraints—while keeping 
the map readable, i.e., fulfill all legibility constraints. Constraint-based generaliza-
tion is therefore an optimization task, which tries to find a solution that satisfies as 
many constraints as good as possible, and has been implemented in recent years 
through multi-agent systems (Duchêne et al. 2018). We want to contribute to this 
research and define our second research question as: 

• Is it possible to optimize the task-oriented generalization using an agent-based 
modeling approach? 

The following chapter describes the workflow to answer the research questions 
as follows: in Sect. 10.2, we introduce the cartographic concept of constraint-
based generalization, on which the TOVIP project is based upon. Section 10.3 
summarizes the results of a user study, which analyzed the user behavior while 
working with spatial patterns in point data sets. In Sect. 10.4, we translate the 
findings of the previous section into measurable constraints that could be utilized 
in map generalization practice. In Sect. 10.5, we apply these constraints in an agent-
based generalization model. That followed, we discuss our findings in Sect. 10.6 
before concluding in Sect. 10.7. 

10.2 Constraint-Based Map Generalization 

Cartography provides a variety of different point generalization operations—and 
various combinations between them—to solve the aforementioned clutter problem. 
As an example, a simplification describes a straight reduction of source points based 
on geometric criteria (e.g., only points which have a minimum distance to their 
neighbors are preserved; (Slocum et al. 2009)). When semantic criteria are used, 
a selection operation could take place. For example, points can be selected based 
on respective information filtering methods (Huang and Gartner 2012) or scale-
dependent (Gröbe and Burghardt 2021). Aggregation takes place when multiple 
points are replaced by a single aggregator marker. Most frequently, points are 
grouped through clustering with a respective initialization method (e.g., random, k-
means, Voronoi-based; (Yan and Weibel 2008)), while alternatives, for example, use 
heat maps (Meier 2016), or geometry objects (Zahtila and Knura 2022) to aggregate
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point data. A different solution to overcome clutter, but with the possibility to 
preserve the cardinality (i.e., the overall number of points) of the dataset, is to 
displace the points. During the displacement operation, an iterative workflow of 
overlap detection, relocation, and re-evaluation is executed (Mackaness and Purves 
2001). Furthermore, if the preservation of cardinality and the original topology is of 
interest, a spatial distortion based on pixels (Keim et al. 2004) or point density (Bak 
et al. 2009) could help. 

An operational system for point generalization must implement a workflow 
to trigger and orchestrate the individual point generalization operations described 
above. First implementations used a rule-based approach where a predefined set 
of well-defined and unambiguous rules guided the generalization process (Beard 
1991). Each rule thereby states what has to be done in a process at a certain 
condition, so each condition was connected to a specific action (Harrie and Weibel 
2007). The problem that occurred with this approach was that the enormous variety 
of spatial and non-spatial characteristics that exist in the world and therefore in maps 
led to a number of rules which were not possible to handle anymore. This leads to 
the constraint-based approach, which focused on the requirements that the final map 
should fulfil instead of providing a set of isolated generalization operations, leaving 
more flexibility within the generalization process on how to reach these results. 
According to Beard (1991), these constraints can be classified into aspects related 
to position, topology, shape, structural, functional, and legibility. Furthermore, it is 
necessary to introduce respective measures for these constraints, which are grouped 
by Mackaness and Ruas (2007) into either internal or external and either micro, 
meso, or macro. 

If the constraints are defined in a complete and measurable way, there are 
different techniques available for implementation. Looking at optimizing single 
generalization methods, there is considerable work done, for example, regarding 
the displacement operation by applying least squares adjustment (Sester 2000), 
simulated annealing (Ware and Jones 1998), or snakes (Burghardt 2005). For more 
complex processes, agent-based modeling has shown great success in terms of 
applicability (Duchêne et al. 2018). In this approach, agents represent autonomous 
map objects trying to minimize a given cost function, which is based on the 
fulfillment of the constraint measures. As a result, the whole complexity of the 
generalization workflow is distributed to a set of relatively simple interacting agents. 

The agent-based modeling approach is also used in the TOVIP project. Regarding 
the aim of TOVIP—defining a set of constraints that optimizes the generalization 
workflow designed for visual interpretation tasks where specific spatial patterns 
are of interest—it is necessary to consider two potentially contradictory aspects: 
On the final map, the aforementioned spatial patterns have to be visible (preser-
vation constraints), while the map must still be readable by the users (legibility 
constraints). Describing constraints that preserve the relevant information during the 
generalization process is often done with object-specific measures, e.g., preserving 
the area of a polygon before and after generalization (Harrie and Weibel 2007). On 
the other hand, legibility constraints ensure the readability of the map, for example, 
by avoiding any spatial conflict—i.e., display clutter—and showing objects in
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a suitable degree of detail according to the scale of the map. A respective list 
of analytical legibility measures, such as the number of vertices or the object 
line length, was developed by Stigmar and Harrie (2011). For the aim of the 
TOVIP project, it is now of interest to find the minimum set of preservation and 
legibility constraints that allow the interpretation of specific spatial pattern even 
after generalization. 

10.3 User Behavior When Interpreting VGI Point Data 

Developing constraints that support users while interpreting specific tasks implies 
profound knowledge of their behavior while doing so. Before defining constraints 
that support interpretation tasks, it is therefore necessary to analyze the behavior of 
users working with VGI point data sets. We conduct a user study where participants 
have to perform different interpretation tasks—like finding clusters within a dataset, 
comparing point densities, or finding areas with a specific point distribution—using 
a novel method that combines postal questionnaires, think-aloud interviews, and 
techniques from visual analytics. A more detailed overview on the technical aspects 
and the execution of the user study, including a detailed description of the analysis 
of the think-aloud interviews, is given by Knura and Schiewe (2021). In this chapter, 
we want to summarize the results of the study (see also Knura and Schiewe 2022), 
focusing on the impact of the user behavior on the definition of a minimum set of 
constraints as described above. 

10.3.1 Task-Solving Strategies 

We analyzed the strategies of the participants by dividing the overall task-solving 
process into three sequential actions: (1) finding a start position, (2) obtaining 
information, and (3) decision-making. Apart from a task where the participants 
have to find a similar pattern compared to a given reference, the point density 
of a cluster—as a combination of proximity and cardinality of points—was the 
most important factor when selecting a starting position on the map, followed by 
the point color. For the process of obtaining information, point density was again 
the most important factor, as more dense clusters were described and analyzed 
earlier and more often. Moreover, density was the main evaluation measure in 
comparison tasks and during decision-making. Although we had different categories 
of synoptic interpretation tasks, which—in contrast to elementary tasks—include 
pattern identification, pattern comparison, and relation seeking (see Andrienko and 
Andrienko 2006), the task-solving strategies did not differ significantly between 
different kinds of tasks. As a first result of the study, we state that point density has 
the biggest impact on the task-solving behavior of the participants and has to be 
addressed in the first place when defining constraints.
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10.3.2 Influence of Point Data Cardinality and Background 
Map 

A key factor that could have an impact on the user behavior during visual 
interpretation is the map complexity. There are numerous definitions and concepts 
of map complexity in cartography (see Touya et al. 2016). As most of them distinct 
between the intellectual complexity, which relates to the cognitive process of map 
reading, and the graphical complexity, which relates to the visual perception of 
individual map objects, we vary the maps for some of the tasks with respect to these 
two categories. To learn more about the influence of the intellectual complexity 
on user behavior, we varied the data cardinality—i.e., the number of points—for 
two of the tasks. Although we recognized some minor differences in the behavior 
between the user groups, the overall task execution strategy remains unchanged with 
a higher data cardinality. For analyzing the impact of the graphical complexity, 
we varied the background map source between Google Maps, Bing Maps, and 
Stamen Terrain. This time, we identified both an implicit and explicit influence from 
the background map. Implicitly, because participants frequently identified clusters 
which were visually supported by the background map and explicitly because they 
refer to the characteristics of the background map when explaining their strategies. 
But again, and despite the influence of the background map on the reasoning, the 
overall task-solving strategies described in the section above remain unchanged 
between different levels of graphical complexity. 

10.3.3 Implications for Constraints Supporting Interpretation 
Tasks 

Following the results of our study, there are two main aspects that have to be 
considered while defining constraints for map generalization. First, it is of major 
importance to preserve the original pattern proportions during the generalization 
process. Our study revealed that the point density had the biggest impact on the 
task-solving process, and participants discussed both interrelations between clusters 
with different density, as well as between different classes of points within the same 
cluster. Information preservation constraints regarding the point density should 
therefore: 

• Retain the proportion of points between areas with different densities 
• Preserve the ranking of densities between different areas 
• Preserve proportions between classes while maintaining at least one point per 

class 
• Preserve Gestalt law rules regarding similarity and proximity of clusters 

The second aspect to consider is the use of cartographic techniques to guide the 
interpretation of points. The use of specific colors to draw attention is common in
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cartography, and this can be applied to other map objects with the aim of lowering 
the graphical complexity. Respective constraints could ensure to: 

• Use cartographic style elements where pattern preservation is difficult to manage 
• Optimize the guiding effect of the background map (e.g., preservation of other 

map objects in close proximity to point clusters) 

These constraints could be categorized as both preserving information and 
legibility, and they address not only the location and visibility of the point symbols 
but also their style and the surrounding map areas. 

10.4 Defining Constraints and Measures for Spatial Pattern 
Interpretation 

The previous section revealed the importance of preserving point densities during 
generalization. In this section, we collect a list of different approaches—both 
from the literature and own experiments—to define constraints and respective 
measures, which can help to preserve point densities and spatial pattern and test 
them on exemplary point distributions. The aim is thereby to find a minimum set 
of constraints that fit best to the list of requirements described above. We thereby 
focus on information preservation constraints regarding the point distributions. 
Constraints related to cartographic techniques are a key aspect of our future work. 

10.4.1 Measures Describing Spatial Pattern and Densities 

When defining measures for spatial pattern and densities, we follow the catego-
rization of Mackaness and Ruas (2007), who distinguish between macro-measures 
that deal with all point objects of interest, micro-measures that deal with individual 
characteristics of objects (i.e., points), and meso-measures that deal with the specific 
properties of different groups of objects (i.e., point clusters). The authors also 
distinguish between internal and external measures, which states if a measure can be 
calculated based on a single dataset (internal) or is a relation between two datasets 
(e.g., before and after a generalization operation; external). 

10.4.1.1 Macro-Measures 

Macro-measures are able to describe the entirety of information and respective 
characteristics in a single value. One of the most basic macro-measures is the radical 
law (Töpfer and Pillewizer 1966), which estimates how many features should be
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maintained at a smaller scale in the generalization process. It is defined as: 

.nD = nS

/
mS

mD

, (10.1) 

where . n is the number of objects of the derived (. D) resp. source (. S) map, and . m
is the scale denominator. In the context of this project, it is worth noting that the 
calculation should be based on a readable map, i.e. without any point clutter. If this 
measure is calculated from a map with point clutters, the calculated value should 
be interpreted as the maximum number of objects on the derived map. Even more 
basic is the measure that describes the amount of information . Ni as the number of 
all map objects (Harrie and Stigmar 2010), calculated as: 

.Ni =
nE

i=1

miE
j=1

Oij . (10.2) 

For objects other than points, this measure can be expanded with the number of 
object points, calculating the overall measure as the sum of all object points of all 
map objects. 

Beside measures that deal with the amount of information in general, global 
measures can also describe a specific characteristic of the dataset or the map. In the 
same work, Harrie and Stigmar (2010) defined an index to characterize the spatial 
distribution of points .ISDP based on Voronoi regions. The index is calculated as: 

.ISDP =
ENP

i=1 PSDP,i logPSDP,i

log 1
NP

, (10.3) 

where .PSDP,i is the relative size of the Voronoi region for a point i and NP  is 
the number of points. .ISDP converges to 1 the more even the sizes of the Voronoi 
regions are. Zhang et al. (2009) use  the  Voronoi region size as the variable of 
interest in Moran’s I to discern if point distributions are clustered, dispersed, or 
random: 

.I = N

W

EN
i=1

EN
j=1 wij (xi − x̄)(xj − x̄)EN

i=1(xi − x̄)2
, (10.4) 

where N is the number of spatial units indexed by i and j , x is the size of the Voronoi 
region . AV , . x̄ is the mean of x, . wij is a matrix of spatial weights with zeroes on the 
diagonal (i.e., .wii = 0), and W is the sum of all . wij .
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10.4.1.2 Micro-Measures 

Micro-measures describe characteristics of individual objects and therefore can 
take the local neighborhood into account. Analog to the macro-measures before, 
calculating the size of the Voronoi region of a point .AV is used as a fundamental 
metric to describe local density. Based on this, Zhang et al. (2008) calculate the 
object-oriented density OD as: 

.OD = 1

AV

. (10.5) 

A higher object-oriented density implies a smaller Voronoi region and therefore a 
higher point density in the local neighborhood. Vice versa, a small object-oriented 
density indicates a bigger Voronoi area and a more dispersed distribution around 
that point. 

Besides density measures, qualitative and quantitative information about the 
points in close proximity are also of interest when point generalization operations 
like selection are used. Therefore, Delauney triangulations are often used to 
identify “natural” neighbors in point distributions (Sadahiro 1997). Applying this 
tessellation to a point data set provides a list of neighbors for each point, and micro-
measures like the number of natural neighbors, the  mean neighbor distance, and 
the existence of local extreme values can be calculated (see Fig. 10.2). Delauney 
triangulation also helps to define clusters, so the cluster affiliation can also be 
defined in this way. 

All the measures introduced in this section are internal because they can 
be calculated solely based on one dataset. However, it is possible to compare 
the measures of an individual point to measures of the same point during the 

Fig. 10.2 Example of micro-measures for point P. Natural neighbors N1 to N5 in red, other points 
in gray. Voronoi region . AV for point P in light blue
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generalization process, and note the amount of change as an additional external 
measure. In the same way, the distance to the origin location of a point is of interest 
when displacement operations take place during the generalization. 

10.4.1.3 Meso-Measures 

Compared to macro- and micro-measures, meso-measures are not bound to a 
predefined number or list of points they describe. The first step to calculating 
meso-measures is therefore to define which points are members of the group of 
interest. In the TOVIP project, we focus on spatial pattern, and so the definition of 
clusters is relevant for further processing. Clustering can be made—among many 
other techniques—by cluster algorithms such as k-means and HDBscan, based 
on Delauney triangulation (Sadahiro 1997), or by using grids (Yan et al. 2021). 
These clusters can then be described by meso-measures such as the number of 
group members, the  existence of different point categories, and the mean distance 
between members or between members and the group centroid. Comparing the 
measures of the respective clusters, it is also possible to define cluster rankings. 
Furthermore, according to the findings of the user study presented in Sect. 10.3, 
measures regarding the shape and the orientation of the clusters can be of interest. 
Common methods to represent the shapes of point clusters are convex hulls or alpha 
shapes (Edelsbrunner et al. 1983). The orientation of a cluster can be described 
by the minimum rotated rectangle, a technique which is usually used for building 
orientation (Duchêne et al. 2003). Furthermore, all macro-measures defined in 
Sect. 10.4.1.1 can also be applied on clusters with a defined border. 

10.4.2 Deriving a Minimum Set of Constraints 

Based on the list of different measures, we test the suitability of the measures 
to control the different aspects which help to fulfil the information preservation 
constraints we developed in Sect. 10.3. We thereby subdivide the constraints and 
respective measures into three groups: 

1. Measures describing the overall distribution of points and the density ranking 
between different areas of the map 

2. Measures preserving pattern-specific characteristics like hot spots, extreme 
values, cluster density, etc. 

3. Measures describing Gestalt law rules 

Furthermore, we compare the measures and their performance on different point 
distributions to identify redundancies, and we examine the robustness on point 
cardinality, which is essential when applied in map generalization operations. We 
create a series of experimental point distributions with 100, 200, 500, and 1000 
points and different characteristics: a regular and a random distribution, distributions
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Fig. 10.3 Point distributions with different characteristics, using the example of 200 points. Gray 
borders in the background of the gridded and pattern distributions indicate the areas in which the 
same number of points were randomly distributed 

where we predefined regular (gridded distribution) and irregular areas (pattern 
distribution) to control the density, and distributions with loose and clear clusters 
(see Fig. 10.3). Furthermore, we tested the behavior of micro-measures on points in 
different VGI datasets to evaluate their utility. 

10.4.2.1 Preserve the Overall Distribution of Points and the Density 
Ranking Between Areas 

The first subgroup of measures combines the first two constraints on information 
preservation in Sect. 10.3.3 and can be controlled through a combination of macro-
and meso-measures. We tested both the Voronoi-based Moran’s I and the spatial 
distribution of points with our series of different artificial point distributions. 
Table 10.1 shows the calculated measures and the standard deviation over the 
different point cardinalities. We can see that the spatial point distribution measure is 
to a certain degree stable toward the point cardinality and is smaller when the points 

Table 10.1 Results for point distribution measures. Values with (*) signs indicate that there was 
a small deviation to the given number of points because of distribution characteristics (e.g., 196 
instead of 200 points for the regular distributions) 

Point distribution measure 
Number of points regular random gridded pattern l. cluster t. cluster 
100 1.0000 0.9673 0.9924 0.9493* 0.8624 0.7623* 

200 0.9994* 0.9718 0.9904 0.9405* 0.8603 0.7481* 

500 0.9987* 0.9789 0.9847 0.9394* 0.8664 0.7079* 

1000 0.9991* 0.9805 0.9832 0.9391* 0.8704 0.6658* 

std 0.0005 0.0061 0.0044 0.0048 0.0044 0.0434 

Voronoi-based Moran’s I 
Number of points regular random gridded pattern l. cluster t. cluster 
100 0.4683 0.1707 0.0032 0.1819* 0.5665 0.2733* 

200 0.4372* 0.1919 . −0.0196 0.2126* 0.623 0.4653* 

500 0.4690* 0.1575 0.1995 0.2988* 0.6378 0.4990* 

1000 0.4817* 0.2907 0.1809 0.3841* 0.2891 0.5187* 

std 0.0189 0.0603 0.1151 0.0911 0.1629 0.1126
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are more clustered. Moran’s I on Voronoi regions is more sensitive to variations of 
point cardinality, as it uses the area size as the variable of interest—whose value 
decreases with more points. As a result, we decided to use the point distribution 
measure to control the overall distribution and the distribution within clusters. That 
also includes the fact that the measures for amount of information and cluster size 
are variables within the calculation of the spatial point distribution on the macro-
and meso-level. In contrast, the cluster ranking measure has no overlap with other 
measures and is therefore inevitable. 

10.4.2.2 Preserve Pattern-Specific Characteristics 

Pattern-specific measures are a crucial part of the goals of the TOVIP project. If 
local extreme values and the existence of different point categories are of interest in 
an interpretation task, it is mandatory to preserve these points and therefore control 
them with related measures. As this measure requires a Delauney triangulation to 
define the neighborship, respective measures that are based on this can be performed 
with low additional effort, even if not compulsory. As an example, the mean distance 
to neighbors can be calculated this way. As an alternative, the distance to all points 
within the predefined cluster can be used to decide which points are overlapping and 
thus should be a controlling measure. If a displacement operation is implemented, 
the distance to the origin location of a point can be of interest. For the other pattern-
specific measures, we did not find a unique behavior in which we see an additional 
utility for our model. 

10.4.2.3 Preserve Gestalt Law Rules 

The maximum number of points can be utilized as a target value for the generaliza-
tion process, although it is not mandatory if all legibility measures are satisfied. 
Measures related to the shape and orientation of clusters are utilizing common 
techniques from the field of geospatial analysis, such as calculating the minimum 
bounding rectangle, the convex hull, or the alpha shape of a point set. We compared 
the different approaches on different data sets and decided to use the convex hull 
to describe the shape, as it needs no additional parameter compared to the alpha 
shape and is more detailed than the rectangular bounding box. If the orientation is 
of interest, the longer side of the minimum bounding rectangle can be utilized. 

Table 10.2 shows the selected measures which we initially implemented in the 
agent-based model, together with additional measures that could be relevant for 
certain tasks and were also recognized. Nevertheless, because most of the measures 
are defined in code blocks outside the actual agent-based model, it is possible to 
adopt measures from other scale levels during model optimization.
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Table 10.2 Subgroups of measures and selected measures in column “Set”. (X) indicates the 
measure is not mandatory in certain applications 

Macro Meso Micro Set 

Overall distribution of points/cluster rankings 
amount of information X 

spatial distribution of points X X X 

Moran’s I on Voronoi regions X X 

cluster density ranking X X 

cluster size X 

Pattern-specific characteristics 
local extreme values X X 

point category preservation X X 

number of natural neighbors X X 

mean distance to cluster members X X X 

mean neighbor distance X 

object-oriented density X 

distance to the origin location X (X) 

Gestalt Law 
maximum number of points X (X) 

shape of a cluster X X 

orientation of a cluster X (X) 

10.5 Application Using Agent-Based Modeling 

The set of constraints and respective measures developed in the previous section is a 
key component for the implementation of a map generalization process, which pre-
serves spatial patterns. We apply the constraint-based approach using agent-based 
modeling, which is a powerful method for controlling complex processes (Harrie 
and Weibel 2007). As the model is currently in the final phase of development, this 
section will focus on the architecture and parametrization we implemented: First, 
we introduce the software framework we use and explain the different components 
within the model. In the second part, we describe the integration of global map 
specifications and the translation of measures to a satisfaction scale, which helps 
the agents to better evaluate their fulfillment of constraints. Evaluation of the model 
results will be part of our future work.
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10.5.1 Software and Components 

We implement our agent-based model1 using the Mesa framework (Kazil et al. 
2020). Mesa is an open-source framework for creating agent-based models written 
in Python. It includes four core components (Model, Agent, Schedule and Space), 
along with additional components for analysis and visualization. Thereby, the 
Model class is the core class for creating the environment of the model using 
the Space class, initializing the agents which are objects of the Agent class, 
and orchestrating the running model through the Scheduler class. Applied to the 
process of map generalization, our model has a map area which is implemented 
through a continuous space—providing a high flexibility for different map scales— 
and contains map agents which represent objects that generalize themselves by 
performing generalization operations, according to the perception of their current 
state and their fulfillment of given constraint measures. Besides micro-agents, which 
represent the individual points, our model also contains meso-agents, which are 
generated within the model initialization and control the pattern preservation. 

(Map) agents and the implementation of their decision-making process are the 
most complex part of an agent-based model. Duchêne et al. (2018) decomposed 
the “brain” of map agent into three main components: capacities, mental repre-
sentation, and procedural knowledge. We followed this approach and used these 
components in our model (see Fig. 10.4). The capacities of our agents include the 
ability to perceive their surrounding space, to evaluate themselves, and to perform 
generalization operations. The updating process of the first two capacities is thereby 
provided by the Model class, which performs several spatial analysis operations on 
the totality of map objects after each simulation step and transmits the calculated 
measures back to the individual micro- and meso-agents. The mental representation 
of the agents compares their current state with the goals they are aiming at—i.e., the 
fulfillment of map constraints—and calculates their satisfaction. It also memorizes 
all previous actions the agents took and the respective outcome of it. Finally, the 
procedural knowledge component is the decision-making unit of the agents. Based 
on the agent’s constraint satisfaction and the knowledge of the past steps, it decides 
which operation the agent should execute in the next step. 

Besides the core functions for agent-based modeling, Mesa offers functionalities 
for data analysis and model visualization. The DataCollector class of Mesa is able 
to record, store, and export all relevant data of the agents for further analysis. It 
allows us to control the mechanisms of the model, as well as tuning the decision-
making process of the agents. Via the visualization components, Mesa also provides 
a browser-based visualization of the running model, but until now, we haven’t 
implemented a respective function in our model yet. Instead, we set up and run 
the model via Jupyter Notebook and present the generalized map in an interactive 
browser map.

1 Our source code is online: https://gitlab.com/g2lab/tovip. 

https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
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Fig. 10.4 Components of our model for agent-based map generalization 

10.5.2 Global Map Specifications and Measure Satisfaction 

Besides the specific constraints we defined in order to support interpretation tasks, 
there are also global map specifications and characteristics which are important for 
the process of generalization in general and for the point generalization in particular 
and which have to be defined in advance. For example, it is necessary to know the 
scale of the source map and if this map satisfies all legibility constraints regarding 
the point symbols (i.e., the source map has no point clutter and is readable). It 
is also required to define the target scale of the map and the (pixel) size of the 
point symbols. Moreover, it is of interest if the point data set contains different 
classes and, if it does, the respective scale of measurement. While these global map 
specifications are determined in most of the use cases for point generalization (e.g., 
the target map scale via predefined zoom levels), they can also be changed in the 
model setup. 

Furthermore, the “brain” of the map agent requires determining a predefined 
behavior regarding the task of translating a list of measures into a value representing 
the satisfaction of an agent at its current status. The common workflow for this task 
consists of two steps (Touya 2012): First, the measures get translated into a Likert-
like satisfaction scale, which ranges from 1 (“unacceptable”) to 8 (“perfect”). Each 
measure thereby has its own method for translation, which has to be defined in
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advance. In the second step, a global satisfaction value is derived from the individual 
values, utilizing principles from Social Welfare Orderings (SWO). Again, the 
specific SWO method has to be chosen in advance and triggers different strategies 
the agents will follow. For example, using a SWO that emphasizes low values with 
a higher weight, the agents will try to minimize the number of low values and focus 
less on maximizing other values, while a utilitarian SWO fosters strategies where 
agents maximize the sum of all values. 

Taillandier and Gaffuri (2012) proposed an approach to help the user with 
parameterization using a human-machine dialogue. We utilize this approach for our 
model and offer a guided user interface where parameter adjustments get visualized 
via samples on a map. It allows the user to adjust the satisfaction scales by modifying 
the class dividers, which are predefined as a function of respective global map 
attributes such as scale and point cardinality. 

10.6 Discussion 

The previous sections described the workflow of defining a set of constraints and 
respective measures based on the findings from a user study and the implementation 
in an agent-based model. This already answers our research questions to a certain 
degree. In this section, we want to further discuss implications that occur with the 
results of the previous sections. 

In Sect. 10.4.2, we define a set of constraints containing measures that control the 
spatial distribution of points, the ranking between clusters, the shapes of clusters, 
and the distances between the points of a cluster. Furthermore, the preservation of 
local extreme values and all point categories should be added if their existence is 
of interest in the interpretation task. Taking the different measure scales of two of 
the constraints into account, there are only six to eight measures, which can be 
used to control the generalization process. Still, this requires at least six different 
predefined parameter adjustments to translate measures into satisfaction values. The 
complexity of the parametrization process has been identified as one of the main 
drawbacks of the agent-based approach (Duchêne et al. 2018), and this is also the 
case in our model. As an example, defining a function to evaluate the macro-measure 
of point distribution is little intuitive, as it needs to define class dividers for narrow-
value ranges, which differences are hard to visualize. However, six parameters and 
a user-friendly way to adjust them are still feasible in our opinion. 

Manual parameter adjustment is one reason which makes it difficult to transfer 
our approach of point generalization to other applications. The second reason is 
the time-consuming calculation of measures that rely on rather complex geospatial 
operations. On-the-fly point generalization (Jabeur et al. 2006) is therefore not 
possible with our approach, and the computing time depends heavily on the number 
of points to generalize. A solution to this problem could be the integration of novel 
learning techniques (Touya et al. 2019). If a model can learn how to generalize
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points while preserving the right information, it could predict a generalized point 
set on-the-fly. 

10.7 Summary and Outlook 

The generation of VGI data in general, and of points in particular, has shown 
an immense increase in recent years. As one of the main properties of VGI is 
its enormous volume and heterogeneity within the data, it leads to dense clutters 
when it is presented on maps. The cartographic solution to this problem is point 
generalization: rearranging or reducing the number of points. If this is applied rather 
general, specific spatial pattern could be eliminated—which is a major problem 
when these patterns were of high importance and subject of interest to the user. This 
chapter presents a workflow to resolve this problem by defining a set of constraint 
that can be used to control the generalization workflow. We developed the list of 
constraints based on a user study and applied them by implementing an agent-based 
model for point generalization. 

VGI point data is often produced in multiple scale levels and over longer periods 
of time. In our future work, we want to factor this and develop our model further 
by adding functionalities for multi-scale views, which requires consideration of 
scale transitions, and multi-temporal representations, where the cognitive workload 
related to animations must also be considered. Furthermore, we plan to improve the 
usability of our agent-based model by developing a more intuitive user interface, 
which would allow more users to apply the findings of our model to their objectives. 
A third task we plan to work on in the near future is the integration of other 
cartographic techniques such as point color, point symbolization, and others in our 
generalization model. The overall plan is thereby to stepwise add functionalities for 
broader applications of map generalization into our system. 
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