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Learning from vector data: enhancing vector-based shape encoding and shape 
classification for map generalization purposes
Martin Knura

Lab for Geoinformatics and Geovisualization (g2lab), HafenCity University Hamburg, Germany

ABSTRACT
Map generalization is a complex task that requires a high level of spatial cognition, and deep learning 
techniques have shown in numerous research fields that they could match or even outplay human 
cognition when knowledge is implicitly in the data. First experiments that apply deep learning 
techniques to map generalization tasks thereby adapt models from image processing, creating input 
data by rasterizing spatial vector data. Because image-based learning has major shortcomings for map 
generalization, this article investigates possibilities to learn directly from vector data, utilizing vector- 
based encoding schemes. First, we enhance preprocessing methods to match essential properties of 
deep learning models – namely regularity and feature description – and evaluate the performance of 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Graph Convolutional 
Neural Networks (GCNN) in combination with a feature-based encoding scheme. The results show that 
feature descriptors improve the accuracy of all three neural networks, and that the overall performances 
of the models are quite similar for both polygon and polyline shape classification tasks. In a second step, 
we implement an exemplary building generalization workflow based on shape classification and 
template matching, and discuss the generalization results based on a case study.

ARTICLE HISTORY 
Received 1 December 2022  
Accepted 16 October 2023 

KEYWORDS 
Deep learning; map 
generalization; vector data; 
feature descriptor; shape 
classification; building 
generalization

1. Introduction

Given the high complexity of map generalization, it is 
no surprise that a human cartographer can still produce 
better generalized maps than its automated counterpart. 
Understanding relationships between map objects, and 
manipulating them across scale with respect to purpose, 
function, and granularity (Mackaness et al., 2014), 
requires a high level of spatial cognition, which is diffi-
cult to model in an automated process. Consequently, 
formalizing a wide range of complex, interplaying sce-
narios has been the bottleneck for rule-based and con-
straint-based approaches in recent years (Courtial et al.,  
2020; Feng et al., 2019; Touya et al., 2019). At this point, 
deep learning techniques could close this gap, as they 
have shown in numerous research fields that they could 
match or even outplay human cognition when knowl-
edge is implicitly in the data, as it is the case in auto-
mated map generalization (Touya et al., 2019).

Map generalization is not just a straightforward sim-
plification of geographic features, but a combination of 
different tasks and cognitive processes, so there are 
different neural network solutions conceivable for this 
process. For example, Heterogeneous Graph Neural 
Networks (Iddianozie & McArdle, 2021) are capable to 
learn spatial relationships between different types of 

geometries, while Deep Generative Neural Networks 
(Ruthotto & Haber, 2021) can create new realistic fea-
tures from input data. Following the recent advances in 
automated map generalization, Reinforcement Learning 
(Arulkumaran et al., 2017) could also be a candidate, as 
it could use cartographic constraints to evaluate the 
output of a network.

All of these networks are very different in purpose 
and design, but they all need to encode spatial data in 
a hidden embedding space before they are able to utilize 
it. First experiments with deep learning applications in 
the field of map generalization adapt models from 
image processing, creating input data by rasterizing 
spatial vector data (Courtial et al., 2020; Feng et al.,  
2019; Touya & Lokhat, 2020). The results accomplished 
by the authors show that there is a high benefit of using 
the well-adapted deep learning models for image pro-
cessing in the field of map generalization, but there are 
also some major shortcomings that come along with 
image-based learning.

First, the input data for maps is usually stored in 
geographic databases, so the workflow of map general-
ization is mainly applied to the vector format. 
Therefore, utilizing the advances in Computer Vision 
requires a realignment of this existing workflow. For 
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example, the process of map evaluation is a key compo-
nent for controlling the generalization process and for 
assessing the generalization output, and is usually 
implemented using constraints (Stoter et al., 2014). 
Applying this to raster-based output requires reworking 
a lot of measures, and has important limitations 
(Courtial et al., 2022a), not to mention the problem 
that rasterization of vector data itself introduces uncer-
tainty and fuzziness into the generalization process 
(Liao et al., 2012).

Second, learning from raster images is a clear limita-
tion compared to the data richness and information of 
the underlying vector data (Courtial et al., 2021; Touya 
et al., 2019). In the aforementioned experiments, tiled 
image representations of the original vector data were 
used as the input for model training, so the information 
was reduced both spatially – while raising new problems 
like cross-tile continuity and border effects – and in 
terms of map content, when all explicitly provided 
object information is only implicitly converted into the 
image representation.

By contrast, learning from vector data – i.e. encode 
vector data directly to an embedding space – has the 
potential to preserve major parts of the well-established 
workflow of map generalization, and to utilize all infor-
mation of the underlying data. The current downside is 
that there is only limited research done in this field until 
now, and a well-adapted scheme to encode vector data to 
the embedding space is yet to come for more complex 
geometries than points (Mai et al., 2022). Within the 
present research on polyline and polygon embedding, 
two approaches can be distinguished: ordered sequences 
and graph structures. Ordered sequences encode geome-
tries as an ordered list of vertex locations, which can be 
fed into sequential models like Recurrent Neural 
Networks (RNN) (Veer et al., 2018), or into one- 
dimensional Convolutional Neural Networks (CNN) 
(Liu et al., 2021; Veer et al., 2018; Yang et al., 2022). 
The other approach converts the vertex locations into 
a graph structure, and feeds this graph into a respective 
neural network like a Graph Convolutional Autoencoder 
(GCAE) (Yan et al., 2021).

In this paper, we apply these vector-based approaches 
to the workflow of map generalization, and discuss their 
suitability to enable generalization operations. In parti-
cular, we propose a workflow to adequately represent 
map data in deep learning models, and demonstrate the 
capability of our approach by implementing an exemp-
lary building generalization workflow based on shape 
classification and template matching.

As the first step, we tackle the two major challenges for 
encoding vector data: regularity and feature description. 

The first challenge is to represent irregular spatial formats 
in a regular manner – which is an essential property of 
deep learning models – and requires regularity both 
between and within objects. For comparison, raster data 
regularity is straightforward: the size of each pixel is fixed 
(regularity within the object), as well as the size of each 
image (regularity between objects). On the other side, 
vector-based lines and polygons need normalization in 
aspects such as scale, the number of vertices, and the 
length of the edges between them. Because generalization 
operations in cartography are mainly evaluated in rela-
tion to the original geometry of an object, we introduce 
a method that minimizes the geometrical manipulation 
during preprocessing compared to the transformations 
conducted in the aforementioned studies.

The same variety of solutions can be found for 
the second challenge, which is feature description. 
Some models learned directly from point coordinates, 
while others utilized geometric descriptions for local, 
regional, and global features such as turning angles, 
centroid distances, or minimum bounding rectangles. 
These geometric descriptors are comparable to shape 
description and representation techniques as part of the 
constraint-based map generalization workflow (e.g. see 
Blana & Tsoulos, 2022) and can be used as an interface 
to include parts of the map generalization knowledge 
into the learning process. Accordingly, we utilize shape 
measures from the map generalization domain to 
expand the method of vertex feature extraction by Yan 
et al. (2021) and show that feature description not only 
benefits the learning of Graph Convolutional Neural 
Networks but also when applied to RNNs and CNNs. 
Furthermore, we are able to transfer the whole encoding 
process from polygon to polyline data.

As the second step, we implement our workflow of 
vector-based deep learning as part of an exemplary 
building generalization based on shape classification 
and template matching. First, we train different network 
models with 5000 buildings of 10 predefined shape 
classes. Second, the trained models predict the shape 
class for each building in the study area, and 
a normalized standard shape of the predicted class is 
matched to the original building through geometrical 
operations such as stretching, flattening, rotating, and 
translating.

The aim of implementing end-to-end map general-
ization using deep learning is to mimic human behavior 
and decision-making in complex generalization situa-
tions, in which human cartographers have developed 
rules and skills for abstraction through a set of general-
ization operations (e.g. simplification, aggregation, 
exaggeration). These rules are mainly related to the 
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geometries of objects, so representing map data in deep 
learning models is the first step toward vector-based 
map generalization (Sester, 2020). Accordingly, this 
paper focuses mainly on the adequate representation 
of the vector data, and less on the cartographic decision- 
making process, which will be the main topic of our 
future work. In summary, this paper contributes to the 
ongoing research by:

● Identifying vector-based schemes from the litera-
ture that can encode lines and polygons into an 
embedding space

● Proposing a workflow of vertex feature description 
which utilizes shape description and representation 
techniques, and which is applicable to all afore-
mentioned networks (CNN, RNN, GraphCNN) 
and geometry types (polygons and polylines)

● Investigating the impact that encoding properties 
such as encoding scheme, normalization, regular-
ity, and feature description have on the outcome of 
the classification models

● Demonstrating the capability of feature encoding 
by implementing an exemplary building general-
ization workflow based on shape classification and 
template matching

The following work is structured as follows: Based on 
recent literature, we identify different encoding 
schemes for vector data (Section 2). We then present 
our enhancements to the geometry encoding before 
introducing the different neural networks we utilize 
(Section 3). Based on this, we conduct experiments to 
test the performance of these networks and encoding 
schemes (Section 4) and present the results 
(Section 5). Next, we conduct a case study for building 
generalization (Section 6), followed by a discussion of 
the overall results and its impact on map generaliza-
tion (Section 7) before summarizing our work 
(Section 8).

2. Related work

Utilizing machine learning techniques for tasks of the 
generalization workflow is not a novel phenomenon. 
Following the work of Weibel et al. (1995) about options 
for overcoming the knowledge acquisition bottleneck, 
machine learning in map generalization was mainly 
explored for data enrichment, knowledge acquisition, 
and map evaluation (Touya et al., 2019). With the recent 
advances in the field of deep learning in general, and 
Computer Vision in particular, a surge of numerous 
publications employing deep learning techniques to 
generalization-related tasks have been initiated in the 

last years, contributing to solve the aforementioned 
formalization problem of the rule- and constraint- 
based approaches.

2.1. Deep learning for map generalization tasks

Regarding point generalization, Karsznia and Sielicka 
(2020) used a decision tree with genetic algorithms for 
settlement selection, and Karsznia et al. (2022) com-
pared the findings with other methods including a feed- 
forward neural network with backpropagation. Line 
selection was done by Zheng et al. (2021) using a deep 
Graph Convolutional Neural Network (GCNN). 
Courtial et al. (2021) generalized mountain roads 
using a U-net architecture for their CNN, and Du 
et al. (2022) simplified polylines using a Generative 
Adversarial Network (GAN), and a property-based 
neural network with controllers (Du et al., 2022). 
Work on polygon generalization mainly focuses on 
buildings, also using U-nets and GANs (Feng et al.,  
2019; Kang et al., 2020). As an alternative, Yang et al. 
(2022) employed a different approach and utilized 
a backpropagation network to decide which simplifica-
tion algorithm to use for the best result.

2.2. Location encoding and encoding schemes

The majority of these end-to-end generalization 
models created raster images from vector data and 
learned how to create generalized output from these 
visual representations of the original data. The spa-
tial location of the objects of interest is thereby 
encoded through the positions of the respective pix-
els in the image, and each pixel has one or more 
vectors that represent its information (e.g. three vec-
tors for RGB images). These 3D-input can be further 
enriched by adding vectors to the pixels which repre-
sent additional information useful for map general-
ization, as shown by Courtial et al. (2022b).

Compared to the regular grid structure of raster data, 
the direct encoding of more irregular vector data is 
more complicated, and there is only limited research 
done which can be utilized for the process of map 
generalization. Mai et al. (2022) provide a general fra-
mework for understanding the current landscape of 
location encoding research while focusing on point set 
data. The problem thereby is that this framework is not 
straightforwardly applicable to other geometries such as 
lines and polygons, as point cloud data is position 
invariant, and methods like PointNet (Qi et al., 2016) 
or Pointer Networks (Vinyals et al., 2017) learn the same 
representation for a point set, regardless of the order of 
points within the set. In contrast, the order of points is 
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crucial for vector data representations of lines and poly-
gons, and the approaches to encode these geometries 
directly to the embedding space can be divided into two 
directions: ordered sequences and graphs (see Figure 1).

The first approach is to encode a line or the edges 
of a polygon as an ordered sequence of vertices. 
Based on the work of Ha and Eck (2017) on neural 
representations of sketch drawings, Veer et al. (2018) 
proposed a polygon encoding scheme as a sequence 
of five-dimensional vectors, concatenating a two- 
dimensional vector representing the normalized 
point coordinates and a three-dimensional one-hot 
vector that describes the function of the vertex in 
relation to the geometry. The authors then feed this 
sequence both into an RNN and a 1D-CNN for 
various classification tasks. Liu et al. (2021) execute 
a Deep Point Convolutional Network (DPCN) 
directly on an ordered list of two-dimensional point 
vectors, using a TriangleConv operator which gener-
ates a feature representation of the respective point 

and its local neighbor points, and utilize their model 
for shape classification. Yang et al. (2022) represent 
lines as a series of lixels, which have a fixed length 
and contain information about the shape of the 
respective line segment in the form of a three- 
dimensional one-hot-vector (i.e. [0 1 0]) based on 
Grid Context Descriptors (Fan et al., 2021), and used 
them to segment administrative boundary lines based 
on their shape characteristics using a 1D-U-net.

The second approach converts polygons into 
a graph representation, and encodes this graph into 
the embedding space. It was proposed by Yan et al. 
(2021) and constructs a graph through connected ver-
tices, which provide information of local, regional, and 
global shape features. Local features thereby describe 
characteristics of the vertex and its adjacent neighbors, 
while regional features also take the geometry’s cen-
troid into account. In their study, the authors apply 
their approach for shape coding and building cogni-
tion using a GCAE.

Figure 1. Exemplary approaches for encoding a polygon with ten vertices and five features per vertex, with the first layers of the 
respective neural networks. For the detailed architectures of the whole networks, see section 3.2. Left: encoding with an ordered 
sequence using a LSTM-RNN (see Veer et al., 2018). Starting with point P1, the features of each point pt are fed as a 5D-vector into the 
LSTM cell, together with the state of the memory (ct-1) and the output (ht-1) of the previous step. For classification tasks, the output of 
the last state is the overall output of the layer. Center: encoding with an ordered sequence using a 1D-CNN (see Veer et al., 2018). 
Using a kernel size of five and padding, the sliding window moves over the sequence and produces the output (in blue shades) until 
the end of the sequence (gray output), before the same process is repeated for the next filter. Right: polygon encoding using a graph 
representation (see Yan et al., 2021). Each geometry is represented as a single graph, where the vertices of the geometry are the nodes 
(with the respective features) and their connecting lines are the edges. The adjacency matrix A describes if two nodes are actually 
connected (in black) or not (gray) as parts of the geometry boundary.
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3. Method

Representing map data in neural networks is one of the 
major challenges in cartographic generalization when 
implementing deep learning. The previous section 
revealed different approaches to encode geometries, 
namely ordered sequences and graphs. We show how 
the different approaches can complement each other 
and introduce an enhanced geometry encoding 
(Section 3.1) suitable for different network types such 
as 1D-CNN, RNN, and GraphCNN (Section 3.2).

3.1. Geometry encoding

In this section, we propose an approach to encode 
polygons and polylines using vertex feature description, 
which is based on the work on graph representations of 
Yan et al. (2021). We enhance the encoding process in 
a way that it can be best utilized in automated map 
generalization by fulfilling certain requirements:

● The encoding process is reversible and encode 
spatial information about the map object, e.g. in 
the form of coordinates

● Geometric manipulation during preprocessing is 
minimized

● Preprocessing does not conduct any vector-raster- 
transformation

Figure 2 presents the individual steps of the encoding 
workflow, which we will describe in detail in this section.

3.1.1. Regularity of input data
Deep learning models require a regularly structured and 
normalized input to perform in the best possible way. 
Spatial data usually does not have this regularity, and so 
it is key to preprocess the input geometries appropri-
ately. To ensure that all inputs have the same number of 
input features, Veer et al. (2018) use a padding 
approach: They identify the geometry with the largest 
number of points and add zeros to all other geometries 
until they reach the same size. While this is the best way 
to maintain the original geometries, adding a large 
number of zeros often has a negative impact on the 
performance of neural networks. Yan et al. (2021) and 
Liu et al. (2021) use an interpolation method for pre-
processing: They first perform the Douglas-Peucker 
algorithm to simplify the original data before using an 
equally spaced interpolation, resulting in a geometry 
with a predefined number of vertices and the same 
distance between them. As this harms our second 
requirement for map generalization utility – minimizing 
geometry manipulation during preprocessing —, we 
introduce an alternative method that maintains the ori-
ginal shape of the geometry by iteratively dividing the 
current longest edge with an extra vertex until the target 

Figure 2. Steps of the encoding workflow with alternative methods and the resulting encoding sequence, which are described in 
detail in section 3.1. The sequence-based encoding refers to the work of Veer et al. (2018), while the graph-based encoding was 
proposed by Yan et al. (2021). The novel contributions of this paper are marked in red.

150 M. KNURA



number of vertices is reached (see Figure 3). The down-
side is that this method does not ensure the inner 
regularity of the representation, as the distance between 
vertices could differ extremely. Because there is no opti-
mal solution between these approaches, we will test 
them all in our experiments.

3.1.2. Coordinate normalization
The usual workflow for coordinate normalization can be 
described as object-based normalization. It consists of 
two steps: First, the whole geometry is relocated to the 
point of origin, and then scaled to a variance of about 
one. So for each point vector p, the normalized point 
vector p0 can be calculated as: 

where p is the centroid of the geometry and s is the scale 
factor, which can be based on the z-score method (see 
Liu et al. (2021); Yan et al. (2021)) or the standard 
deviation over all objects’ bounding boxes (see Veer 
et al. (2018)).

For the application of map generalization, it could be 
useful to use a normalization approach which contri-
butes to the fact that all objects are located within a close 
range, and so we propose an alternative approach by 
introducing a map-based normalization. The main dif-
ference compared to the object-based method is that the 
centroid �p used in Equation 1 is related to the whole 
map area (see Figure 4). We expect a negative impact on 
the performance of coordinate-based learning models 
such as the ones of Veer et al. (2018) and Liu et al. 
(2021) and will test the performance with map-based 
normalization in our experiments.

3.1.3. Feature extraction for encoding geometries
The most straightforward approach to represent 
a geometry is to use its exterior vertex coordinates (e.g. 
see Liu et al. (2021)). The disadvantage is that this 
encoding can only describe simple polygons. Veer 
et al. (2018) also use these point coordinates, but in 
combination with one-hot vectors marking the end of 
either the vertex [1 0 0], the sub-geometry [0 1 0], or the 
whole geometry [0 0 1]. This approach can also encode 
complex polygons with holes and multipolygons and 
can be applied to polylines. However, using only the 
point coordinates to represent vertices falls short of the 
rich cognitive information a shape boundary can pro-
vide, not mentioning the important role that Gestalt 

Figure 3. Describing a part of a geometry with 16 vertices. a) 
Original shape with eight vertices. b) Interpolation approach 
with equal distances between vertices, manipulating the geo-
metry and resulting in the orange shape. c) Approach of itera-
tively dividing the longest edges until the target number of 
vertices is reached. Distances between vertices could differ; the 
next vertex would be placed at the position marked in orange, 
as this is currently the longest edge.

Figure 4. a) Object-based and b) map-based normalization. Respective centroids in red, map frame and other map objects in gray.
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principles play in map generalization. For that reason, 
Yan et al. (2021) used specific indicators that describe 
local, regional, and global features instead of point 
coordinates as an input for their GCAE, and Liu et al. 
(2021) utilize local feature extraction as a part of their 
TriangleConv operator. Both approaches show 
improved results compared to conventional inputs in 
shape classification tasks. In the following subsections, 
we compose lists from the domain knowledge of map 
generalization with different basic features that can be 
used to describe the shapes of lines and polygons.

Features of the local structure describe the character-
istics that appear at a certain point A and its adjacent 
neighbors B, C with a distance of k that form the triangle 
ABC (see Figure 5). These features can be described for 
all vertices in a polygon, and for all but the k-first and 
k-last vertices of a polyline. From the basic local features 
shown in Table 1, Yan et al. (2021) use triangle area, 
length of a and the turning angle as vertex features, 
while Liu et al. (2021) use all edge lengths and turning 
angles for their TriangleConv operator.

Features of the regional structure describe the general 
characteristics around the point of interest in relation to 
a significant regional point of the geometry (e.g. the 
centroid) while using the same feature calculations as 
for local features. For most lines, the centroid may not 
be the optimal reference point, and it could be beneficial 
to segment the line based on anchor line concurrences, 
inflection points, pattern types (Samsonov & Yakimova,  
2017) or bend segments (Du et al., 2022; García Balboa 
& Ariza López, 2008). As an example, Yang et al. (2022) 
clip the lines for their Unet into smaller units, and 
describe each lixel based on the pattern type as either 

smooth irregular schematic, sharp regular schematic or 
sharp irregular non-schematic.

Features that describe the global structure of 
a geometry are calculated once, and the same value is 
applied to every vertex of the geometry. Although there 
are some features that can be applied to both lines and 
polygons, it is useful to differentiate between the two 
geometry types (see Figure 6). Table 2 lists the basic 
global line features, while Table 3 lists the basic global 
features for polygons. Parametric description of entire 
geometric features is thereby not new, but an elemen-
tary technique of map generalization to assess shape 
preservation Buttenfield (1991). Utilizing these features 
as information in the encoding process is therefore not 
only benefiting the learning process for encoder- 
decoder models (see Yan et al., 2021) but could also 
trigger and evaluate generalization operations in future 
end-to-end generalization models based on vector data.

3.1.4. Encoding schemes
In summary, all encoding schemes have their advan-
tages regarding their usability for map generalization. 
Using coordinates is mandatory when the results should 
be used in combination with map objects that are not 
generalized in the same model. Utilizing the three one- 
hot-vectors proposed by Veer et al. (2018) offers the 
possibility to encode complex polygons, and encoding 
additional features helps to describe specific character-
istics of the geometries. Table 4 presents the three 
encoding schemes. The feature encoding is thereby an 
adapted version from the one of Yan et al. (2021), where 
we combine all the aforementioned properties in one 
scheme. We will investigate the performance of each 
scheme in the following experiments

3.2. Deep learning models

The aforementioned publications propose CNNs, 
RNNs, and GCNNs in combination with the different 
encoding schemes, and so we introduce each network in 
this section. Based on the findings of the recent litera-
ture, we adopt well-established models and the best 
setups available for each network type.

3.2.1. Convolutional neural networks (CNNs)
t’Veer et al. (2019) and Liu et al. (2021) both fed ordered 
sequences into one-dimensional CNNs to solve classifi-
cation tasks. We follow this approach and utilize two 
CNN-based models. The first one is the original version 
of the CNN proposed by Veer et al. (2018). Figure 7 
shows the framework of the tVeerCNN model. The 
input of the model is a sequence of length N, which is 
the number of vertices of the geometry, and with size E, 

Figure 5. Local features at point A of a line or a part of 
a polygon. The blue triangle is formed with neighbors of k = 1, 
the red triangle with neighbors of k = 2.

Table 1. Basic local features based on a triangle ABC and A as 
the point of interest.

Feature Description

Triangle area Area of the triangle ABC
Length of c Length of adjacent line BA
Length of b Length of adjacent line AC
Angle Turning angle at point A.
Length of a Length of opposite line from point A (BC)
Height Height of the triangle ABC
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which reflects the number of vectors used by the encod-
ing scheme. Each rectangle in the figure visualizes the 
shape of the output tensor after the respective layer. The 
representation learning part of the tVeerCNN is com-
posed of two sequential one-dimensional convolutional 
layers with ReLU activation and a pooling layer, while 
the downstream part is composed of two fully 

connected layers. The output of the model is a prob-
ability prediction for each of the K classes.

The second model we design adapts some parts of the 
LiuDPCN model of Liu et al. (2021), adding more depth 
to the layers. The overall framework of this model, 
which we will call dCNN (“deep CNN”) in this paper, 
is the same as of the tVeerCNN, but with dimensions of 
64-1024-256 instead of 32-64-32. Furthermore, we will 
use the LiuDPCN as a benchmark for the building shape 
classification task, although the design of the network 
prohibits the use of other inputs than point coordinates.

3.2.2. Recurrent neural networks (RNNs)
Similar to the one-dimensional CNNs, RNNs can process 
ordered sequences of vertices, and the basic model archi-
tecture we utilize is the one described by Veer et al. 
(2018). Figure 8 presents the framework of the 
tVeerRNN. The input is thereby fed into a bidirectional 
Long-Short Term Memory (LSTM), which is designed to 
process sequential data. Feature representation learning is 
done by passing the vertex input information, the cell 
state, and the output from one vertex to the next, while 
a trainable forget gate regulates which data are retained. 
Because of the bidirectionality, the network learns the 
representation of a vertex in relation to the vertices on 

Figure 6. Selected global features for a) a line and b) a polygon. MABR is the minimum area bounding rectangle defining length (l) and 
width (w), or respectively anchor line length and bandwidth. Concurrence points are in white. Adapted from Buttenfield (1991) and 
Wang and Burghardt (2020).

Table 2. Basic global line features (adapted from Buttenfield,  
1991; Du et al., 2022; García Balboa & Ariza López (2008); 
Samsonov & Yakimova, 2017).

Feature Description

MABR The minimum area bounding rectangle of the line
MABR area The area of the MABR of the line
Anchor line length The length of the MABR
Bandwidth The width of the MABR
Segmentation Distance from the beginning to the location on the 

anchor line where the maximum deviation occurs
WidthPos Maximum deviation on one side of the anchor line
WidthNeg Maximum deviation on other side of the anchor line
Concurrence Number of times line crosses anchor line
Error variance Discrete approximation of total discrepancy 

between line and anchor line
Bendings Number of bends
Sinuosity Number of inflection points
Directionality Deviation between line length and anchor line length

Table 3. Basic global polygon features (adapted from Basaraner 
& Cetinkaya, 2017; Blana & Tsoulos, 2022; Wang & Burghardt,  
2020; Yan et al., 2019).

Feature Description

Area Area of the polygon
MABR Minimum area bounding rectangle
Elongation Length to width ratio of the MABR
Circularity Deviation between polygon and its equal-perimeter circle
Rectangularity Deviation between polygon and its MABR
Squareness Deviation between polygon and its equal-area square
Convexity Deviation between polygon and its convex hull
Fractality Edge roughness or smoothness
Orientation Angle between major axis of the MABR and the 

horizontal direction

Table 4. Encoding schemes where x and y are the point coordi-
nates, v1, v2, and v3 are one hot vectors to describe the function 
of the vertex as of Veer et al. (2018), and fl*, fr* and fg* are local, 
regional, and global feature descriptors of various size (*), 
adapted from Yan et al. (2021).

Abbr. Description Encoding Scheme

c Coordinate encoding [x y]
s Sequence encoding [x y v1 v2 v3]
f Feature encoding [x y v1 v2 v3 fl* fr* fg*]
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Figure 7. Framework of tVeerCNN. The input sequence of length N describes the vertex information using an encoding scheme of size E. 
Feature representation learning is done using two sequential 1-D-Convolutional layers with ReLU activation and Pooling (in blue color). 
The downstream part (in yellow) uses two fully connected layers and Softmax activation to produce a probability output for each of the K 
classes. Adapted from Veer et al. (2018) and Liu et al. (2021)).

Figure 8. Framework of the tVeerRNN. The core of the model is a bidirectional LSTM, which is the feature representation learning module 
(in blue) and is sequentially fed with N inputs of size E twice – clockwise from 1 to N and anticlockwise from N to 1. The downstream part 
(yellow) is the same as in the tVeerCNN framework, with K class scores as the model output (red). Adapted from Veer et al. (2018).

Figure 9. Framework of the GCNN with the dimension we use for our experiments. The input information NxE is processed into 
a graph structure, and the graph and its adjacency matrix is the input for the feature representation learning module (blue), which 
contains of two graph Convolutional layers with LeakyReLU activation. The downstream module (yellow) is the same as for the CNNs 
and RNNs, as well as the output of K class scores (red).
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both sides. The output of the LSTM layer is its hidden 
state after the last input vertex is processed, which in our 
case has a combined dimension of 512. The downstream 
part of the tVeerRNN is the same as of the respective 
CNNs described above.

3.2.3. Graph convolutional neural networks (GCNNs)
The third network type we will test is the GCNN. Yan et al. 
(2021) proposed this network, and we adapt their model 
framework for our experiments. Figure 9 shows the archi-
tecture of the GCNN. The first step is to construct a graph 
and a respective adjacency matrix from the input features, 
which are fed into two sequential Graph Convolutional 
layers with a LeakyReLU activation. The remainder of the 
model is the same as for our CNNs and RNNs, with fully 
connected layers and a Softmax activation for the final class 
scores. Because the input dimensions of the different 
encoding schemes do not match the dimension of the 
proposed model of the authors, we will use the 
YanGCNN with the originally proposed graph features as 
our second benchmark model.

4. Experiments

In the previous section, we discussed the different 
approaches for preprocessing and presented the different 
encoding schemes as well as the neural networks. In this 
section, we conduct a row of experiments with the aim to:

● Evaluate the performance of the different encoding 
schemes in combination with CNNs, RNNs, and 
GCNNs

● Examine the impact of each preprocessing step 
(regularity matching, coordinate normalization) 
on the classification results

● Examine the impact of feature selection and encod-
ing order on the classification results

● Apply the encoding techniques to a polyline data set

4.1. Task and data

To compare and evaluate the performance of the pro-
posed encoding workflow in combination with different 
neural networks, we conduct experiments with shape 
classification as the downstream task for both polygon 
and polyline data. In both cases, the models have to 
predict the correct shape class of the input geometry. 
We selected this task for three reasons: First, learning 
from (encoded) geometries – which is the main topic of 
this paper – is essential for this task. Second, the results 
of this task can be quantitatively evaluated when labeled 
in the data set, but also qualitatively by human eye, 
which is particularly beneficial for classification edge 
cases. Third, this task in combination with the data set 
of Yan et al. (2021) has become a benchmark for shape 
coding, and so we want to utilize this setup for our work. 
This data set consists of 5010 buildings extracted from 
OpenStreetMap, which were manually labeled into 
classes according to their shape and their similarity to 
one of ten letters in the alphabet, namely E, F, H, I, L, O, 
T, U, Y, and Z. Figure 10 shows a variation of examples 
for the ten classes, which contain of 501 buildings each.

For polylines, we utilized a subset of the European 
Marine Observation and Data Network (EMODnet) data 
on coastal types. The data set consists of more than 20 
different classes of coastal types, such as beaches, erodible 
rocks, estuaries, harbors, polders, and salt marshes. We 
selected three of these classes, namely “erodible rock and/ 
or cliff”, “harbor area” and “sand beach fronting upland 
(> 1 km long)”, and manually extract the most representa-
tive geometries for each type. Next, we cut longer elements 
at a maximum length of 8 km to make the classes more 
comparable, which finally leads to a total of 247 lines of type 
“harbor”, 284 lines of type “erodible rock/cliff” and 329 
lines of type “beach”. We selected these three types because 
their shapes are visually distinguishable from a human 
perspective and can be classified at different corners of 
the line-shape-cube (Samsonov & Yakimova, 2017). 

Figure 10. Examples for each class of building shapes in the data set. The first row shows the template shape before normalization, 
rows 2–4 show variations of each class within the training data. Data generated and published by Yan et al. (2021).
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Figure 11 shows an area where all three types are present on 
the island of Mallorca, Spain, and examples for each class.

4.2. Model implementation and hyperparameter

We test the capability of the three encoding schemes in 
combination with the three aforementioned types of 
neural networks: CNNs, RNNs, and GCNNs. In our 
experiments, each model type will be fed with input 
from each encoding scheme (c, s, and f; see Table 4), 
and we compare the performance between the network 
types and between the encoding schemes.

We implemented all models in Python using the 
PyTorch framework (Paszke et al., 2019). We trained 
every network-encoding combination for 250 epochs 
with a batch size of 16. We used the cross-entropy loss 
function and the ADAM optimizer with a learning rate 
of 0.001. After training was done, we selected the epoch 
with the best accuracy and used this model state for 
performance evaluation.

4.3. Preprocessing and evaluation

We set the target size for each polygon length at 64 to 
make sure that every geometry from the experimental 
dataset could be used, and used interpolation, iteratively 
dividing and padding to extend shorter geometries to this 
size. We randomly split the dataset for training and 
testing at a ratio of 80:20. We then encoded every build-
ing using all encoding schemes and trained all models 

with the same set of training and test data to ensure 
comparability and the fairness of the competition. As 
global feature descriptors, we used elongation, circularity, 
rectangularity, squareness and convexity, and the same 
local and regional features as Yan et al. (2021). Feature 
normalization was done using the Z-score method. The 
whole workflow was repeated four times, and the final 
result was calculated as the mean performance over five 
iterations for each net and experimental design.

We did the same workflow for our polyline data, but 
we set the target sequence length to 128. After splitting 
the set into train and test set, we enlarged the training 
set by mirroring the geometries on both axes, leading to 
a total of 2620 training and 164 test lines. For global line 
features, we selected anchor line length, elongation, 
bandwidth, directionality, and error variance and used 
the same local and regional features as for polygons but 
with the first and last point as regional reference points.

To evaluate the performance of the different models, 
we used two metrics which are commonly used for 
multi-classification tasks: accuracy and f1-score. 
Accuracy is the ratio of correct predicted samples com-
pared to all samples and is calculated as: 

where m is the number of samples, f ðxiÞ is the label 
predicted for the i-th sample, and yi is the true label for 
the i-th sample.

Figure 11. a) Line data sample of coastal types near Alcúdia, Spain. b) Selected examples for each coastal type in the data set. Data 
from the European marine observation and data network (EMODnet), basemap tiles: Ó OpenStreetMap, under ODbL.
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The f 1 � score is a metric that combines the values of 
precision and recall for each class, and macro � F1 is the 
mean f 1 � score over all classes. Precision for class k is 
thereby defined as the ratio of correctly classified sam-
ples compared to all samples that are classified as k: 

where TP are true positives and FP are false positives for 
class k. The recall for class k is the ratio of correctly 
classified samples compared to all samples that should 
have been correctly classified as k: 

where FN are false negatives for class k. The f 1 � score 
is now calculated as: 

where precision and recall are the respective metrics for 
class k. Accuracy and f1-scores both range between 0 
and 1. The higher the values, the better is the perfor-
mance of the model. As long as all classes are equally 
distributed over the test set and there are no high devia-
tions between the f1-scores of the classes, accuracy and 
macro-F1 score are in close range to each other. This 
was the case for our first experiment, and so we 
renounce to show the f1-score there.

5. Results

In this section, we present the results of our experiments 
to show the performance of the encoding schemes in 
combination with CNNs, RNNs, and GCNNs 
(Section 5.1). Next, we evaluate the impact of the pre-
processing step of matching regularity (Section 5.2) and 
test properties such as orientation and scale 
(Section 5.3), before conducting a sensitivity study for 
feature selection (Section 5.4). We then apply the encod-
ing approach on polyline data (Section 5.5).

5.1. Performance of encoding schemes and neural 
networks

Table 5 lists the accuracy results of the different encod-
ing schemes and neural networks performing the build-
ing shape classification task while using interpolation, 
iterative dividing, and padding during preprocessing. 
The model name reflects the combination of network 
and encoding scheme. In general, we can see that the 
encoding scheme that utilizes feature descriptors out-
performs the other two schemes in combination with 

every type of neural network, and that the respective 
best performances are quite similar between CNNs, 
RNNs, and GCNNs.

Comparing the performances of the different encod-
ing schemes among one another, dCNN+f (98.35%), 
tVeerRNN+f (99.56%), and GCNN+f (99.69%) accom-
plish the best accuracies for their respective network 
types. The second-best accuracy for CNN (97.01%) 
and GCNN (70.41%) models were reached by the 
scheme which encodes the vertex coordinates. For 
RNNs, the sequence-encoding schemes perform slightly 
better than the coordinate-encoding. However, both 
results for GCNN+c and GCNN+s are just around 
70% and therefore nearly 30% worse than the GCNN 
+f, which shows that GCNNs without vertex feature 
descriptors are not converging at a good level during 
training (see Figure 12).

When comparing the best performances of the dif-
ferent types of neural networks to each other, the results 
for the GCNN and the RNN were the best, followed by 
the CNN. GCNN+f performs even better than the two 
benchmark models for building shape cognition 
(99.68% and 99.66%), although the margin was very 
small. Aside from the aforementioned bad performance 
of the two GCNNs using coordinates and sketch 
sequences, the overall performance of the different 
neural network types was promising, as even the worst 
performing encoding schemes for dCNN (94.99%) and 
tVeerRNN (96.64%) accomplished accuracies of 95%. 
As a result, we can state that all types of neural networks 
were able to reach exceptionally good results when 
benefiting from feature encoding.

Table 5. Accuracy results of the experiments on encoding 
schemes and neural networks. c, s, and f relate to the respective 
encoding scheme (see also Table 4). The best results per network 
type are marked (benchmark models are evaluated separately).

interpolate iterative dividing padding

tVeerCNN 0.9546 0.8878 0.7371
tVeerCNN 0.9499 0.8784 0.6488
tVeerCNN 0.9563 0.9452 0.9175
dCNN+c 0.9701 0.9261 0.7756
dCNN+s 0.9687 0.9177 0.7776
dCNN+f 0.9835 0.9513 0.9196
LiuDPCN 0.9966 0.9961 0.9732

tVeerRNN 0.9664 0.9224 0.78
tVeerRNN 0.9704 0.9204 0.7623
tVeerRNN 0.9956 0.9886 0.947

GCNN+c 0.6828 0.7041 0.6087
GCNN+s 0.6845 0.6922 0.6369
GCNN+f 0.9969 0.9956 0.9724
YanGCNN 0.9968 0.9973 0.9748

CNN

RNN

GCNN

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 157



5.2. Preprocessing approaches to match regularity

We have varied the preprocessing method between three 
different approaches and compare the impact on the 
performance of each network, which can be also seen 
in Table 5. The interpolation method produces the best 

results for nearly every network and encoding scheme, 
followed by the iterative dividing approach. The differ-
ence between these two methods varied between less 
than 0.1% (GCNN+f) and 7% (tVeerCNN+s), whereas 
three of the four GCNN models perform better with the 

Figure 12. Test accuracy during training for each combination of network and encoding scheme with iterative dividing and object- 
based normalization during preprocessing. In our pretests with 500 and 1000 epochs, none of the models increase their performance 
after the 250th epoch.

Figure 13. Visualization of the learned shape embeddings for models using feature encoding: a) dCNN+f, b) tVeerRNN+f, and c) GCNN 
+f. Top: embeddings for the building classification task; colors represent the ground truth class of each sample, as in Figure 10. 
Bottom: embeddings for the coastline classification task; colors represent the ground truth class of each sample, as in Figure 11.
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iterative dividing preprocessing. Padding achieved the 
worst results for the majority of the models, and the 
shortfall compared to the interpolation method differs 
depending on the encoding scheme. Feature encoding 
schemes achieve from 2.5% (GCNN+f) less to 6.4% less 
(dCNN+f), while the other encodings reached lower 
accuracies with at least 20% less.

5.3. Property testing

We conduct three experiments of alternative preproces-
sing and training methods and compare them with the 
results above (see Table 6). First, we wanted to test if the 
orientation of a geometry has an influence on the ability 
of the encoding schemes and networks to classify cor-
rectly. Therefore, we rotated the horizontal direction of 
all geometries in the training data toward the y-axis, 
based on their major axis of their minimum area bound-
ing rectangle. We then test the models with non-rotated 
geometries and analyze the accuracy. The results show 
that networks with feature-based encodings perform 
only slightly worse, with only dCNN+f declining more 
than 0.5%. Networks with other encoding schemes were 
less able to perform when the orientation in the training 
set was normalized.

Next, we tested if the size of the geometries influences 
the outcome of the models. Therefore, we scaled the test 
set with the factor 2 and analyzed the class predictions. 
Again, our results show that models that learn from 
feature encoding perform nearly as good as with the 
normal test set. From the others, dCNN+c and 
tVeerRNN+s performed better than in the orientation 
test, while the GCNN+s model does not converge at all 
under these conditions.

The last column in Table 6 shows the results 
when we use the map-based coordinate normaliza-
tion (see Section 3.1.2) during preprocessing instead 
of the object-based. In this test, tVeerRNN+f had the 
best results, followed by GCNN+f. dCNN+f lost 

more than 11.5% of its performance, while all mod-
els not utilizing feature encoding lost 30% and more.

5.4. Sensitivity tests for feature encoding

Table 7 presents the results of our test to identify the 
optimal configuration of neighboring points that will be 
used in the feature encoding (see Figure 5). For all 
models, the best configuration was to use three neigh-
bors with the distance of k = [1,2,4]. It shows that with 
more than three neighbors in consideration, the addi-
tional information of each feature is redundant.

Table 8 shows a sensitivity analysis with respect to the 
different feature categories. The performance of all 
models decreases if one of the categories was absent in 
the encoding, with local features having the smallest and 
regional features the biggest influence on the results. If 
both local and regional features were missing, the per-
formance was even worse for all models. Between the 
models, tVeerRNN+f was the most stable model, loos-
ing not more than 2% in any of the experiments, while 
the GCNN+f looses up to nearly 10% when only utiliz-
ing global features.

5.5. Applying the encoding schemes to polyline 
data

In our last experiment, we apply the encoding schemes 
on polyline data. Table 9 shows the results of the experi-
ment, including the f1-scores for the three classes in the 
coastline data set: beaches, rocks/cliffs, and harbors. As 
a first result, we can state that our iterative dividing 
method outperforms interpolation for all models due 
to the fact that the Douglas-Peucker simplification dur-
ing preprocessing modifies the most important charac-
teristic for this classification task. Furthermore, the 
accuracy of all models is lower than for the building 
classification task. The GCNN+f performs best with 
87.50%, followed by YanGCNN, dCNN+f and 

Table 6. Accuracy results of the experiments when learning from 
modified properties: a) normalized orientation, b) different scales, c) 
map-based coordinates. Marked values are within a 1.0% deviation of 
the standard training results.

experiment a) oriented b) scaled c) map-based
dCNN+c 0.9701 0.903 0.9506 0.2125
dCNN+f 0.9835 0.977 0.9778 0.8597
LiuDPCN 0.9966 0.9724 0.9284 0.6843
tVeerRNN+s 0.9704 0.8837 0.9204 0.2637
tVeerRNN+f 0.9956 0.9954 0.995 0.9944
GCNN+s 0.6845 0.4321 0.1099 0.1361
GCNN+f 0.9969 0.9952 0.9929 0.9821
YanGCNN 0.9966 0.9956 0.997 0.981
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tVeerRNN+f, which all accomplish accuracies between 
85% and 87%. By contrast, the models that do not utilize 
vertex features do not reach more than 77%. This shows 
that the benefits of vertex feature extraction are also 
valid for polylines.

We explain the lower performance to a certain 
amount with the differences between the data sets: 
While the building dataset contains more than 5000 
human-built geometries, the coastline dataset has only 
860 geometries from which the majority are naturally 
occurring shapes of rocks and beaches. These character-
istics could lead to less distinguishable – and therefore 
learnable – classifications, leading to the lower accura-
cies of the models. To gain further insights into the 
results of our experiments, we visually compare the 
shape encodings in the embedding space by utilizing 
the t-SNE algorithm (van der Maaten & Hinton,  
2008). This algorithm reduces the high-dimensional 
embeddings to just two dimensions, which enables 
straightforward visualizations. Figure 13 shows the 
respective encoding visualizations from instances of 
three models. The building classes are densely clustered 
and clearly distinguishable from each other, while the 
embeddings of the coastlines are more scattered and 
appear in a linear shape, which means that most of the 

false-positive samples occur between the classes of har-
bor and rock/cliff and between rock/cliff and beaches. 
The f1-scores of Table 9 support this assumption: For all 
but the YanGCNN model, the f1-score of the rock/cliff 
class is lower than the others.

6. Case study

We implement an exemplary building generalization 
workflow based on shape classification and template 
matching. The aim of this case study is to test the 
suitability of the shape classification models as part of 
a building generalization workflow, while the visual 
evaluation of the generalization results allows us to 
simultaneously discuss and compare the classification 
results of the three feature-based deep learning models 
(CNN+f, RNN+f, GCNN+f).

6.1. Workflow

The approach of our case study is suitable for scales 
between 1:20,000 and 1:50,000, where representational 
shapes of buildings are more important for the under-
standing of the map scene than the accuracy of the 
buildings’ detailed boundaries. The workflow is inspired 

Table 7. Experiments for the identification of the optimal configuration of neighbors 
k. Best performance for each model is marked.

k= [1] [1,2] [1,2,4] [1,2,3,4] [1,2,4,8] [1,2,4,8,16]
dCNN+f 0.9576 0.9606 0.9818 0.9606 0.9627 0.9637
tVeerRNN+f 0.9808 0.9899 0.9949 0.9868 0.9919 0.9929
GCNN+f 0.9879 0.9929 0.9959 0.9959 0.9959 0.9959
YanGCNN 0.9909 0.9939 0.9959 0.9949 0.9949 0.9959

Table 8. Influence of feature categories on the model performance. Best 
result per feature selection is marked.

features all only global no global no regional no local
dCNN+f 0.9667 0.9183 0.9405 0.9173 0.9637
tVeerRNN+f 0.9919 0.9697 0.9889 0.9717 0.9889
GCNN+f 0.9979 0.9002 0.9899 0.9798 0.9919
YanGCNN 0.9979 0.8871 0.9909 0.9727 0.9929

Table 9. Results of the experiment of line classification with interpolation and iterative 
dividing as preprocessing methods, with the better result per model marked. All f1-scores 
are calculated for the iterative dividing approach.

interpolate iter. div. macro-f1 f1-beach f1-rock f1-harbor
dCNN+c 0.6486 0.7681 0.7996 0.8632 0.7593 0.7765
dCNN+f 0.8319 0.8542 0.8637 0.8989 0.8257 0.8667
tVeerRNN+s 0.6278 0.7667 0.7779 0.8283 0.7143 0.7912
tVeerRNN+f 0.8472 0.8667 0.8488 0.8764 0.8257 0.8444
GCNN+s 0.5431 0.6915 0.7878 0.8478 0.7339 0.7816
GCNN+f 0.8167 0.875 0.924 0.9348 0.9126 0.9247
YanGCNN 0.8264 0.8681 0.9244 0.9412 0.9189 0.913
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by the works of Rainsford and Mackaness (2002) and 
Yan et al. (2017) – while replacing shape measurement 
with our shape classification – and combines the build-
ing generalization operators of exaggeration, elimina-
tion, and simplification (see also Li et al. (2004)).

We start with the elimination of all buildings which 
are smaller than a predefined threshold, which we set for 
our target scale of 1:25.000 at 200 m2. Next, we select all 
buildings that are bigger than 15,000 m2 to retain their 
initial shape, as we want these landmarks to work as 
visual anchors in the area. We then preprocess the 
training data from Yan et al. (2021) as well as the case 
study data with iterative dividing and object-based nor-
malization and select for k = [1,2,4] and the same fea-
tures as described in section 4.3. We train our models 
with the training data set and the same parameter set-
tings as in section 4. After that, we classify each building 
from our case study area. As the next step, we normalize 
the template shapes to create a collection of templates. 
For each classified building in our case study area, we 
resize the respective template according to the mini-
mum area bounding rectangle of the building of inter-
est, and rotate the template based on the MABR’s 
horizontal direction. As the last step, we apply 
a translation to match the adjusted template and the 
location of the building of interest.

6.2. Data

Our case study area is located around the Temple of the 
Sun in Beijing, China. The area has a variety of different 
building types regarding their shape, size, and orienta-
tion and is shown in Figure 14. We retrieved all build-
ings available in this area from Open Street Map via the 
Overpass API and eliminated all geometries that are 
completely covered by others. This results in 360 dis-
tinct buildings, from which 336 buildings are larger than 
the threshold of 200 m2.

6.3. Results

Figure 15 shows the resulting buildings using our 
approach based on the three models. In general, the 
results are promising for all models. The straight-lined 
arrangements of buildings on the northern, eastern, and 
southern border of the quarter are mostly preserved, 
and the largest buildings – beside those which exceed 
the threshold – were adequately matched with the cor-
rect templates. The same can be said for most of the 
smaller buildings, which now have less complex bound-
ary shapes. Nevertheless, there are also some shortcom-
ings for all results. Some matched templates seemed to 
disarrange the overall building arrangement, either 

because the models predict an unsuitable shape class 
for the respective building or the result of the matching 
algorithm is incorrectly rotated because of some indivi-
dual shape characteristics that influence the MABR of 
the building. Furthermore, problems arise when build-
ing boundaries are adjacent, but the adjacency is not 
preserved after the template matching, either because of 
the characteristics of the template shapes or through the 
different orientations of the respective MABRs.

The aforementioned problems occur for all of the 
three models without obvious pattern, and there is no 
model whose result stands out compared to the other 
two. For that reason, we further discuss the different 
outcomes of the models based on five examples located 
in the study area, focusing on two individual buildings 
and three building ensembles (see Figure 16). The first 
example shows the shape classifications for a long build-
ing with an irregular boundary. Looking at the training 
data examples in Figure 10, this should be classified as 
I as from the RNN+f, but the predictions of the CNN+f 
and GCNN+f are also comprehensible. The same can be 
said for the second example, in which the RNN+f pre-
diction is again different from the other two models, but 
this time the F-shape seems closer to the original geo-
metry than the E.

The third example shows two series of similar 
shaped buildings. Regarding the series on the right 
side of the image, each model classifies the indivi-
dual buildings into the same class, but the classes 
vary between the models: CNN+f predicts F, while 
RNN+f predicts L and GCNN+f Z. Focusing on the 
curved series of Y-shaped buildings on the left side 
of the image, the second building is slightly different 
from the other three, leading to different classifica-
tions from RNN+f (T) and GCNN+f (F). Although 
this is comprehensible from a geometrical point of 
view, the results from the CNN+f are preferred for 
a map generalization due to the more consistent 
group pattern they built. The same result occurs 
for the fourth example, in which the CNN+f predicts 
the same classes for the two respective pairs of 
buildings in the center of the image, while GCNN 
+f predicts different classes for one and RNN+f for 
both pairs of buildings. In contrast, the RNN+f pro-
duces the best result for the area in the last example, 
while the other models struggle mostly with the 
larger buildings in the lower part of the image.

7. Discussion

Deep learning in the field of map generalization is 
mainly done with raster-based techniques. We uti-
lized a feature-based encoding scheme to learn 
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directly from vector-based input and implemented 
a shape classification task as part of a building gen-
eralization workflow. In this section, we want to 
discuss the results and implications of our work.

7.1. Geometry encoding with feature description

We showed that feature description can help to convert 
shape representation techniques from the constraint- 
based map generalization workflow to deep learning 
applications as the first step toward a vector-based, end- 
to-end generalization model. Furthermore, utilizing 
(shape) measures from the conventional map general-
ization workflow helps to regulate the causal mechan-
isms of the deep learning models. These mechanics are 
mostly hidden and only visible through the model 

output, which could be problematic from 
a cartographic point of view, especially in semi- 
automatic processes with human editing (Touya et al.,  
2019). As a solution, we showed in Section 3 that there is 
a huge body of generalization knowledge available, 
including various approaches on how to select mean-
ingful measures and how to describe shapes appropri-
ately, and the input for deep learning models should 
reflect this knowledge to make the output more consis-
tent and correct (Sester, 2020). Feature descriptors can 
also play an important role to define the loss function 
during the learning process. Shape measures are com-
monly used in generalization systems like AGENT 
(Duchêne et al., 2018) to assess the fulfillment of pre-
servation constraints or similarity measures (Blana & 
Tsoulos, 2022), and this could be the same when map 

Figure 14. a) Buildings in the area around the temple of the sun, Beijing. b) Location of the case study area in the east of the Forbidden 
City (in black). c) Locations of the five example areas and the two landmarks with an area above 15,000 m2 (the Ministry of Foreign 
Affairs of the People’s Republic of China in the north-western corner and the Ritan International Trade Center in the center of the 
map). Map data and basemap tiles: Ó OpenStreetMap, under ODbL.
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Figure 15. Results of the case study utilizing deep learning models for shape coding and template matching. a) Original data, b) 
classification with CNN+f, c) classification with RNN+f, d) classification with GCNN+f. Landmarks were not generalized.
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generalization is done with deep learning models. This 
can be implemented by defining specific measure values 
as the targets in supervised learning models or by using 
respective constraints for reinforcement learning.

7.2. Building generalization using shape 
classification

We enhanced the feature encoding preprocessing for an 
optimal use as part of a map generalization workflow 
and exemplarily implemented an approach for building 
generalization. Our experiments on the different 

preprocessing methods showed that our proposed itera-
tive dividing method – preserving the original shape – is 
preferable for map generalization applications when 
shape features are of interest, like in our polyline classi-
fication task. The results thereby reflect the specific 
characteristics of the neural networks: For the CNNs, 
the interpolation method achieved better results due to 
the regularity that is needed for the convolution opera-
tion to work. The architectures of RNNs and GCNNs 
are more robust against irregular data, and for these 
models both preprocessing methods achieve similar 
results when feature descriptors are used for encoding, 

Figure 16. Examples of template matching results for a) CNN+f, b) RNN+f, and c) GCNN+f, focusing on unusual shapes. 1) Long 
building with irregular boundary. 2) Building with unusual shape similar to an F. 3) Area with two series of four similar buildings. 4) 
A collection of two pairs of unusual building shapes. 5) Buildings in close proximity in combination with unusual shapes.
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as this additional input information helps to overcome 
irregularities in the data. However, the case study 
showed that these small margins in the model perfor-
mances for building classification are not emphasized in 
the results of our building generalization workflow 
using template matching. For the few buildings in the 
case study area that had different class predictions 
between the models, we found no systematic bias in 
the visual results. The examples shown in Figure 16 
revealed that no model was superior compared to the 
others, as all produced unusual results at certain occa-
sions when the other two did not.

As a result, a combination of all three models with 
majority voting for the final class prediction could be 
a straightforward improvement to the workflow. 
A second approach to achieve better results is to opti-
mize the shape classes we train our models with. While 
we use the 10 alphabetical characters of Yan et al. 
(2021), Rainsford and Mackaness (2002) use a slightly 
different character selection (I, F, P, G, E, L, U, O, T), 
and Yan et al. (2017) categorize their templates into 
simple, symbolic, and composite shapes and also 
extracted shapes automatically from the dataset. Even 
further, a backpropagation network can be utilized to 
decide which template is more appropriate (Yang et al.,  
2022).

7.3. Future research directions

Utilizing the geometric encoding schemes to produce 
generalized output is the next logical step, and there are 
several research directions in consideration. We want to 
discuss them based on two questions.

7.3.1. End-to-end generalization or focus on 
optimizing subprocesses?
Following the aforementioned work on point general-
ization, line simplification, or raster-based building gen-
eralization, we aim at a vector-based end-to-end object 
generalization. But for the integration into a more gen-
eral workflow of map generalization, it could be more 
advantageous to substitute only selected subprocesses 
with deep learning techniques, as we did with our 
approach of building generalization: Building shape 
classification is utilized as a data enhancement step, 
and the generalization is done afterward with prede-
fined matching operations according to the predicted 
shape class. Utilizing feature descriptors for local, regio-
nal, and global features was deployed for Graph 
Convolutional Neural Networks, and we showed that 
this approach can be transferred to other types of neural 
networks such as CNNs and RNNs. As map general-
ization is a combination of different tasks and cognitive 

processes, having the opportunity to choose between 
different types of neural networks ensures more task- 
specific network designs – instead of applying a problem 
from map generalization to a predetermined type of 
network, possibly dealing with network-specific limita-
tions – and therefore enabling more applications within 
the map generalization workflow.

7.3.2. How to define the generalization problems?
The majority of the end-to-end generalization mod-
els used Deep Generative Networks, as generalization 
can be seen as a creative process to recreate new 
objects. The proposed encoding scheme using feature 
descriptors can be utilized in the same way as input 
images for generative models, and the implementa-
tion of this approach is a major part of our future 
work. The challenge is thereby to link generalization 
operations with suitable deep learning tasks to 
achieve the best results. For example, among many 
other solutions, simplification can be implemented 
as a classification task, where the vertex points are 
classified to decide which ones will be removed 
(Zhou et al., 2022), or with an autoencoder architec-
ture, where the model learns an efficient representa-
tion of the input model – and therefore a simplified 
shape.

8. Conclusion

Learning directly from vector data has several advan-
tages, and this work can be seen as the first step 
toward the deployment of a vector-based deep learn-
ing model that performs end-to-end object general-
ization in the future. We identified vector-based 
schemes from the literature, which can encode lines 
and polygons to a hidden embedding space and 
enhance the preprocessing workflow to adequately 
represent map data that can be utilized for map 
generalization tasks. Next, we compared the perfor-
mance of CNNs, RNNs, and GCNNs in combination 
with different preprocessing approaches and encod-
ing schemes. Our results show that feature descrip-
tors improve the accuracy of all three types of neural 
networks significantly, and that the overall perfor-
mances of CNNs, RNNs, and GCNNs are quite 
similar while solving shape classification task for 
polylines and polygons. Furthermore, we implemen-
ted the classification task as part of an exemplary 
building generalization workflow, and show that all 
three models achieve considerable generalization 
results. The next step for the future is the imple-
mentation of an end-to-end generalization model, 
where the feature descriptors we deployed for 
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geometry encoding could further play an important 
role for learning and evaluation.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

ORCID

Martin Knura http://orcid.org/0000-0002-1678-866X

Data availability statement

The data and code that support the findings of this study are 
available in GitHub at: https://github.com/geo-mart/Vector- 
Shape-Encoder.

References

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & 
Bharath, A. A. (2017). Deep reinforcement learning: 
A brief survey. IEEE Signal Processing Magazine, 34(6), 
26–38. https://doi.org/10.1109/MSP.2017.2743240

Basaraner, M., & Cetinkaya, S. (2017). Performance of shape 
indices and classification schemes for characterising per-
ceptual shape complexity of building footprints in gis. 
International Journal of Geographical Information Science, 
31(10), 1952–1977. https://doi.org/10.1080/13658816.2017. 
1346257

Blana, N., & Tsoulos, L. (2022). Generalization of linear and 
area features incorporating a shape measure. ISPRS 
International Journal of Geo-Information, 11(9), 489.  
https://doi.org/10.3390/ijgi11090489

Buttenfield, B. 1991, 1). A rule for describing line feature 
geometry. In B. Buttenfield & R. B. McMaster. (Eds.), 
Map generalization: Making rules for knowledge representa-
tion (pp. 150–171). Longman Scientific & Technical 
London.

Courtial, A., El Ayedi, A., Touya, G., & Zhang, X. (2020). 
Exploring the potential of deep learning segmentation for 
mountain roads generalisation. ISPRS International Journal 
of Geo-Information, 9(5). https://doi.org/10.3390/ 
ijgi9050338

Courtial, A., Touya, G., & Zhang, X. (2021). Generative adver-
sarial networks to generalise urban areas in topographic 
maps. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XLIII-B4 
-2021, 15–22. https://doi.org/10.5194/isprs-archives-XLIII- 
B4-2021-15-2021

Courtial, A., Touya, G., & Zhang, X. (2022a, May 7). 
Constraint-based evaluation of map images generalized by 
deep learning. Journal of Geovisualization and Spatial 
Analysis, 6(1), 13. https://doi.org/10.1007/s41651-022- 
00104-2

Courtial, A., Touya, G., & Zhang, X. (2022b). Representing 
vector geographic information as a tensor for deep learning 
based map generalisation. AGILE: GIScience Series 3, 32.  
https://doi.org/10.5194/agile-giss-3-32-2022

Duchêne, C., Touya, G., Taillandier, P., Gaffuri, J., Ruas, A., & 
Renard, J. (2018, January). Multi-agents systems for carto-
graphic generalization: Feedback from past and on-going 
research (Research Report). IGN (Institut National de 
l’Information Géographique et Forestière); LaSTIG, 
équipe COGIT. https://hal.archives-ouvertes.fr/hal- 
01682131 

Du, J., Wu, F., Xing, R., Gong, X., & Yu, L. (2022). 
Segmentation and sampling method for complex polyline 
generalization based on a generative adversarial network. 
Geocarto International, 37(14), 4158–4180. https://doi.org/ 
10.1080/10106049.2021.1878288

Du, J., Wu, F., Yin, J., Liu, C., & Gong, X. (2022). Polyline 
simplification based on the artificial neural network with 
constraints of generalization knowledge. Cartography and 
Geographic Information Science, 49(4), 313–337. https:// 
doi.org/10.1080/15230406.2021.2013944

Fan, H., Zhao, Z., & Li, W. (2021). Towards measuring shape 
similarity of polygons based on multiscale features and grid 
context descriptors. ISPRS International Journal of 
GeoInformation, 10(5), 279. https://doi.org/10.3390/ 
ijgi10050279

Feng, Y., Thiemann, F., & Sester, M. (2019). Learning carto-
graphic building generalization with deep convolutional 
neural networks. ISPRS International Journal of Geo- 
Information, 8(6), 258. https://doi.org/10.3390/ijgi8060258

García Balboa, J. L., & Ariza López, F. J. (2008, September 1). 
Generalization-oriented road line classification by means of 
an artificial neural network. GeoInformatica, 12(3), 
289–312. https://doi.org/10.1007/s10707-007-0026-z.

Ha, D., & Eck, D. (2017). A neural representation of sketch 
drawings. arXiv. https://doi.org/10.48550/ARXIV.1704. 
03477

Iddianozie, C., & McArdle, G. (2021). Towards robust repre-
sentations of spatial networks using graph neural networks. 
Applied Sciences, 11(15), 6918. https://doi.org/10.3390/ 
app11156918

Kang, Y., Rao, J., Wang, W., Peng, B., Gao, S., & Zhang, F. 
(2020). Towards cartographic knowledge encoding with 
deep learning: A case study of building generalization. In 
Autocarto 2020, the 23rd International Research Symposium 
on Cartography and Giscience. https://cartogis.org/docs/ 
autocarto/2020/docs/abstracts/2b%20Towards% 
20Cartographic%20Knowledge%20Encoding%20with% 
20Deep%20Learning%20A.pdf 

Karsznia, I., & Sielicka, K. (2020). When traditional selection 
fails: How to improve settlement selection for small-scale 
maps using machine learning. ISPRS International Journal 
of GeoInformation, 9(4), 230. https://doi.org/10.3390/ 
ijgi9040230

Karsznia, I., Weibel, R., & Leyk, S. (2022). May ai help you? 
Automatic settlement selection for small-scale maps using 
selected machine learning models. https://cartogis.org/docs/ 
autocarto/2022/docs/abstracts/Session3Karsznia5316.pdf 

Liao, S., Bai, Z., & Bai, Y. (2012, December 1). Errors predic-
tion for vector-to-raster conversion based on map load and 
cell size. Chinese Geographical Science, 22(6), 695–704.  
https://doi.org/10.1007/s11769-012-0544-y.

Liu, C., Hu, Y., Li, Z., Xu, J., Han, Z., & Guo, J. (2021). 
Triangleconv: A deep point convolutional network for 
recognizing building shapes in map space. ISPRS 

166 M. KNURA

https://github.com/geo-mart/Vector-Shape-Encoder
https://github.com/geo-mart/Vector-Shape-Encoder
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1080/13658816.2017.1346257
https://doi.org/10.1080/13658816.2017.1346257
https://doi.org/10.3390/ijgi11090489
https://doi.org/10.3390/ijgi11090489
https://doi.org/10.3390/ijgi9050338
https://doi.org/10.3390/ijgi9050338
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-15-2021
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-15-2021
https://doi.org/10.1007/s41651-022-00104-2
https://doi.org/10.1007/s41651-022-00104-2
https://doi.org/10.5194/agile-giss-3-32-2022
https://doi.org/10.5194/agile-giss-3-32-2022
https://hal.archives-ouvertes.fr/hal-01682131
https://hal.archives-ouvertes.fr/hal-01682131
https://doi.org/10.1080/10106049.2021.1878288
https://doi.org/10.1080/10106049.2021.1878288
https://doi.org/10.1080/15230406.2021.2013944
https://doi.org/10.1080/15230406.2021.2013944
https://doi.org/10.3390/ijgi10050279
https://doi.org/10.3390/ijgi10050279
https://doi.org/10.3390/ijgi8060258
https://doi.org/10.1007/s10707-007-0026-z
https://doi.org/10.48550/ARXIV.1704.03477
https://doi.org/10.48550/ARXIV.1704.03477
https://doi.org/10.3390/app11156918
https://doi.org/10.3390/app11156918
https://cartogis.org/docs/autocarto/2020/docs/abstracts/2b%2520Towards%2520Cartographic%2520Knowledge%2520Encoding%2520with%2520Deep%2520Learning%2520A.pdf
https://cartogis.org/docs/autocarto/2020/docs/abstracts/2b%2520Towards%2520Cartographic%2520Knowledge%2520Encoding%2520with%2520Deep%2520Learning%2520A.pdf
https://cartogis.org/docs/autocarto/2020/docs/abstracts/2b%2520Towards%2520Cartographic%2520Knowledge%2520Encoding%2520with%2520Deep%2520Learning%2520A.pdf
https://cartogis.org/docs/autocarto/2020/docs/abstracts/2b%2520Towards%2520Cartographic%2520Knowledge%2520Encoding%2520with%2520Deep%2520Learning%2520A.pdf
https://doi.org/10.3390/ijgi9040230
https://doi.org/10.3390/ijgi9040230
https://cartogis.org/docs/autocarto/2022/docs/abstracts/Session3Karsznia5316.pdf
https://cartogis.org/docs/autocarto/2022/docs/abstracts/Session3Karsznia5316.pdf
https://doi.org/10.1007/s11769-012-0544-y
https://doi.org/10.1007/s11769-012-0544-y


International Journal of Geo-Information, 10(10), 687.  
https://doi.org/10.3390/ijgi10100687

Li, Z., Yan, H., Ai, T., & Chen, J. (2004). Automated building 
generalization based on urban morphology and gestalt 
theory. International Journal of Geographical Information 
Science, 18(5), 513–534. https://doi.org/10.1080/ 
13658810410001702021

Mackaness, W., Burghardt, D., & Duchêne, C. (2014). Map 
generalisation: Fundamental to the modelling and under-
standing of geographic space. In D. Burghardt, C. Duchêne, 
& W. Mackaness, (Eds.), Abstracting geographic informa-
tion in a data rich world: Methodologies and applications of 
map generalisation. (pp. 1–15). Springer International 
Publishing. https://doi.org/10.1007/978-3-319-00203-3_1 

Mai, G., Janowicz, K., Hu, Y., Gao, S., Yan, B., Zhu, R., L. Cai, 
& Lao, N. (2022). A review of location encoding for geoai: 
Methods and applications. International Journal of 
Geographical Information Science, 36(4), 639–673. https:// 
doi.org/10.1080/13658816.2021.2004602

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., 
Chanan, G., Killeen T., Lin Z. ,Gimelshein N. ,Antiga L. , 
Desmaison A. ,Köpf A. ,Yang E. ,DeVito Z. ,Raison M. , 
Tejani A. ,Chilamkurthy S. ,Steiner B. ,Fang L, . . . 
Chintala, S. (2019). Pytorch: An imperative style, 
high-performance deep learning library. arXiv. https://doi. 
org/10.48550/ARXIV.1912.01703

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). Pointnet: Deep 
learning on point sets for 3d classification and 
segmentation. arXiv. https://doi.org/10.48550/ARXIV. 
1612.00593

Rainsford, D., & Mackaness, W. (2002). Template matching in 
support of generalisation of rural buildings. In 
D. E. Richardson & P. van Oosterom (Eds.), Advances in 
spatial data handling (pp. 137–151). Springer.

Ruthotto, L., & Haber, E. (2021). An introduction to deep 
generative modeling. CoRr Abs/2103.05180, 44(2). https:// 
doi.org/10.48550/arXiv.2103.05180

Samsonov, T. E., & Yakimova, O. P. (2017). Shape-adaptive 
geometric simplification of heterogeneous line datasets. 
International Journal of Geographical Information Science, 
31(8), 1485–1520. https://doi.org/10.1080/13658816.2017. 
1306864

Sester, M. (2020 12). Cartographic generalization. Journal of 
Spatial Information Science, (21), 5–11. https://doi.org/10. 
5311/JOSIS.2020.21.716

Stoter, J., Zhang, X., Stigmar, H., & Harrie, L. (2014). 
Evaluation in generalisation. In D. Burghardt, 
C. Duchêne, & W. Mackaness (Eds.), Abstracting geo-
graphic information in a data rich world: Methodologies 
and applications of map generalisation (pp. 259–297). 
Springer International Publishing.

Touya, G., & Lokhat, I. (2020, April). Deep learning for 
enrichment of vector spatial databases: Application to high-
way interchange. ACM Transactions on Spatial Algorithms 
and Systems, 6(3), 1–21. https://doi.org/10.1145/3382080

Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the 
new agent for map generalization? International Journal of 

Cartography, 5(2–3), 142–157. https://doi.org/10.1080/ 
23729333.2019.1613071

van der Maaten, L., & Hinton, G. (2008). Visualizing data 
using t-sne. Journal of Machine Learning Research, 9(86), 
2579–2605. http://jmlr.org/papers/v9/vandermaaten08a. 
html 

Veer, R. V. T., Bloem, P., & Folmer, E. (2018). Deep learning 
for classification tasks on geospatial vector polygons. arXiv.  
https://doi.org/10.48550/ARXIV.1806.03857

Vinyals, O., Fortunato, M., & Jaitly, N. 2017. Pointer 
networks. arXiv. https://doi.org/10.48550/arXiv.1506. 
03134

Wang, X., & Burghardt, D. (2020). Using stroke and mesh to 
recognize building group patterns. International Journal of 
Cartography, 6(1), 71–98. https://doi.org/10.1080/ 
23729333.2019.1574371

Weibel, R., Keller, S., & Reichenbacher, T. (1995). 
Overcoming the knowledge acquisition bottleneck in map 
generalization: The role of interactive systems and compu-
tational intelligence. In A. U. Frank & W. Kuhn (Eds.), 
Spatial information theory a theoretical basis for gis (pp. 
139–156). Springer.

Yan, X., Ai, T., Yang, M., & Tong, X. (2021). Graph convolu-
tional autoencoder model for the shape coding and cogni-
tion of buildings in maps. International Journal of 
Geographical Information Science, 35(3), 490–512. https:// 
doi.org/10.1080/13658816.2020.1768260

Yan, X., Ai, T., Yang, M., & Yin, H. (2019). A graph convolu-
tional neural network for classification of building patterns 
using spatial vector data. IS- PRS Journal of 
Photogrammetry and Remote Sensing 150, 259–273.  
https://doi.org/10.1016/j.isprsjprs.2019.02.010

Yan, X., Ai, T., & Zhang, X. (2017). Template matching and 
simplification method for building features based on shape 
cognition. ISPRS International Journal of Geo-Information, 
6(8), 250. https://doi.org/10.3390/ijgi6080250

Yang, M., Huang, H., Zhang, Y., & Yan, X. (2022). Pattern 
recognition and segmentation of administrative boundaries 
using a one-dimensional convolutional neural network and 
grid shape context descriptor. ISPRS International Journal 
of Geo-Information, 11(9), 461. https://doi.org/10.3390/ 
ijgi11090461

Yang, M., Yuan, T., Yan, X., Ai, T., & Jiang, C. (2022). 
A hybrid approach to building simplification with an eva-
luator from a backpropagation neural network. 
International Journal of Geographical Information Science, 
36(2), 280–309. https://doi.org/10.1080/13658816.2021. 
1873998

Zheng, J., Gao, Z., Ma, J., Shen, J., & Zhang, K. (2021). Deep 
graph convolutional networks for accurate automatic road 
network selection. ISPRS International Journal of 
GeoInformation, 10(11), 768. https://doi.org/10.3390/ 
ijgi10110768

Zhou, Z., Fu, C., & Weibel, R. (2022). Building simplification 
of vector maps using graph convolutional neural networks. 
Abstracts of the ICA, 5(86), 1–2. https://doi.org/10.5194/ 
ica-abs-5-86-2022

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 167

https://doi.org/10.3390/ijgi10100687
https://doi.org/10.3390/ijgi10100687
https://doi.org/10.1080/13658810410001702021
https://doi.org/10.1080/13658810410001702021
https://doi.org/10.1007/978-3-319-00203-3_1
https://doi.org/10.1080/13658816.2021.2004602
https://doi.org/10.1080/13658816.2021.2004602
https://doi.org/10.48550/ARXIV.1912.01703
https://doi.org/10.48550/ARXIV.1912.01703
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/arXiv.2103.05180
https://doi.org/10.48550/arXiv.2103.05180
https://doi.org/10.1080/13658816.2017.1306864
https://doi.org/10.1080/13658816.2017.1306864
https://doi.org/10.5311/JOSIS.2020.21.716
https://doi.org/10.5311/JOSIS.2020.21.716
https://doi.org/10.1145/3382080
https://doi.org/10.1080/23729333.2019.1613071
https://doi.org/10.1080/23729333.2019.1613071
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/ARXIV.1806.03857
https://doi.org/10.48550/ARXIV.1806.03857
https://doi.org/10.48550/arXiv.1506.03134
https://doi.org/10.48550/arXiv.1506.03134
https://doi.org/10.1080/23729333.2019.1574371
https://doi.org/10.1080/23729333.2019.1574371
https://doi.org/10.1080/13658816.2020.1768260
https://doi.org/10.1080/13658816.2020.1768260
https://doi.org/10.1016/j.isprsjprs.2019.02.010
https://doi.org/10.1016/j.isprsjprs.2019.02.010
https://doi.org/10.3390/ijgi6080250
https://doi.org/10.3390/ijgi11090461
https://doi.org/10.3390/ijgi11090461
https://doi.org/10.1080/13658816.2021.1873998
https://doi.org/10.1080/13658816.2021.1873998
https://doi.org/10.3390/ijgi10110768
https://doi.org/10.3390/ijgi10110768
https://doi.org/10.5194/ica-abs-5-86-2022
https://doi.org/10.5194/ica-abs-5-86-2022

	Abstract
	1. Introduction
	2. Related work
	2.1. Deep learning for map generalization tasks
	2.2. Location encoding and encoding schemes

	3. Method
	3.1. Geometry encoding
	3.1.1. Regularity of input data
	3.1.2. Coordinate normalization
	3.1.3. Feature extraction for encoding geometries
	3.1.4. Encoding schemes

	3.2. Deep learning models
	3.2.1. Convolutional neural networks (CNNs)
	3.2.2. Recurrent neural networks (RNNs)
	3.2.3. Graph convolutional neural networks (GCNNs)


	4. Experiments
	4.1. Task and data
	4.2. Model implementation and hyperparameter
	4.3. Preprocessing and evaluation

	5. Results
	5.1. Performance of encoding schemes and neural networks
	5.2. Preprocessing approaches to match regularity
	5.3. Property testing
	5.4. Sensitivity tests for feature encoding
	5.5. Applying the encoding schemes to polyline data

	6. Case study
	6.1. Workflow
	6.2. Data
	6.3. Results

	7. Discussion
	7.1. Geometry encoding with feature description
	7.2. Building generalization using shape classification
	7.3. Future research directions
	7.3.1. End-to-end generalization or focus on optimizing subprocesses?
	7.3.2. How to define the generalization problems?


	8. Conclusion
	Disclosure statement
	ORCID
	Data availability statement
	References

