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Abstract 
Historical maps are important relics to reconstruct our past. New insights and information can be unveiled 
and make long-term morphological developments of different spatial environments understandable. As 
part of the investigation of urban areas, dynamics of settlements such as transformations of built-up areas 
or changes in road networks are of particular interest. However, detailed geographic information 
concerning urban history is way more accessible from large-scale historical maps than from other sources. 
Due to the great number and visual variety of available historical maps and the lack of appropriate tools, 
researchers still often revert to laborious manual means in the analysis and comparison of these. This thesis 
provides a comprehensive solution to semi-automatically unlock and retrieve geometrical as well as textual 
content from large-scale historical maps. Thus, the spatiotemporal exploration of a city’s individual 
buildings, roads, or water areas can be considerably improved. 

Several shortcomings in this research field are addressed in this thesis. It is the first study to present a 
holistic concept for semi-automated extraction of geometric and semantic content from large-scale 
historical maps. Needs of users of historical maps are identified and evaluated in terms of a conducted user 
survey. The developed and demonstrated workflow is able to extract shapes of discrete map objects 
representing real-world equivalents as well as their labels. In addition, this thesis considers further 
processing of the extracted information: To be usable in geographic information systems, map objects are 
vectorized and labels are provided in the form of text strings. Spatial referencing creates the foundation to 
manage and store deduced data in databases and to assign additional knowledge. Therefore, an improved 
starting point for the comparison of historical maps with other geodata is provided. The developed 
workflow is applicable to comparable, typically monochrome, large-scale historical maps of similar 
complexity to the sample used for this thesis. 

The central question this research pursues is how the extraction of information from large-scale historical 
maps can be facilitated to render them searchable, analyzable, and comparable with other maps. It is shown 
how objects and labels from simple scans of historical maps can be transferred into machine-readable data. 
With the help of object-based approaches, single map objects can be identified and differentiated based 
on the model of human perception, i.e., by means of various visual variables such as color, texture, and 
shape. Available tools for detecting and recognizing labels are used and amended with additional 
enhancements identified and developed for this thesis. Finally, further methodologies, e.g., from image 
processing, help to develop a novel and comprehensive approach for the extraction of information from 
large-scale historical maps. The involved processes benefit from each other and reduce human interaction 
and subjectivity, time, and labor to a necessary minimum. 

As maps were and are still made to be viewed and interpreted by humans, automated methods taking into 
consideration principles of human perception generally achieve optimum results. Providing editable vector 
data of historical maps considerably contributes to their processability, analyzability, and comparability 
and thereby facilitates the daily work of historians, librarians, or urban researchers. An additional 
allocation of related semantic information allows users to search for keywords, juxtapose e.g., names of 
streets or measures of buildings, or simply analyze their persistence over time. 

In conclusion, this thesis demonstrates the efficiency of comprehensive workflows for semi-automated 
information extraction from large-scale historical maps. It contributes to an improved transmission and 
perception of geographic information. By facilitating the comparison of urban geospatial data representing 
different times, spatiotemporal changes and developments in human history become more clearly 
recognizable.  
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Zusammenfassung 
Historische Karten sind wichtige Zeugnisse zur Rekonstruktion unserer Vergangenheit. Neue Erkennt-
nisse und Informationen sowie langfristige morphologische Entwicklungen verschiedener Teilräume kön-
nen sichtbar und nachvollziehbar gemacht werden. Im Rahmen der Erforschung urbaner Strukturen sind 
Siedlungsdynamiken wie Veränderungen von bebauten Gebieten oder von Straßennetzwerken von beson-
derem Interesse. Mittels großmaßstäbiger historischer Karten sind detaillierte geographische Informatio-
nen zur Geschichte einer Stadt oft greifbarer als aus anderen Quellen. Aufgrund der großen Anzahl und 
visuellen Vielfalt historischer Karten sowie fehlender Tools greifen Forschende bei der Analyse und dem 
Vergleich dieser Karten noch immer auf mühsame manuelle Verfahren zurück. Diese Dissertation bietet 
einen umfassenden Lösungsansatz für die halbautomatisierte Extrahierung von geometrischen und seman-
tischen Inhalten aus großmaßstäbigen historischen Karten. So wird die raumzeitliche Untersuchung ein-
zelner Gebäude, Straßenzüge oder Wasserflächen einer Stadt erheblich verbessert. 

Diese Arbeit befasst sich mit verschiedenen Defiziten innerhalb dieses Forschungsbereichs. Erstmalig wird 
ein holistisches Konzept für solch eine halbautomatisierte Extrahierung vorgestellt. Anhand einer Nutzer-
studie werden Anforderungen an historische Karten ermittelt und evaluiert. Der demonstrierte Workflow 
ist in der Lage, diskrete Kartenobjekte, die reale Pendants darstellen, sowie deren Beschriftungen zu 
extrahieren. Darüber hinaus wird in dieser Arbeit die Weiterverarbeitung der extrahierten Informationen 
betrachtet: Kartenobjekte werden vektorisiert und Labels in Form von Textstrings bereitgestellt, um sie in 
Geographischen Informationssystemen nutzbar zu machen. Eine räumliche Referenzierung bietet eine 
Grundlage, um abgeleitete Daten in Datenbanken zu speichern und zu verwalten und um zusätzliche 
Informationen zuzuweisen. Damit wird eine verbesserte Ausgangslage für den Vergleich von historischen 
Karten mit anderen Geodaten geschaffen. Der entwickelte Workflow ist auf vergleichbare, in der Regel 
monochrome, großmaßstäbige historische Karten von ähnlicher Komplexität anwendbar. 

Wie die Informationsextraktion aus großmaßstäbigen historischen Karten erleichtert werden kann, um 
diese durchsuchbar, analysierbar und mit anderen Karten vergleichbar zu machen, ist zentrale Frage dieser 
Arbeit. Es wird aufgezeigt, wie Objekte und Labels aus einfachen Scans historischer Karten maschinenles-
bar gemacht werden können. Mithilfe objektbasierter Ansätze können einzelne Kartenobjekte anhand ver-
schiedener visueller Variablen wie Farbe, Textur und Form identifiziert und differenziert werden. Etab-
lierte Prozesse zur Erkennung von Labels werden angewandt und weiter verbessert. Der neuartige und 
umfassende Ansatz für die Informationsextraktion aus großmaßstäbigen historischen Karten wird durch 
zusätzliche Methoden, beispielsweise aus der Bildverarbeitung, ergänzt. Die implementierten Prozesse be-
günstigen einander und reduzieren die menschliche Interaktion und Subjektivität, Zeit und Arbeit auf ein 
notwendiges Minimum. 

Da Karten damals wie heute für die Betrachtung und Interpretation durch den Menschen geschaffen 
wurden, erzielen automatisierte Verfahren, die an die menschliche Wahrnehmung angelehnt sind, die 
besten Ergebnisse. Die Verarbeitbarkeit, Analysierbarkeit und Vergleichbarkeit historischer Karten wird 
durch die Bereitstellung editierbarer Vektordaten maßgeblich verbessert und so die tägliche Arbeit von 
HistorikerInnen, BibliothekarInnen oder StadtforscherInnen unterstützt. Eine Zuweisung semantischer 
Informationen ermöglicht es Nutzenden beispielsweise nach Schlagwörtern oder Straßennamen zu su-
chen, Maße von Gebäuden abzuleiten oder deren Genese zu analysieren. 

Diese Arbeit verdeutlicht die Effizienz eines solchen holistischen Ansatzes und trägt damit zu einer ver-
besserten Übermittlung und Wahrnehmung geographischer Informationen bei. Durch den Vergleich 
urbaner Geodaten verschiedener Epochen werden raumzeitliche Veränderungen und Entwicklungen der 
Menschheitsgeschichte deutlich. 
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1 Introduction

1.1 Motivation 

As “agents of change in history” (Harley, 1987, p. 5), historical maps preserve our past. They are valuable 
sources that provide previously unknown insights into histories of human environments, settlement 
structures and dynamics, as well as urban morphological processes (Knowles, 2008). With their wealth of 
information on spatiotemporal circumstances and patterns, historical maps make a substantial 
contribution to science. They portray relics and ruins in their past conditions and real geographical 
environments, information that is generally not available from other sources (Christophe et al., 2016). 
Locations, neighborhoods, and shapes of historical map features let us reconstruct the past. 

Long-term changes within a cityscape, caused by migration movements, destruction and reconstruction, 
and developments in road or trade networks, can be derived from historical maps. They make urbanization 
processes such as the extension of specific land forms or the rearrangement of roads and buildings 
comprehensible and analyzable (Romiti, 2013). 

Historical maps not only serve as orientation or understanding of the past but are also of cultural value. 
Being one of the oldest mediums of human communication, they are able to break barriers as they speak 
a common visual language. Therefore, people generally have a strong confidence in maps (Kasturi & 
Alemany, 1988). Map makers from former times tell us where and how they lived so that we are still able 
to trace their paths and circumstances. By opening a window to our past, these maps can further stimulate 
the human imagination and fascination (Harley, 1987).  

Today, historical maps are often treated as treasures. Often, they are unique, handcrafted works and 
particularly rare or valuable pieces are handled with great care. The fascination for old maps is also 
apparent from well-kept and -stocked map departments in libraries. As one of the largest public libraries 
in Germany, the Staatsbibliothek zu Berlin stores more than one million maps (Staatsbibliothek zu Berlin, 
n.d.). A huge stock of digitized historical maps is provided by the project OldMapsOnline 1 or the David 
Rumsey Map Collection 2, which is one of the United States’ largest private map collections (Cartography 
Associates, n.d.-a). In recent years, there have been several international exhibitions focusing on historical 
maps (e.g., Maps and the 20th Century: Drawing the Line at the British Library in London) and an 
increasing number of books about maps in history are published, for map enthusiasts as well as laypeople 
(e.g., Maps and History: Constructing Images of the Past by Jeremy Black or On the Map by Simon Garfield). 
Apart from their scientific value, historical maps also found their way into arts. So not only for reasons of 
historical interest but also due to their appealing aesthetics, people collect and take pleasure in globes, 
prints, and artworks of old maps for home decoration purposes (Goss, 1994). With the research- and 
time-intensive production processes of such maps, draftspersons are being considered both scientists and 
artists at the same time. 

Over time and with progresses in cartography, land surveying, and technology, maps became increasingly 
accurate. The high resolution of large-scale historical maps allows us to identify shapes and names of recent 
places, roads, buildings, or even house owners or types of cultivated crops. Even if names of e.g., buildings 
or roads have changed in the course of time, we are able to identify their original location or find similar 
structures from today – based on their shapes, locations, and neighborhoods (Romiti, 2013). 

                                                      
1 https://www.oldmapsonline.org 
2 https://www.davidrumsey.com 
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This dissertation investigates historical maps on a large scale with a focus on urban areas. As important 
trading centers where life pulsates, cities are characterized by long-term changes, shrinkage, and growth. 
To answer spatial questions about the urban past, the extraction of geometrical as well as of semantic 
information from large-scale historical maps is crucial for the work of historians, librarians, archaeologists, 
geographers, and cartographers. Whereas reading these maps is an intuitive process in human perception, 
their interpretation and analysis are challenging and not trivial. Deriving meanings from historical maps 
requires the extraction of further information. 

A large majority of existing historical maps is available solely in paper form. Only a very small amount of 
these are digitized as raster images and even less have a coordinate system or another spatial assignment. 
However, by providing digital versions of these maps, the fragile and often unwieldy originals can be 
preserved and their accessibility substantially increased (Cartography Associates, n.d.-b; Jenny & Hurni, 
2011). To make historical maps analyzable in their entirety, a vectorization of their content and an 
establishment of appropriate databases may be considered as further steps (Knowles, 2008). These 
approaches have been examined and put into practice for very few and selected map examples and map 
features so far (cf. chapter 1.2) (Chiang, 2010; Chrysovalantis & Nikolaos, 2020; Gede et al., 2020; Gobbi 
et al., 2019; Groom et al., 2020; Heitzler & Hurni, 2020; Iosifescu et al., 2016; Peller, 2018; Uhl et al., 
2017; Xydas et al., 2022; Zatelli et al., 2019). 

To address this gap and develop solutions for shortcomings in existing approaches, this thesis aims to 
bring the work with historical maps one step forward by 

- enabling and improving the readability, analyzability, and comparability of large-scale historical 
maps, 

- making a localization and identification of single objects such as buildings from these maps 
possible, 

- improving, combining, and making existing approaches concerning the aforementioned attempts 
applicable, and 

- implementing these improvements by a certain degree of automation. 

With these objectives in mind, the way is opened to reveal and derive new insights from the past which 
remained hidden previously. The following chapter further specifies the necessity of this thesis based on 
the current state of the art. 

1.2 State of research and research gaps 

Already at the end of the 1980s, it was advocated to approach the large number and manifold use of maps 
by automating the extraction process of their valuable information content (Kasturi & Alemany, 1988). 
Analog paper maps become machine-readable, searchable, and analyzable by extracting and providing 
their contents in a suitable, e.g., vectorized, data format (Chiang, 2015). This is still often done manually 
in a laborious way so that an automation of the process is needed (Schlegel, 2019). In this thesis, an 
all-round workflow for semi-automated extraction of information from large-scale historical maps is 
presented. 

A closer look at the literature on this topic reveals a number of challenges, shortcomings, and gaps. In 
previous studies, there is a lack of preliminary needs assessments to identify actual requirements as well as 
existing challenges and demands among users of historical maps (Baltsavias, 2004). Instead, authors focus 
on the development of applicable methods with the aim e.g., to compare the same building between 
different ages or to detect urban sprawl over time. For this purpose, map content is usually extracted based 
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on the geometries of map objects (buildings, places, streets, etc.) on the one hand and descriptive labels 
on the other hand. Together, objects and labels are the most prominent and informative features in large-
scale historical maps. Therefore, researchers have investigated a variety of approaches to extract this 
information from historical maps in a semi-automated, time- and labor-saving way. However, an 
integrated solution is so far lacking. 

Label extraction 

The automated detection and recognition of text from digital images have been widely discussed in the 
scientific literature (Babu et al., 2010; Bhowmik et al., 2018; Chen et al., 2012; Coates et al., 2011; 
Neumann & Matas, 2013; Nevetha & Baskar, 2015; Weinman et al., 2014; Yao et al., 2012; Ye & 
Doermann, 2015; Zhou et al., 2017). Identifying text, i.e., labels, from scanned historical maps is 
particularly challenging due to unique handwritings or nonuniform, noisy, and complex backgrounds. 
Overlapping map features of similar colors or shapes make an automated and clear distinction of labels 
even more difficult (Chiang & Knoblock, 2014; L. Li et al., 2000; Milleville et al., 2020; Pezeshk & 
Tutwiler, 2011; Yu et al., 2016). Previous approaches are often limited to the extraction of specific fonts 
(Nazari et al., 2016) or uniform sizes (Simon et al., 2014) or orientations (Wang & Yan, 1994) of labels. 

The process of extracting text is two-staged and composed of an initial detection and a successive 
recognition part. Text detection aims at the identification of appropriate image regions. Numerous 
approaches are already suggested for this purpose, for instance, simple color thresholding (Dhar & 
Chanda, 2006), binarized connected components (Pouderoux et al., 2007; Roy et al., 2007; Wang & Yan, 
1994), linear feature extraction (Pezeshk & Tutwiler, 2011), template matching (Budig & van Dijk, 2015; 
L. Li et al., 2000), or deep learning (Chiang & Knoblock, 2014; Laumer et al., 2020; Weinman et al., 
2019). Text recognition is the process of reading character strings from detected text image areas and is 
usually performed via optical character recognition (OCR). Text detection and recognition approaches 
can often be found within end-to-end solutions, which are frequently summarized by text extraction (Ye 
& Doermann, 2015). 

Very few studies go into further details and consider spatial linkage of extracted labels throughout the 
map. The extraction of text and objects are frequently regarded separately as standalone processes. 
However, only a combined processing of map labels and other objects enables the entire extraction of 
valuable information from historical maps. 

Object extraction 

A widespread methodology for the extraction of real-world objects from bitmaps is image segmentation. 
It divides a raster graphic into meaningless but homogenous regions, so-called segments. Pixel-based 
segmentation approaches, such as thresholding, maximum likelihood classification, or clustering, solely 
operate on the basis of color differences between pixels. As a digitized image’s pixels simply represent the 
color “picked up by the scanner” (Longley et al., 2015, p. 70), pixel-based methods are unsuitable for 
noisy, complex historical maps with limited spectral information (see example in Figure 1) (Lladós et al., 
2001; Zatelli et al., 2019). Object-based image analysis (OBIA), on the contrary, additionally considers 
e.g., shapes, textures, or spatial contexts of segments and has therefore proven to be more applicable for 
the extraction of actually existing objects from historical maps. For example, le Riche (2020) also regards 
differences in textures, while Gobbi et al. (2019) and Zatelli et al. (2019) involve the size and shape besides 
colors for segmenting historical maps into individual objects. Besides segmentation, OBIA includes an 
additional classification of segmented image areas into real objects. Thus, plain segments that previously 
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contained information solely about their topology can be assigned their thematic meanings (Neubert, 
2005). 

 
Figure 1: Left: Apparently homogeneous background of a historical map; right: close up of 
highlighted area showing a heterogeneous, complex background structure, which may be caused by 
the map material’s structure, aging, dirt, or scanning processes 

Further research on object extraction from historical maps use legend-driven approaches. As described by 
Lladós et al. (2001), map objects are identified based on their visual signature’s correspondence with 
elements from a legend. This methodology, however, is ineligible as large-scale historical maps rarely have 
legends. Instead, customized GIS operations are applied (Chrysovalantis & Nikolaos, 2020; Gede et al., 
2020; Gobbi et al., 2019; Iosifescu et al., 2016; le Riche, 2020; Zatelli et al., 2019) and also deep learning 
techniques become more frequent for object extraction processes (Heitzler & Hurni, 2020; Jiao et al., 
2020; Uhl et al., 2017; Xydas et al., 2022; Zhao et al., 2022). The latter, indeed, have a high degree of 
learning ability, but require a large amount of training data, which is rarely available and therefore often 
created manually (Gobbi et al., 2019; Lladós et al., 2001; Zhao et al., 2022). 

Map comparison 

This thesis addresses the need for a holistic approach to unlock and deduce geographic information, i.e., 
objects and labels, from large-scale historical maps. With the help of an integrated extraction process, new 
insights of the past can be gained. Objects can be identified based on the labels’ semantic meaning, 
informative databases may be generated, and quantitative evaluations and spatial analyses become feasible 
(Zhao et al., 2022). Direct comparisons with other geodata allow for identification and visualization of 
changes over time within cityscapes. However, it is still insufficiently explored how identical real-world 
objects may be identified and matched between different maps in an automated way. In the field of road 
management, location referencing methods are applied to unambiguously identify objects from different 
maps (International Organization for Standardization, 2022; Kenley et al., 2019). This may be intended 
to e.g., visualize long-term developments of individual objects or to define suitable control points for 
georeferencing purposes. Existing approaches match identical geometries from different maps based on 
their colors (Stefanidis et al., 2002), shapes (Xavier et al., 2016), attribute values (Frank & Ester, 2006), 
or spatial relations (J. O. Kim et al., 2010; Samal et al., 2004; Sun et al., 2020; Tang et al., 2008) but 
seem to be impractical for complex, monochrome historical maps lacking these characteristics or any 
further information and georeferencing. 

Regardless of extracted map features, Balletti and Guerra (2009) determine the general correspondence 
between different historical maps, but their color-based approach only works for maps of the same style 
or series. Similarly, El-Hussainy et al. (2011) measure gray value differences to determine the similarity 
between historical and more recent maps. To analyze long-term changes of forest areas, Loran et al. (2018) 
compare small-scale maps from several ages based on, for instance, their metadata. Ory et al. (2017) suggest 
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an alternative approach for comparing historical with current maps by creating multiple in-between 
representations (“cartographic continuum”). By interpolating colors, contour lines, and shading of map 
features, they were able to merge and blend cartographic styles from different ages. 

Common limitations 

Previous studies on information extraction from historical maps and their comparison to others often 
require an existing georeferencing (Chrysovalantis & Nikolaos, 2020; El-Hussainy et al., 2011; Gede et 
al., 2020; Gobbi et al., 2019; Iosifescu et al., 2016; le Riche, 2020; Loran et al., 2018; Piechl, 2020). 
Moreover, many approaches are restricted to particular map styles and are therefore non-transferable. 
Black-and-white cadastral plans, colorful or high-contrast maps, distinct geometries, small-scale maps with 
larger and more homogeneous areas, or discrete map features have already been examined. But, in fact, 
blurring, overlaps, and low color gradations rather reflect reality and are challenging for researchers in this 
domain. Historical maps are subject to large heterogeneities in style, condition, and year of creation. 
Adapting and optimizing information extraction processes is therefore essential. To minimize human 
subjectivity in this context, manual intervention as well as pre- and post-processing are to be reduced. 
While authors agree that full automation of extracting information from historical maps is impracticable 
(cf. Bucha et al., 2005; Budig, 2016; le Riche, 2020; Simon et al., 2014; Stefanidis et al., 2002), end-to-
end semi-automated approaches can be used to diminish time, mis-interpretations, and other human-
induced errors. 

There is no consistent, universal workaround, which is designed “for practical use” (Baltsavias, 2004, 
p. 131) and combines all necessary processes for extracting information from large-scale historical maps 
to date. Single processes within a holistic system may even benefit from each other and therefore maximize 
the degree of automatization. With the development of transferable, holistic solutions, new geographic 
information can be generated in a GIS-ready format and used for the creation of databases, for multi-
temporal analyses, and change detections throughout human history. 

Considering the mentioned shortcomings, the following major issues are pursued in this dissertation with 
the aim to deduce urban developments from large-scale historical maps: 

- Accelerating and simplifying existing procedures for information extraction by semi-automation 
while minimizing human intervention, 

- developing a comprehensive end-to-end workflow from information extraction to spatial 
assignment, 

- taking advantage of object-based image analysis, which originates from the field of remote sensing, 
with regard to object extraction from large-scale historical maps, 

- combining objects with their semantic meanings and, potentially, further derivable and related 
information, 

- improving the process of linking maps from different ages to enable a more intuitive comparison, 
and 

- minimizing common restrictions concerning specific map styles for a workflow to be as 
transferable and universal as possible. 
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1.3 Structure of the thesis 

This dissertation has a cumulative form and consists of a general framing text followed by three published 
scientific papers, which can be found in Appendices A to C. The framing text gives an introductory 
overview of the general research objectives. Stated research questions bring the publications into a thematic 
context and summarize the applied methodologies and major results. 

After a short summary of each publication, chapter 2 provides basic information on historical maps in 
general, being the superordinate objects of research of this thesis. Methodological fundamentals 
concerning information extraction from historical maps are also given here. Chapter 3 introduces the main 
research objectives and questions addressed by this thesis, while answers to these are given in chapter 4. 
This part provides the centerpiece of this thesis by summarizing major results and applied methodologies. 
The concluding chapter 5 discusses the key findings and gives a final outlook on future developments and 
perspectives this dissertation can provide. 

1.4 Publication overview 

All three papers published within the framework of this dissertation aim at the simplified identification 
and extraction of information from large-scale historical maps. A summary of each of the publications is 
given in the following. Figure 2 illustrates their major findings. 

 
Figure 2: Results of the three published papers: a) Large-scale historical map of the city of Hamburg with an intuitive semiology 
according to a conducted user study (Paper I); b) Historical map spatially transformed to a dataset with current road names based 
on a fuzzy toponym matching (Paper II); c) Extracted and vectorized map objects (Paper III) 

1.4.1 Paper I: Requirements analysis 

Investigating historical maps is a complex and time-intensive task, in which users often struggle due to 
visual information overload (Christophe et al., 2016). However, present needs and requirements regarding 
the usage of historical maps have not been examined to date. Therefore, a survey 3 among users (e.g., 
historians, librarians, archivists, publishers, and urban researchers), who deal with historical maps in their 
daily working routine, was conducted as part of Schlegel (2019) (see Appendix A). The focus of this user 
study is on the human visual perception of large-scale historical maps. Major challenges in the investigation 
and comparison of historical maps could be identified. Besides distortions and great visual variations 
within maps, users stated the general lack of suitable processing tools as a reason of struggling in working 
with historical maps. When comparing historical maps with other historical or current counterparts, users 
regularly apply individualized GIS operations or even manual procedures with analog paper maps. In 
doing so, their research primarily focuses on the comparison of certain objects. They examine the temporal 

                                                      
3 https://github.com/IngaSchl/User-Study-Historical-Maps/blob/main/User-Study.pdf 
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change of buildings and roads in particular, which commonly depict the major urban structure in large-
scale historical maps. 

Apart from the described problem analysis, this publication further examines human intuition regarding 
the identification and differentiation of map objects from exemplary large-scale historical as well as current 
maps. It was found that semiological characteristics (cf. chapter 2.1.3) such as colors, contours, textures, 
symbols, and labels significantly contribute to these processes. Especially distinct color differences and 
high contrasts make the recognition and differentiation of map features easier (see example in Figure 2 a)). 
In the exploration of commonly monochrome or colorless historical maps, intuitive textures and labels are 
regarded as suitable for such tasks. 

This initial publication therefore provides a knowledge base for further research on the extraction of 
information from large-scale historical maps as well as their comparison to other historical or more recent 
counterparts. These matters are addressed within the following two papers. 

1.4.2 Paper II: Label extraction 

To deduce long-term urban developments, large-scale historical maps should be analyzable and 
comparable. An essential first step towards this objective is to render their information content machine-
readable. As one of the most prominent sources of information, map labels reveal the names of streets, 
places, and buildings. Therefore, an automated end-to-end workflow combining tools to detect, recognize, 
and match labels from large-scale historical maps was developed in the context of Schlegel (2021) (see 
Appendix B). As authors often struggle with differentiating text from other map features mainly due to 
similar colors, this study suggests the application of a universal machine-learning tool called Strabo (cf. Z. 
Li et al., 2018). Strabo enables the detection of textual image areas not only based on color but also on 
text size and neighborhood relations. Different sizes, orientations, and curvatures of text and even 
overlapping labels could thereby be identified from an exemplary, slightly colored historical map (cf. 
chapter 4.1). 

To further read character strings from detected text image areas, the free and open-source tool Tesseract 
(cf. Tesseract OCR, 2019) was used, which is well-known for optical character recognition. Both detection 
and recognition rate could be increased through image enhancements and supplementary improvements 
resulting in a f-score – the harmonic mean of precision and recall – from formerly 0.58 to up to 0.77. A 
final comparison of recognized character strings to current names of streets and places within the 
considered map section was conducted to verify the historical labels. 

With the suggested solution, a spatial assignment between historical and current map features covering 
the same area was enabled (see Figure 2 b)). By using concurrent toponyms (according to the definition 
by Imhof, 1972) for the definition of reference points, a rough georeferencing of the historical map could 
be performed, which further facilitates the comparison between maps from different ages. The presented 
solution considerably reduces manual pre- and post-processing and is largely applicable to other, 
comparable large-scale historical maps. In the long term, the solution aims at retrieving relevant 
information to be further managed and stored on the one hand and at temporarily eliminating text from 
historical maps to facilitate the identification of further objects on the other hand. 

1.4.3 Paper III: Object extraction 

One further essential step towards machine-readability of historical maps is the digital reproduction of 
map features representing physically existing objects such as buildings, streets, or water areas. In Schlegel 
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(2023) (see Appendix C), a holistic workflow to semi-automatically extract objects from large-scale 
historical maps is presented. The approach consists of 1) an initial elimination of labels, 2) an extraction 
and vectorization of geometries, primarily of buildings and water areas, 3) a linking, as well as 4) a rough 
spatial transformation of corresponding current geodata to enable a spatial assignability of the historical 
map features. 

By using bounding boxes containing textual image areas as an outcome from Paper II, an improved basis 
for the following steps could be created: Unlike other studies, which ignore or treat labels as disturbing 
elements in the course of object extraction, the presented procedure clearly separates between labels and 
touching or overlapping map objects of the same color. Therefore, the original shapes of e.g., buildings 
remain unaltered and can be detected in their entirety in the following step of object extraction. This was 
conducted via object-based image analysis, which differentiates, extracts, and classifies objects based on 
graphical variations similar to human perception. By regarding not only colors but also textures, shapes, 
or spatial contexts, OBIA is particularly applicable for monochrome or colorless, hand-drawn, as well as 
aged and smudged historical maps. To spatially assign the resulting, vectorized objects (see Figure 2 c)) 
from the large-scale historical map to more recent counterparts, shapes of churches and municipal 
buildings were matched as these barely change over time. Centroids of those geometries having a great 
shape similarity served as control points in the course of a following semi-automated affine transformation. 
Thereby, a spatial rectification of current geometries was performed. Resulting average deviations of 34 m 
in reality were deemed satisfactory. 

The workflow demonstrated in Paper III not only supersedes non-transferable, error-prone, as well as 
time- and labor-intensive manual attempts but also provides searchable and comparable data to derive new 
knowledge from large-scale historical maps. The resulting vector data may be further evaluated and 
analyzed in GIS, for instance. Related databases can be generated by using gained and other derivable 
information and thereby allow for the investigation of urban morphological developments.
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2 Historical maps
To provide a deeper understanding of historical maps, this chapter first specifies background information 
concerning the general object of research. In the second part, common methodological principles for 
working with historical maps and their application in this thesis are described. 

2.1 Object of research 

2.1.1 Genesis 

The first maps recorded in human history were engraved in clay and can be dated back to antiquity (Dodge 
et al., 2011). At that time, maps served to show religious worldviews or for orientation purposes. For 
example, locations that provided drinkable water or fertile land could be identified. With accuracy 
increasing over the course of time, also locations, sizes, and borders have been described by maps (Crom, 
2013; Goss, 1994). Claudius Ptolemy, an astronomer in the second century A.D., provided a formative 
base in cartography by developing a mathematical global system consisting of latitude and longitude. He 
thereby pioneered the two-dimensional representation of the three-dimensional globe (Livieratos, 2006; 
Thompson, 2017). Ptolemy maps, which rely on his latitude/longitude model, dominated next to mappae 
mundi and portolan charts in the Middle Ages. Mappae mundi are characterized by detailed and colorful 
but unscientific maps portraying Christian beliefs while portolan charts were created for navigation 
purposes on sea voyages (Goss, 1994). With Gerardus Mercator and his eponymous, conformal map 
projection, accurate navigation became possible for seafarers from the 16th century on. Further innovative 
developments between the 16th and 18th century were achieved with even more precise calculations of 
distances, areas, the meridian arc, and with triangulation (Crom, 2013; Goss, 1994; Thompson, 2017). 

With an increase in the scale of maps, also city maps were produced by triangulating crossroads, church 
steeples, and other distinctive buildings. Mathematical and technical developments during the 19th 
century, such as the theodolite, entailed a novel precision in the fields of surveying and cartography 
(Andrews, 2009; Medyńska-Gulij & Żuchowski, 2018; Thompson, 2017). Today, a large number of 
replicas of these maps – which were originally engraved, for instance, in wax, steel, or copper plates or 
drawn on paper with ink and watercolors – are available in map archives and libraries (Robinson et al., 
1995). Digital scans make these valuable sources from the past accessible to the public. 

2.1.2 Terminology 

Historical map is a comprehensive term. A great number of definitions exist concerning the temporal 
classification of historical maps and even the term itself is much discussed. While “early maps” (Boutoura 
& Livieratos, 2006; Höhn et al., 2013) or “old maps” (Gede et al., 2020; Iwanowski & Kozak, 2012; 
Simon et al., 2014; van Dijk & Schommer, 2016) may be misinterpreted as outdated maps from the 
recent past, “ancient maps” (Drapeau et al., 2017) are rather associated with prehistoric instances. “History 
maps” are defined as thematical maps showing bygone states at the time of creation by Crom and Heinz 
(2016). 

This thesis is based on the well-known term historical maps, which, by the majority of relevant literature, 
is seen as a simplified representation of previous geographic structures and conditions that was produced 
in the past (based on Hake et al., 2002). The definition of this past period of time is controversial. As a 
result of the user study presented in Paper I, which was conducted among 31 German experts 
(cartographers, historians, librarians, urban researchers, etc.), a rough temporal boundary between 
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historical and current maps can be drawn around 1850, the approximate starting time of industrialization 
in Germany. For this thesis, maps produced before and around this turning point are considered as 
historical maps. 

In this context, historical maps are further differentiated by means of their scale – the linear reduction 
ratio of the map toward reality (Hake et al., 2002). While small-scale maps show large geographic areas, 
large-scale maps (>1:20,000) portray smaller areas in more detail such as cityscapes or neighborhoods 
including e.g., single buildings and streets. This thesis focuses on large-scale historical maps illustrating 
urban landscapes and originating from the above-mentioned period of time. 

2.1.3 Semiology 

Human perception (cf. chapter 2.2.1) interprets the visual appearance or style of a map based on 
similarities and differences between map elements. Users perceive a map’s visual signature due to different 
graphical signs and recognize known structures and criteria. The visual image of a map is affected by the 
graphical representation as well as the geographic context and spatial relations of map objects. Generally, 
map style intends to correctly represent the content of a mapped region and to reveal a map’s meaning 
and is therefore primarily characterized by its purpose. The style of a map can be of social, emotional, or 
aesthetic nature and allows to draw conclusions about a map’s origin, such as its author and period of 
production, and target group (Beconytè, 2011; Crom, 2013; Ory et al., 2013, 2015, 2017). 

So-called visual variables build the foundation of any image. In maps, they represent geographic features 
and processes by encoding cartographic information and thereby compose a map’s overall design. Based 
on the viewer’s experience, visual variables can improve the perception and interpretation of a map 
(Schlichtmann, 2017). As cartographic communication is strengthened by using visual variables, users are 
able to immediately analyze the content of a map (Beconytè, 2011; Ory et al., 2015). Humans perceptually 
see visual variables, which then are “processed by the eye-brain system” (Roth, 2017, p. 5). For the first 
time, visual variables were defined in Jacques Bertin’s Sémiologie Graphique from 1967. His work specifies 
rules for the graphic representation of different information and is still considered a theoretical basis in 
cartography and information visualization. According to Bertin (1967), the sum of all visual variables – 
specifically the size, shape, location, orientation, texture, as well as color hue and value – can be defined 
as semiology, which forms the visual appearance or style of a map (Christophe, 2012). Often, labeling is 
considered as an additional element of a map’s semiology. Both a whole map and individual map objects 
may have a semiology (Dodge et al., 2011; Roth, 2017). 

Regarding historical maps, style is commonly neutral in terms of emotions. Unlike e.g., a precise scaling 
or accuracy, a user’s ability to orient themself with the help of the map was a key factor for a map’s quality 
in previous times. Maps were designed for intuitive readability and legends not considered as necessary 
elements by mapmakers (Beconytè, 2011; Crom, 2013; Medyńska-Gulij & Żuchowski, 2018). 

Being considered the foremost element in the representation of spatial information within maps, color can 
be easily combined with other visual variables. While similar colors point to similar or related objects, 
color contrast is used to improve the perception of hierarchies between areal map objects (Herold, 2018; 
Larcher & Piovan, 2018). Such variations in visual variables help to differentiate map contents in a 
qualitative and quantitative way. Cartographic color conventions, such as blue for waters, red for 
buildings, or yellow to brown for roads, were introduced from the 15th century on and are still in use 
today. However, with regard to predominantly colorless historical maps, their semiology is characterized 
less by colors but rather by textures, line widths and shadows, symbols, and labels (Andrews, 2009; Goss, 
1994; Medyńska-Gulij & Żuchowski, 2018; Roth, 2017). 
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When processing historical maps, especially in a (semi-)automated way, their unique styles must be taken 
into account. Dependent on the technique used by the cartographer or draftsperson and their personal 
signature, not only the visual appearance of historical maps, but also scale, accuracy, and level of detail 
vary greatly (Beconytè, 2011; Losang, 2015; Ruggles, 1982). 

2.2 Methodological fundamentals 

This chapter gives an introduction into the principles which were applied throughout the three papers 
published in the framework of this thesis. They all describe common proceedings to be taken into account 
while working with large-scale historical maps and aim at the extraction of information from these. The 
tasks are explained in the subsequent sections in the following order (see also chapter 1.4): 

1) In Paper I, it was examined how humans perceive and interpret large-scale historical maps. 
2) Derived from human processes of perception and interpretation, Papers II and III address the 

semi-automated extraction of labels and objects, respectively. 
3) Recommendations on how this extracted information can be used to spatially transform historical 

and current maps without major manual effort are described in Papers II and III. 
4) As a result of spatial transformation, a semi-automated methodology for comparing large-scale 

historical with current maps was developed in the course of Paper III.  

2.2.1 Human perception 

The human eye senses reflected light, which gets transmitted to the brain. There, cognitive abilities allow 
us to recognize and differentiate between single objects, in the case of map interpretation buildings, roads, 
water or green areas, etc. Visual detection of individual objects is based on e.g., tones and saturations of 
colors, patterns, shapes and sizes, as well as absolute and relative locations. Human perception is founded, 
on the one hand, upon graphical variations, artifacts, and deviations and, on the other hand, upon 
experience, to distinguish between objects and to further connect them based on e.g., neighborhood 
relations (Blaschke et al., 2014; Dent et al., 2009; Herold, 2018; Neubert, 2005; Ory et al., 2015). In 
accordance with the Gestalt laws of perceptual organization by Wertheimer (1923) and Goldstein (2008), 
humans tend to perceive simple and concise structures (law of simplicity) and see similar elements 
belonging together (law of similarity) (Herold, 2018). 

OBIA, for instance, makes use of this object-driven approach by segmenting and classifying an image into 
single, meaningful objects. As historical maps in particular were created to be read by humans, OBIA is a 
promising solution for automating human perception processes regarding object extraction (Ablameyko 
et al., 2001). Labels and legends can further help to identify and assign objects to classes with the latter 
rarely being available in large-scale historical maps (Medyńska-Gulij & Żuchowski, 2018). 

2.2.2 Object and label extraction 

With scanning an analog paper map, a digital version of a historical map can be provided. Many online 
platforms from libraries, scientific institutions, or private archives supply historical maps as bitmaps to 
make them widely accessible to the public (Novak & Ostash, 2022). Often, digitizing is used as a synonym 
for scanning historical maps, but the term is ambiguous as it may also describe a latter vectorization of map 
objects. Woods et al. (2016) give an overview of scanning methodologies for historical maps. 

With the availability of high-resolution scans, an appropriate basis for the computerized extraction of 
information from historical maps is established. The extraction of labels and objects from large-scale 
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historical maps allows to access new information from the scanned raster images. With extraction, this 
thesis describes combined detection and recognition processes. Whereas detection defines the simple 
identification of image areas containing the examined feature (see Figure 3 b)), the content within these 
detected sections can be assigned to real-world objects or meanings by recognition (Figure 3 c)). As 
indicated in Figure 3 d), object extraction may conclude with a vectorization of recognized map objects 
(Uhl & Duan, 2020). 

 
Figure 3: Single work steps needed for (top) object and (bottom) label extraction 

Object extraction 

The concept of object-based image analysis serves the automated extraction of discrete objects from digital 
images and, by definition, was long been subdivided into image segmentation and classification. While 
segmentation splits an image into homogeneous segments due to common characteristics and thus reflects 
the visual theory of human perception (cf. chapter 2.2.1), classification assigns these segments to 
real-world objects or classes. In reality, the two OBIA components are not as clearly separable and are 
complemented by additional procedures (Blaschke et al., 2014; Hay & Castilla, 2008; Herold, 2018; 
Hussain et al., 2013). 

In general, object-based extraction approaches have a high degree of applicability, but, nevertheless, 
individual and subjective settings and parameters are needed as input. An image’s resolution, color depth, 
and spectral properties are further decisive factors for the quality of the result. Historical maps, in 
particular, often are in a poor condition caused by aging, blurring, dirt, or improper handling. This may 
affect all further processing steps (Chiang, 2017; Gladstone et al., 2012; Gobbi et al., 2019; Ostafin et al., 
2017). 

Many free and open-source tools (e.g., Orfeo ToolBox, SPRING, ilastik) as well as proprietary software 
and packages (e.g., eCognition, ERDAS IMAGINE, ENVI Image Segmentation) are available to perform 
OBIA and to automate the process of object extraction to different degrees. Due to its great range of 
methodologies and continuous further developments, eCognition is used in the course of this dissertation.  

Label extraction 

Besides geometric objects, another important element to gain information from large-scale historical maps 
is their textual content. Label extraction contains the automated detection and recognition of text placed 
on a map to identify and describe discrete geographic features. In large-scale historical maps, these may be 
names of places, streets, or buildings (Longley et al., 2015). As can be seen from Figure 3 a), text in a 
historical map originally exists only in the form of a raster image and, therefore, is not machine-readable 
as such. However, by identifying or detecting a corresponding image area (see Figure 3 b)), enclosed text 
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strings can be read and produced by means of optical character recognition (see Figure 3 c)) (Chiang & 
Knoblock, 2014). Thereby, the semantic meaning of labels can be accessed. Such textual content from 
scanned paper documents can be made available e.g., by Google Cloud Vision API, Tesseract, or ABBYY 
FineReader (Lin & Chiang, 2017). However, the mere application of such common tools performing 
optical character recognition is insufficient as historical maps rarely meet basic requirements. Historical 
maps have rather heterogeneous, irregular, and handwritten labels, complex backgrounds, and overlapping 
features of similar colors (Milleville et al., 2022). This issue is addressed by the machine-learning tool 
Strabo (Z. Li et al., 2018). Being based on a deep learning scene text detector (Zhou et al., 2017), Strabo 
automatically detects labels, independent of their orientation and size, from scanned historical maps in an 
unsupervised way and is therefore an appropriate tool in addition to OCR (Chiang & Knoblock, 2014).  

The whole information extraction process applied in the course of this thesis aims at generating new 
geographic data in a GIS compatible format to enable searchability, analyzability, and comparability. 
While object extraction may result in vectorized geometries of map objects – in the form of e.g., 
geopackages or shapefiles –, label extraction generally outputs text strings or files.  

2.2.3 Spatial transformation 

To convert raster images of historical maps into usable geodata, scanning them and extracting their labels 
and objects is insufficient. In fact, spatial transformation is an essential step completing the whole process 
of information extraction from historical maps as it enables matching their content to other available 
spatial raster or vector data (Howe et al., 2019). Georeferencing is still often done manually in a laborious 
way so that only a small number of scans of historical maps available through online archives are 
georeferenced or have relevant metadata (Chiang, 2017; Milleville et al., 2022; Sun et al., 2020). Usable 
tools for assigning coordinate systems to historical maps without the need for expert knowledge are 
Georeferencer 4 and Map Warper 5 (Waters, n.d.) (Fleet et al., 2012). The Zentralbibliothek Zürich (n.d.), 
for instance, used a crowdsourcing approach to bring its maps into a spatial context. Most commonly, 
such tools juxtapose historical and current maps to define georeferencing control points. Regarding large-
scale maps, salient road intersections, bridges, churches, or other landmarks matching between a reference 
and a projecting map are suitable for this purpose (Benavides & Koster, 2006; Loran et al., 2018). Other 
projects dealing with (semi-)automated spatial transformation of historical maps use matching toponyms 
(Milleville et al., 2022; Weinman, 2017) or place markers (Höhn et al., 2013). Assuming that historical 
maps are more similar to other historical maps – in contradiction to recent ones –, Höhn and Schommer 
(2017) used already georeferenced historical maps to assign a coordinate system to other maps. 

In the course of extracting information from historical maps, many authors consider georeferencing to be 
an inevitable preprocessing step with the aim „to bring [a] historical map to its physical dimensions [and] 
eliminat[e] possible geometric deformations induced by scanning“ (Tsorlini et al., 2013, para. 3) 
(Chrysovalantis & Nikolaos, 2020; Gede et al., 2020; Iosifescu et al., 2016; Milleville et al., 2020). 
However, as georeferencing and spatial rectification both induce deformations and distortions of features, 
symbols, labels, distances, and other map elements, all subsequent processes are considerably impaired 
(Ehlers & Schiewe, 2012; Gobbi et al., 2019; Perret et al., 2015). Original geometric properties can 
therefore no longer be maintained. Boutoura and Livieratos (2006) show that most georeferencing 
transformation methodologies cause deformations for the size and shape of map objects. Apart from that, 
inaccuracies in historical maps can also result from surveying or a combination of different data sources. 
Maps were often copied from one another in the past or may have identical survey data. Moreover, 
                                                      
4 https://www.georeferencer.com 
5 https://mapwarper.net 
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mapmakers rather intended attractiveness than accuracy (Höhn & Schommer, 2017). Therefore, 
misinterpretations due to additionally induced deformations are to be avoided. 

As this thesis endeavors to automate the whole information extraction process as much as possible, a spatial 
transformation was not included as a manual preprocessing step, but rather is implemented as a valuable 
and automated concluding step based on extracted objects and labels. By doing that, “it is preferred to 
transform a modern map to the coordinates of a historical one [...] to keep details in the historical map” 
(El-Hussainy et al., 2011, p. 84). 

A spatial transformation of a historical map allows to analyze its spatial extent as well as its geodetic and 
planimetric accuracy. MapAnalyst 6 is a helpful tool to visualize a map’s positional accuracy by means of 
distortion grids or displacement vectors (Jenny & Hurni, 2011; Loran et al., 2018). Assumptions 
concerning a map’s projection, its geodetic references, and potential surveying methods can thereby be 
made. However, historical maps rarely correspond to modern coordinate systems due to imprecise 
distances, directions, angles, and scales. Nevertheless, spatial transformations facilitate the comparison to 
other, e.g., current, maps (Höhn et al., 2013; Howe et al., 2019; Jenny & Hurni, 2011; Rumsey & 
Williams, 2002). 

2.2.4 Map comparison 

Making large-scale historical maps comparable to other maps is a major goal of this thesis. Different 
mapmakers, mapping techniques and purposes, map contents, sources of information, and degrees of 
accuracy lead to numerous cartographic styles among historical maps and make their direct, intuitive 
comparison difficult. Major differences in colors, line widths, textures, and other elements impede the 
comparability not only between historical maps but also to more recent ones (Ory et al., 2017; Tang et 
al., 2008). Combining large-scale historical maps with current counterparts in a common geographical 
area not only simplifies their interpretation and a user’s orientation, but, more importantly, allows to 
evaluate the continuous change of urban landscapes. As soon as information, like labels and objects, from 
historical maps is extracted and spatially transformed, it can be overlaid with other geodata and 
comparative analysis, e.g., in GIS, become possible. Hence, previously unknown information on spatial, 
social, and cultural urban developments can be gained and integrated into spatial databases (Karakuyu, 
2011; J. O. Kim et al., 2010). By matching entities from different maps representing identical real-world 
objects, similarities and differences can be identified. This kind of multi-temporal analysis allows to 
ascertain, for instance, former house owners or addresses, street names, or floor areas of buildings. 

The benefits of comparing historical maps are manifold. Juxtaposing or overlaying current geodata can 
also be helpful to examine the geometric and projective properties of historical maps (Livieratos, 2006). 
Related data or media having any geographic reference, such as newspaper articles, photographs, or other 
historical documents, may be implemented and linked to historical maps (Jessop, 2006). A more detailed 
overview on contents of comparison studies, comparing techniques applied by users in practice, and 
supportive technical approaches is given in Paper I. In chapter 5.2 of this thesis, potential solutions for 
improving the comparison between historical and current maps can be found. 

                                                      
6 https://mapanalyst.org 
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3 Research objectives and research questions
This chapter puts the content of the dissertation into an overall context. Three overarching research 
objectives (RO) are outlined and lead to general research questions (RQ) concerning all related 
publications reprinted in Appendices A to C. The overall purpose of this thesis is to enhance time- and 
labor-extensive procedures for information extraction from large-scale historical maps. (Semi-)automatic 
processes minimize the need of human intervention and allow for a certain degree of transferability. To 
make historical maps approximately as machine-readable and -processible as digital maps from the present 
time, their contents are to be supplied in an appropriate data format. This poses the leading research 
question: 

How can the extraction of information from large-scale historical maps be facilitated to make them 
searchable, analyzable, and comparable with other maps? 

3.1 Research objectives 

Being deduced from the presented shortcomings, the following research objectives address the leading 
research question in a paper-oriented manner. As shown in Figure 4, each research objective comprises the 
performance of several tasks and processing steps. First insights into the developed approaches to achieve 
the formulated objectives are already given here and presented in detail in chapter 4.2. 

The research objectives pursued in this thesis are as follows: 

RO1 Identification of challenges and needs of users in terms of identifying and differentiating 
information from large-scale historical maps. 

RO2 Extraction of semantic information, or more specifically labels, from large-scale historical maps. 

RO3 Extraction of geometries of map features such as buildings, roads, or water areas from large-scale 
historical maps. 

  
Figure 4: Paper-wise methodological framework representing the steps needed to achieve 
the research objectives (RO) 
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Figure 4 shows the necessary methodological steps to achieve these three research objectives. In the 
framework of Paper I, an initial literature review was executed to outline the state of the art regarding 
techniques and processes for comparing historical maps. Results from the conducted user study were used, 
on the one hand, to assess appropriate semiology for large-scale historical as well as current maps. On the 
other hand, subjects and major challenges in the daily work with historical maps could be identified. These 
evaluations together provide a basis for a considerable improvement of comparing large-scale historical 
and current maps. The identified needs from Paper I (RO1) where then implemented within Papers II 
and III. 

After defining the needed technical specifications and describing the visual appearance of an applicable 
dataset, an end-to-end workflow for detecting and recognizing labels from a large-scale historical map was 
developed in the course of Paper II. In comparison to available tools, the number of true positives could 
be increased. Using the extracted semantic information, a final matching and rough spatial transformation 
were performed between historical and current geodata (RO2). 

For an enhanced detection and extraction of non-textual information (RO3) – i.e., map objects such as 
buildings or water areas –, the textual image areas, already detected as part of RO2, were eliminated as a 
first step in Paper III. By applying object-based image analysis, human perception served as a model for 
the development of a semi-automated solution for object extraction. Raster-to-vector conversions make 
this data usable for further analysis, e.g., in geographic information systems. With a final linking of 
available geodata, large-scale historical maps are comparable to current counterparts. 

3.2 Research questions 

Unlike the presented research objectives, the following research questions extend across all three papers 
published in the context of this thesis. These fundamental questions are subordinate to the leading research 
question defined above and contribute to the scientific methods applied in this dissertation. They are 
formulated in the following subsections and answered in chapter 4.2. 

3.2.1 Required information from large-scale historical maps 

Users have different demands concerning the extraction of information from historical maps. In general, 
a clear cartographic style is an essential element contributing to the readability and understanding of maps, 
but individual questions and tasks may require different visual characteristics (Beconytè, 2011; Ory et al., 
2013; Schlegel, 2019). To identify the users’ needs in the work with and in comparing historical maps to 
others, an initial empirical survey was conducted within the framework of Paper I. The following research 
questions provide the basis for this user study and are deduced from its results and then put into practice 
within Papers II and III. 

RQ1.1 What are common subjects in the exploration of large-scale historical maps? What do users intend 
to investigate when comparing historical with current maps? Which questions do the users pursue? 

RQ1.2 How can textual information from historical maps, particularly in the form of labels, be identified 
and extracted? 

RQ1.3 Which non-textual information can be extracted from large-scale historical maps and how? 

RQ1.4 In which form should large-scale historical maps be made available to make them comparable to 
current equivalents? Are there any recommendations concerning technical specifications such as 
the data format or resolution? 
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RQ1.5 Which semiological characteristics are most suitable to intuitively identify and differentiate 
contents – such as objects and labels – of large-scale historical and current maps? 

RQ1.6 To which extent can human perception serve as a basis for the development of a semi-automated 
workflow improving the comparison between large-scale historical and current maps? 

3.2.2 Automation of the information extraction workflow 

To simplify the process of information extraction from large-scale historical maps, workload and time 
effort should be reduced. Manual attempts are tedious and error-prone and require various subjective user 
decisions (Chiang & Knoblock, 2014; N. W. Kim et al., 2014). By automating the whole process, a greater 
quantity of data can be processed in a shorter period of time. Considering the high degree of heterogeneity 
among historical maps, an automated workflow for extracting information from historical maps should 
be universally applicable and transferable.  

Papers II and III demonstrate how comprehensive, semi-automated approaches for extracting labels and 
objects from large-scale historical maps can replace intensive manual work. The suggested methodologies 
were developed with regard to the following research questions. 

RQ2.1 What does automation mean? Many authors develop and apply semi-automated approaches but 
rarely define this term. Which degree of automation defines automated, semi-automated, or non-
automated approaches? 

RQ2.2 To which extent can user interaction be reduced to a necessary minimum? Can prevalent manual 
procedures, which are time- and labor-intensive, be accelerated or even substituted? 

RQ2.3 Can an approach be developed that is transferable to various large-scale historical maps? 

3.2.3 Purposes and benefits of searchability, analyzability, and comparability 

By extracting objects and associated semantic information from large-scale historical maps, these become 
searchable in terms of e.g., looking up former names of places. Provided in the form of vectorized geodata 
and including related toponyms or even profound databases, original paper maps become analyzable 
within GIS and comparable with other geodata. The following research questions concern the general 
purposes and benefits of searching through and analyzing as well as comparing large-scale historical maps 
to other historical or current maps. 

RQ3.1 Can contents of a bitmap file representing a large-scale historical map be derived to build up 
related databases? How can vectors be built, which form the basis of such databases? 

RQ3.2 Users often wish or need a quick and straightforward provisioning of information from historical 
maps. How can the everyday work of persons, who deal with the comparison of large-scale 
historical maps, be facilitated? 

RQ3.3 When juxtaposing large-scale historical with other maps, visual differences are striking. Users 
therefore often fall back on manual labor- and time-consuming methodologies. How can these 
visual processes of comparing historical with current maps be improved? How can identical objects 
from different years and different maps be compared? 

RQ3.4 How can a foundation be laid to deduce even more profound information, which cannot directly 
be seen from large-scale historical maps?
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4 Methodologies and key results
In this chapter, the main scientific findings and methodological implementations of this dissertation are 
presented. After introducing the investigated data basis, answers to the research questions defined above 
are given. 

4.1 Investigated data basis 

The fundamental data basis used for demonstration purposes of the workflows developed in the framework 
of this dissertation is an exemplary large-scale historical map. Originally produced as a steel engraving in 
the middle of the 19th century on a scale of approximately 1:11,000, the map in Figure 5 shows the city 
center of Hamburg. The map section illustrates the most relevant elements of the original map, i.e., 
buildings, streets, water areas, and labels. This sample was already part of the user study in the context of 
Paper I and was further processed within Papers II and III. A digital scan of the map with a resolution of 
300 ppi is provided by the Harvard Map Collection et al. (n.d.-a). 

 
Figure 5: Section of the large-scale historical map used as an exemplary object of study in this 
thesis (Harvard Map Collection et al., n.d.-a) 

Additional maps and geodata depicting the same spatial area were used in the further course of this 
dissertation. In Papers II and III, additional historical maps primarily served to verify developed workflow 
processes, whereas datasets containing current streets or buildings were used for spatial transformation 
purposes. Detailed sections of current maps were used to investigate human perception of semiology in 
Paper I. More details on the input data can be found in the three publications that are reprinted in the 
appendix. 
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4.2 Answers to research questions 

In the following, concrete answers to the research questions formulated in chapter 3.2 are provided. 
Thereby, an overview of applied methods and obtained results within this thesis is given. More detailed 
discussions can be found in Appendices A to C as part of the publications. Further descriptions and results 
from single workflow steps can also be found in the publications as well as the corresponding GitHub 
repositories 7, 8. 

4.2.1 Required information from large-scale historical maps 

RQ1.1 What are common subjects in the exploration of large-scale historical maps? What do users intend to 
investigate when comparing historical with current maps? Which questions do the users pursue? 

Methodology: In the course of Paper I, a pen-and-paper survey3 was conducted with 31 selected historians, 
librarians, archivists, and urban researchers in order to answer this research question. 

Results: More than half of the study participants work with historical maps several times per week or at 
least once a month. Besides archiving, digitizing, and cataloging map stocks, comparing historical maps 
with current counterparts is a key task among users. Statistical evaluations of the user study revealed a 
major focus on the exploration of historical maps: the investigation of long-term changes of individual 
map objects, primarily buildings and roads. These changes may be of shaping or semantic nature. For 
instance, buildings may have been extended or street names might have changed. Also, these map objects 
are often examined for simple existence or absence over the years. Such transformations affect long-term 
urban developments, which often account for the research of large-scale historical maps. According to 
related literature, historical structures and conditions can frequently not be deduced from other primary 
sources like writings describing the past, but only become visible from historical maps (Chiang et al., 2020; 
Harley, 1987). Users even verify historical records and other cartographic material by means of historical 
maps. 

RQ1.2 How can textual information from historical maps, particularly in the form of labels, be identified and 
extracted? 

Methodology: Based on a literature research on the extraction of labels from historical maps, common 
tools for text detection and recognition were chosen. The application of minor image enhancement 
techniques as well as the additional usage of various Python libraries helped to considerably improve 
former processes. A comprehensive workflow for label extraction from large-scale historical maps could 
thereby be developed. 

Results: Extracting semantic information from a historical map allows for searchability and analyzability 
of places in the course of time (Chiang et al., 2020). In the recent past, combining text detection and 
recognition methods has successfully proven to be able to extract machine-readable textual content from 
historical maps. The application of deep learning-based OCR for text recognition is, on the one hand, 
adequate in terms of labor input, computing time, and recognition rate, but, on the other hand, 
insufficient as backgrounds of historical maps are not generally plain white or homogenous. A preceding 
detection, which identifies textual areas within the input map, is therefore required (Nazari et al., 2016; 
Ye & Doermann, 2015). For this purpose, Z. Li et al. (2018) provide the ready-to-use tool Strabo. This 
deep learning text detection system identifies text pixels based on “cartographic labeling principles” 

                                                      
7 https://github.com/IngaSchl/Label-Extraction 
8 https://github.com/IngaSchl/Object-Extraction 
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(Chiang et al., 2016, p. 29) regarding e.g., color, size, and contextual criteria of potential characters. 
Preceding image enhancements (e.g., linear contrast stretching or global histogram equalization) and 
rotations of the input map can be helpful to increase the quantity of detectable text image areas. As 
demonstrated in Paper II, a horizontal alignment of these detected textual image areas also multiplies the 
number of true positives within subsequent text recognition processes. Detected map labels can easily be 
transformed into machine-readable character strings by using an OCR engine like Tesseract (cf. Tesseract 
OCR, 2019). A final fuzzy matching (e.g., via Levenshtein Distance, as suggested by Yu et al., 2016) of 
these strings allows a linking of historical toponyms to today’s similar or even unchanged names of e.g., 
roads and places (Milleville et al., 2022). 

By combining tools for text detection and recognition with the mentioned enhancements, the extraction 
of labels from large-scale historical maps can be considerably improved. A detailed schematic of the 
described workflow, precise evaluations, as well as an explanation of inappropriate approaches can be 
found in Paper II. 

RQ1.3 Which non-textual information can be extracted from large-scale historical maps and how? 

Besides labels, this dissertation aims at extracting further objects from large-scale historical maps. 
Buildings, roads, as well as water and green areas are typical elements. However, the extraction of 
individual objects is rarely straightforward. As can be seen from Figure 5, discrete roads, for instance, have 
no closed geometries. Instead, the map resembles a modern figure-ground diagram, which solely represents 
building footprints while omitting geometries of streets and water or green areas (Mueller-Haagen et al., 
2014). As per the results of the user survey conducted in the context of Paper I, buildings are one of the 
most studied objects in large-scale historical maps. Therefore, this thesis predominantly handles the 
extraction of those. 

Methodology: Based on their semiological components such as color, texture, and shape, but also e.g., 
neighborly relations, objects from large-scale historical maps can be extracted by applying OBIA. A brief 
outline of the methodology applied in Paper III is shown in Figure 6. Detailed process chains, which can 
be directly implemented in eCognition, are provided in a related repository8. 

 
Figure 6: Simplified scheme of extracting geometries of (public) buildings and water areas from a large-scale historical map in 
eCognition (GLCM = gray-level co-occurrence matrix; GLDV = gray-level difference vector) 

Results: As shown in Figure 6, the historical map described in chapter 4.1 is used as an exemplary input. 
Splitting this bitmap into its individual RGB and HSV channels was done to emphasize single objects. An 
initial global thresholding was applied to separate dark foreground objects, such as buildings and labels, 
from brighter streets, places, and water areas in the background. After classifying labels – which were 
already identified in Paper II – also as map background, shapes of buildings could be concluded from the 
map. A subsequent edge detector can define precise object contours by means of a gray-value gradient. 
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The identification of building geometries in the map could be further improved based on their hatched 
texture. A two-dimensional gray-level co-occurrence matrix (GLCM) considers the vertical invariance of 
pixel combinations. By quantifying the combination of gray value pixels adjacent to each other, a GLCM 
identifies repeating, e.g., hatched, patterns (Chaves, 2021; Trimble Inc., 2021). In Figure 7, the general 
principle of a GLCM is demonstrated. If an underlying image is homogeneous, the largest values will be 
found in the GLCM’s diagonal as two adjacent pixels are of the same gray value. Figure 7 a) shows the 
opposite case, a heterogeneous, i.e., hatched texture of a typical building within the examined map. 

 
Figure 7: Gray level co-occurrence matrix (GLCM) of an exemplary buildings’ close-up (a)). Based on a simplified 
tricolored version (b)) of the input image, each pixel’s relationship to its neighbor below (c)) is added up in the GLCM. 
As a last step, the resulting GLCM (d)) is normalized (e)) to get the probability of each gray value pair following their 
vertical relationship 

As can be seen from Figure 6, another thresholding operation applied on the map’s HSV value or 
brightness channel helped to differentiate darker public buildings. Moreover, a gray-level difference vector 
(GLDV), which is another textural heterogeneity measure for the identification of local variations, proved 
useful for extracting the textured and colorized water areas. 

After extracting the mentioned map objects, a raster-to-vector conversion, e.g., by GDAL or other GIS 
methodologies, allows a straightforward linkage of these objects with toponyms extracted within the 
framework of Paper II. Thereby, related databases may be generated. 

OBIA has only been marginally used in conjunction with historical maps to date. In principle, OBIA is 
applied in the field of remote sensing. Results from Paper III demonstrate, however, the usefulness of 
object-based image analysis in the object extraction from large-scale historical maps. Alternative 
approaches, such as simple histogram thresholding, color space clustering, or artificial neural networks 
proved unsuitable as spatial relations between objects are neglected or a large amount of training data and 
time are needed (Gobbi et al., 2019). If applicable, an additional extraction of map symbols would be 
recommended to derive further relationships of map objects. However, symbol extraction is rather an issue 
in middle- or small-scale maps (see Garcia-Molsosa et al., 2021; Groom et al., 2020; Szendrei et al., 2011). 

RQ1.4 In which form should large-scale historical maps be made available to make them comparable to current 
equivalents? Are there any recommendations concerning technical specifications such as the data format or 
resolution? 

Methodology: To give an appropriate answer to this research question, a literature research was conducted. 

Results: Scans of large-scale historical maps ideally have a scanning resolution of 300 ppi for information 
extraction purposes (Chiang, 2010; Chiang et al., 2014; El-Hussainy et al., 2011; Peller, 2018). In 
literature, higher pixel density values of up to 600 ppi are often recommended, but interfering artifacts 
from paper folds, smudges, or discolorations may then be overemphasized (Groom et al., 2020; Iosifescu 
et al., 2016). Moreover, scans of historical maps are frequently provided at a resolution of approximately 
300 ppi. This value represents a compromise between the visual degree of detail and required storage 
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space. Regarding the file size, an image’s bit depth is an additional influencing factor. Often, 8-bit images 
with 256 possible pixel values per color channel are used for the information extraction from maps 
(Ablameyko et al., 2002; Ekim et al., 2021; Gobbi et al., 2019; Zatelli et al., 2019). As original pixel 
information cannot be maintained by, for instance, compressed JPEG images, the usage of lossless TIFF 
data is advisable (Gede et al., 2020). 

For a proof of concept of the workflows demonstrated in this thesis, a representative map section (see 
Figure 5) covering all relevant map elements such as buildings, roads, and water areas proved to be 
adequate. Such a cropped version of the original saves computing time and effort. Georeferencing, in this 
case, is rather detrimental as it may falsify or even distort a map’s original content. Instead, a spatial 
transformation should be performed as a final step of the whole extraction workflow. 

Compared to the original scan in the form of a raster image consisting of single pixels, vectorized data 
offers many advantages and considerably facilitates the comparability of historical map content. Additional 
information on map objects like extracted names of streets or buildings can be recorded as attribute values 
in a database. Such in-depth information considerably simplifies the searchability, processing, analysis, 
and comparability of historical maps. Besides, vector data needs less memory and allows further processing 
steps like rectification or smoothing of its outlines or the application of an alternative semiology. A final 
raster-to-vector conversion of extracted objects is therefore highly recommended “to produce a higher-
level approximation to the geographic elements” (Liu et al., 2019, para. 5). 

RQ1.5 Which semiological characteristics are most suitable to intuitively identify and differentiate contents – 
such as objects and labels – of large-scale historical and current maps? 

Methodology: This issue has been investigated within Paper I based on findings of the user study 
conducted in this context. Here, the suitability of different visual variables is elaborated in more detail by 
involving insights also from additional literature. 

Results: The user study revealed that the identification and differentiation of objects by humans is not 
based on their familiarity with a map but rather on their awareness of the semiology of objects. Typical 
associations are a blue coloring for bodies of water or green for forest areas (Medyńska-Gulij & Żuchowski, 
2018). However, as colors are rare in historical maps, contrasts, textures, and labels are the most important 
visual variables contributing to an intuitive identification of single map elements and different object 
classes. In Paper I, it was found that texture is the best perceivable semiological characteristic. This applies, 
in particular, to the recognition and differentiation of buildings from large-scale historical maps. 
Regarding maps from present times, also line widths are crucial to distinguish objects such as buildings, 
roads, or water bodies. This is especially true for low-contrast or visually overloaded maps. 

Also, the automated readability of map content is impaired with limited spectral information in 
monochrome maps (Herrault et al., 2013). Color, in principle, is the most obvious visual component for 
the automatic identification of map objects as information can be directly deduced from single pixel values 
(Chiang et al., 2020; Thenkabail, 2015). 

A wide range of brightness generally supports the differentiability of object classes. Objects belonging to 
one class should have consistent colors and patterns. This is, however, rarely the case for historical maps 
as hand-drawn textures prevail. Also, interrupted contours and thin lines as well as particularly overlapping 
map elements of uniform colors and stroke widths significantly impede a (semi-)automated extraction of 
objects or labels (Gladstone et al., 2012; Iosifescu et al., 2016). 
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RQ1.6 To which extent can human perception serve as a basis for the development of a semi-automated 
workflow improving the comparison between large-scale historical and current maps? 

Methodology: To give an appropriate answer to this research question, a literature research was conducted. 
Further experience concerning the applicability of human perception in terms of semi-automated 
processes could be gained during the development stages. 

Results: As described in chapter 2.2.1, humans intuitively identify map objects by means of similarities 
and differences in color, size, texture, shape, spatial context, etc. OBIA adopts this principle by segmenting 
and classifying images based on multiple visual variables simultaneously. In accordance with human 
perception, object-based image analysis does not follow a mere pixel-wise approach. Instead, the examined 
image or map is split into uniform objects based on e.g., spectral and shaping homogeneities (Gladstone 
et al., 2012; Hussain et al., 2013). Also, neighborhood relations play an important role in manually 
assigning and linking information and should therefore also be considered within (semi-)automated 
approaches.  

If objects or labels are extracted from a historical map by a machine, a contemplation of its HSV or CIELab 
color space may be helpful as this rather corresponds to human perception compared to the use of the 
RGB color space (Dodge et al., 2011; Ostafin et al., 2017). In Paper III, the HSV value channel, which 
represents the brightness of colors, was used repeatedly to differentiate between object classes in a semi-
automated way (see Figure 6). 

By incorporating cognitive strategies within a semi-automatic workflow, the comparison between 
historical and current maps can be facilitated to a certain degree. With automation, constant eye 
movements alternating between saccades and fixations as well as elaborate matching procedures between 
heterogeneous semiology are no longer necessary. 

4.2.2 Automation of the information extraction workflow 

RQ2.1 What does automation mean? Many authors develop and apply semi-automated approaches but rarely 
define this term. Which degree of automation defines automated, semi-automated, or non-automated 
approaches? 

Methodology: To give an appropriate answer to this research question, a literature research was conducted. 
Several findings could be verified and extended by results presented in Papers II and III. With the help of 
multiple data input scenarios, the developed workflows’ degree of applicability, amount of needed manual 
interaction, and saving of running time could be appraised. These factors allow an approximate assessment 
of the automation level. 

Results: Automated processes contrast with manual, non-automated techniques, which inevitably require 
human efforts for the performance of a task. Automation allows to reduce expenditure of time and labor 
as a particular workflow can be applied to various inputs and produces comparable results, for example, 
concerning extraction accuracies (Gobbi et al., 2019; Laycock et al., 2011; Liu et al., 2019). 

Authors occasionally differentiate between fully automated and semi-automated approaches (Milleville et 
al., 2022; Uhl et al., 2017). However, state-of-the-art technological facilities such as deep learning cannot 
be seen as fully automated because training data has to be generated in a supervised way. By the current 
state of scientific knowledge, an automation of information extraction from historical maps to a degree of 
100 % is impossible (Bucha et al., 2005; Simon et al., 2014). This is also due to the large number of 
historical maps having a high degree of information, complexity, and visual variety (N. W. Kim et al., 
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2014). As maps, especially in the past, have usually been “produced to be read by humans” (Ablameyko 
et al., 2001, p. 195), it is obvious that graphical variations and artifacts could be identified differently by 
humans than by machines. Furthermore, in the semi-automated process of information extraction from 
historical maps, manual interaction is still necessary for the initial problem definition, the choice of data, 
processing methods, and sources of knowledge, as well as for the final verification of the workflow results 
(Baltsavias, 2004; Herold, 2018). 

To bridge the gap between user interaction and automation capacity, semi-automated methods are used 
to improve the quality and efficiency of a former manual workflow (Baltsavias, 2004). Especially if a large 
number of maps are to be processed in a similar way, manual efforts can be reduced by a certain degree of 
automation. Contrary to that, automated approaches perform worse with heterogeneous input maps and 
diverse cartographic styles, as results from Paper III show (Chiang et al., 2016, 2020). 

Preventive or corrective user interaction is often needed for semi-automated information extraction but 
should be avoided as much as possible in favor of automation (Baltsavias, 2004). Pre-processing attempts, 
such as filtering or morphological operations, require thorough consideration upfront as well as individual 
solutions and usually falsify the original input. Well-known and readily available tools, e.g., Python 
libraries, however, can be used for post-processing to optimize results from information extraction. 

The semi-automated workflow for object extraction demonstrated in Paper III can be applied to other 
large-scale historical maps with minor changes if they meet the following requirements. Maps should have 
similar or less complexity and a similar scanning resolution and bit depth as the map described in 
chapter 4.1. In Paper II, additional adjustments to improve the extraction of labels were automated for a 
whole map sheet (cf. chapter 3.3 in Paper II). Hence, time and effort can be reduced significantly. 
However, the individual influence of the developer on such semi-automated methods cannot be neglected, 
which is strongly dependent on their subjective choice of applied methods, thresholds, and parameters. In 
this context, it is unavoidable to implement minor manual improvements in order to achieve satisfactory 
results. 

RQ2.2 To which extent can user interaction be reduced to a necessary minimum? Can prevalent manual 
procedures, which are time- and labor-intensive, be accelerated or even substituted? 

Methodology: The processes applied in Papers II and III were evaluated regarding their automation 
capacity. A tabular juxtaposition of automated and manual proceedings implemented within the 
workflows of this thesis outlines the possible degree of automation. 

Results: To minimize human intervention in the process of information extraction from historical maps, 
additional preliminary work such as the application of filters or other image enhancements should be 
avoided. The development of preferably universal approaches contributes to the automation and, thereby, 
the substitution of manual processes. Recurring problems can be solved in a faster and consistent way with 
the help of (semi-)automated strategies. Table 1 juxtaposes the automated and manual processes being 
applied or developed in this thesis for the purpose of information extraction from large-scale historical 
maps. The application of various Python libraries (e.g., NumPy, Rasterio, Shapely), GIS operations, and 
other software tools contributed to the automation of processes. Nevertheless, single procedures, such as 
the determination of usable algorithms and functions, parameters, and thresholds, still require human 
intervention. Additionally, a precise ground truth needs to be generated manually in most cases for a final 
quality analysis of label and object extraction results. 

However, apart from the subjective choice of OBIA algorithms, Table 1 shows that these manual processes 
are rather of minor impact and well-known from other applications like image processing or data 
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evaluation. Some manual steps need to be defined only once during development phase. Established tools, 
such as Strabo or Tesseract, should always be favored. Thus, user interaction could be minimized to a 
certain degree within the information extraction from historical maps. 

Table 1: Automated and manual processes needed, used, and developed within this thesis for the purpose of semi-automated 
information extraction from large-scale historical maps 

 Automated processes Manual processes 

Label extraction 
(cf. Paper II) 

- Multiple rotations of input image to increase 
the number of detectable textual areas 

- Merging bounding boxes covering identical 
textual areas 

- Rotation of textual image areas to improve 
the data base for text recognition 

- Measuring string similarity between 
recognized text and additional dataset 

- Affine transformation of historical map 

- Definition of thresholds and conditions for 
merging of bounding boxes 

- Definition of language in Tesseract OCR 
- Choice of appropriate current dataset for 

string similarity 
- Evaluation of results compared with a 

ground truth (e.g., recall, precision, and f-
score) 

Object extraction 
(cf. Paper III) 

- Execution of OBIA rule set in eCognition 
- Raster-to-vector conversion 
- Definition of control points for spatial 

transformation based on shape similarity 
- Affine transformation of current dataset 

- Definition of thresholds and conditions for 
the differentiation between text and parts of 
other objects (e.g., building edges) 

- Choice of OBIA algorithms and definition 
of parameters and thresholds for the 
generation of a rule set 

- Choice of appropriate current dataset for 
object linking 

- Error estimation and quality assessment of 
results by replacing control points and 
regarding the spatial context of objects 

RQ2.3 Can an approach be developed that is transferable to various large-scale historical maps? 

Methodology: In this dissertation, transferability is defined as the possibility of applying an existing or 
developed workflow on a range of other maps without the need for major technical adjustments. The 
transferability of a workflow is essential, particularly with regard to its further usability. As cartographic 
styles among historical maps are highly heterogeneous, a fully automated, transferable approach would be 
fruitless. Therefore, applicable semi-automated processes were developed for the purpose of label and 
object extraction from large-scale historical maps within Papers II and III. In Paper III, the applicability 
of the object extraction workflow is demonstrated with the help of alternative large-scale historical maps 
(see example in Figure 8). Also, the label extraction workflow presented in Paper II was applied to multiple 
maps (see example in Figure 9). The results were quantified by means of common statistical measures. 

Results: Rule sets, once constructed for the automatic extraction of objects (cf. Paper III) from a specific 
input in eCognition, can easily be applied to other maps. Maps having a similarly or less complex visual 
appearance compared to the initial map only require minor changes in the workflow to achieve a satisfying 
result. Otherwise, as can be seen from Figure 8, alternative parameters and functions, particularly within 
the OBIA phase, are to be defined. It must be noted that all subsequent processes depend on the quality 
of OBIA results. Other steps included in the holistic extraction of objects, such as the initial elimination 
of labels or the final raster-to-vector conversion, are easily transferable to other maps without or with only 
minor adjustments of single thresholds.  
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Figure 8: a) The original input map described in chapter 4.1 as well as b) a more complex, large-
scale historical map (Harvard Map Collection et al., n.d.-b) showing the same spatial extent of the 
city of Hamburg. The OBIA workflow originally developed for map a) (see result in c)) was applied 
to b) and delivered less satisfactory results, as can be seen in d) 

The preceding label extraction process presented in Paper II is deemed transferable as long as labels are 
detected and recognized by the used tools Strabo and Tesseract. The results show that isolated, straight, 
and homogeneous labels provide ideal preconditions. After applying Strabo to a number of large-scale 
historical maps, an average f-score of 58 % was achieved. The f-score considers not only true but also false 
positives, which can be seen in the lower right of Figure 9 b). Figure 9 juxtaposes the detected labels from 
two exemplary large-scale historical maps. 

 
Figure 9: Detected text image areas from two large-scale historical maps (Harvard Map Collection et al., n.d.-a; Europeana, n.d.) 
after applying Strabo. Besides true positives, false positives – areas erroneously detected as text – were identified in the map on 
the right, which has a negative impact on precision and f-score 
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For the applicability of universal methodologies aiming at the information extraction from large-scale 
historical maps, some basic requirements must be fulfilled. Besides an appropriate resolution of 
approximately 300 ppi (cf. RQ1.4), a scanned map should be free from conspicuous stains and other 
disturbing factors. For the semi-automated definition of control points for spatial transformation and a 
final comparison of historical maps to (current) counterparts, additional datasets containing e.g., local 
street names should be available. Under the stated preconditions, a transferability of the workflows 
presented in this thesis is possible. 

4.2.3 Purposes and benefits of searchability, analyzability, and comparability 

RQ3.1 Can contents of a bitmap file representing a large-scale historical map be derived to build up related 
databases? How can vectors be built, which form the basis of such databases? 

Methodology: By using object-based image analysis, raster images are split into segments, which can be 
further assigned to meaningful classes. When working with scans of maps, these segments ideally represent 
discrete map objects such as buildings or water areas. As demonstrated in Paper III, a simple raster-to-
vector conversion, e.g., via GDAL, can then transform extracted map objects into vector data (see example 
in Figure 10 b)). Figure 10 c) shows how these vector objects were smoothed to close small gaps or 
eliminate undesired spikes and other outliers due to previously undetected label remains from previous 
steps or inaccurate segmentation results. For this purpose, different simplification and cleaning processes 
suggested by Iosifescu et al. (2016) were implemented by means of Python libraries. A final cleanup as 
described in Heitzler and Hurni (2020) was tested (see Figure 10 d)) but not considered further in the 
object extraction workflow due to specific prerequisites regarding e.g., map scale, shapes, and textures. 

 
Figure 10: Vector simplification steps by means of two exemplary buildings: a) original map section, b) vectorized map objects, 
c) vectorized map objects after simplification and smoothing, d) vectorized and simplified map objects after cleanup according to 
Heitzler and Hurni (2020) 

Vector data has the great advantage that in-depth information on single map objects, such as class 
affiliations or semantic descriptions, can be stored in related databases. Thus, also toponyms from 
historical maps can be assigned to corresponding vector objects. 

Results: In Paper II, current names of streets and places were spatially assigned to a large-scale historical 
map via fuzzy matching. The spatial context of this valuable information may then be used to locate and 
name further map objects such as buildings or water areas. Therefore, even labels of buildings, which can 
frequently be found rather next to than inside the referenced objects due to lacking space, may be spatially 
assigned. 

Even if labels are not present in historical maps or not transferred into machine-readable text, databases 
referring to map objects may be filled with their class assignments based e.g., on OBIA results. 
Furthermore, information directly derivable from vectorized map objects – such as relative or absolute 
lengths of roads or ground areas of buildings – may be stored in related databases and further used for 
quantified evaluations of large-scale historical maps. 
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RQ3.2 Users often wish or need a quick and straightforward provisioning of information from historical maps. 
How can the everyday work of persons, who deal with the comparison of large-scale historical maps, be 
facilitated? 

Methodology: This research question can be answered based on the findings collected from the user study 
conducted in the course of Paper I. In Papers II and III, it is shown how these findings can be implemented 
in practice. By applying comprehensive and semi-automated extraction processes, the identification and 
comparison of map content is simplified. 

Results: According to the survey results of Paper I, three out of four users of historical maps frequently 
struggle with an ambiguous identifiability and comparability of map objects. Other difficulties a majority 
of the respondents face in the comparison process of historical maps are saccades, which cause great strains 
for viewers, as well as content considered incorrect within a map. While the latter originates from map 
production and cannot be solved by technical implementations, the focus of this thesis is on improving 
the identification and comparability of map objects with the side effect of avoiding saccades. By applying 
semi-automated methodologies, users are relieved of time- and labor-extensive interpretations of historical 
maps and object classifications. User interaction can thus be reduced to the inevitable minimum in the 
process of information extraction. With the workflows presented in Papers II and III, the work with large-
scale historical maps can be considerably facilitated as semantical information is automatically provided in 
the form of machine-readable character strings. Additionally, geospatial analysis is enabled through the 
conversion of extracted map objects into vector data. Geodatabases may allow the search for toponyms 
(e.g., town hall or Saint Catherine's Church) or other key words indicating an associated geometry. After 
being vectorized and spatially referenced, geodata deduced from historical maps can be processed similar 
to current geodata. Especially when comparing individual map objects from different maps, a 
superimposition of vectorized geodata extracted from a historical map with more recent vector data is 
advantageous. By selecting a particular vector object, available object information of historical and current 
origin may be retrieved (cf. chapter 7 in Paper III). As pointed out in Papers II and III, a rough spatial 
transformation is sufficient to investigate if a former building still exists today, if streets changed 
fundamentally or to simply analyze the change of urban structure. According to the user study presented 
in Paper I, these are the major questions users of historical maps deal with. 

Papers II and III show how previous approaches aiming at the comparison of maps from different times 
can be accelerated and made more intuitive. Using vectorized geodata derived from a historical map – 
including toponyms or even supplementary databases –, a quick and straightforward data retrieval is 
facilitated and tiring saccades are no longer necessary. Users can filter information by highlighting wanted 
or omitting unnecessary data and thereby avoid visual and informational overload. 

To improve the work of historical map users, (semi-)automated workflows are supposed to be transferable 
as a larger quantity of maps can be analyzed within a shorter period of time. It is important to provide 
easy-to-use tools, which indeed meet the users’ requirements and provide an appropriate basis to answer 
their questions. The usage of proprietary software such as eCognition is not recommended in this context, 
but the opportunities of using OBIA in the investigation of historical maps could be shown. Regarding 
future developments, an exchange of ideas and experiences between users of historical maps and developers 
may be highly profitable. 
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RQ3.3 When juxtaposing large-scale historical with other maps, visual differences are striking. Users therefore 
often fall back on manual labor- and time-consuming methodologies. How can these visual processes of 
comparing historical with current maps be improved? How can identical objects from different years and 
different maps be compared? 

Methodology: According to users of historical maps (cf. Paper I), helpful tools to compare historical maps 
to others are still lacking. In Paper I, previous approaches were examined and deemed to be inadequate. 
Results from Paper III show how the provision of vector data extracted from large-scale historical maps 
facilitates the comparison of discrete objects from those. 

Results: The information extraction workflows presented in Papers II and III demonstrate how a basis can 
be established to automate manual procedures and, thereby, to accelerate them and make them 
transferable. For comparing optical differences between historical and current maps while avoiding 
saccades, different authors suggest various options. A listing and illustrations of these can be found in 
Paper I. However, these solutions, which simply put two maps on top of another and provide a 
customizable transparency or a movable slider, are not deemed suitable in this context. On the one hand, 
the required georeferencing is usually conducted manually and, on the other hand, users still need to 
manually retrieve object information by themselves. 

Instead, an end-to-end semi-automated workflow is presented in this thesis. It enables a quick and 
automated locating of objects from a historical map. If available, additional information on these objects 
can be directly derived. Visual distortions in the historical dataset could be avoided by spatially 
transforming current geodata. In contrast, a geocoding would distort the original historical data by 
assigning XY coordinates to an object or toponym. As per experts interviewed in the context of Paper I, 
geocoding the historical map is unnecessary for many actual use cases, which involve, for instance, the 
comparison of single buildings between historical and current maps or the investigation of the shift of 
urban structure over the course of time. 

The approach developed within the framework of this dissertation offers multiple advantages. First, it 
saves time and effort by automation, second, the user’s specific questions are addressed, and, third, a direct 
comparison of identical objects from different maps is enabled through information extraction and spatial 
transformation. Looking ahead, further improvements for visually comparing large-scale historical with 
current maps may include, for example, the matching of their semiology. This and other suggestions are 
dealt with in chapter 5.2. 

RQ3.4 How can a foundation be laid to deduce even more profound information, which cannot directly be seen 
from large-scale historical maps? 

Methodology: Extracted objects from large-scale historical maps can be used to directly deduce measures 
such as areas or lengths of single features. As mentioned in RQ3.1, base areas of single buildings, lengths 
of roads, or other distances may be derived in map units or even in metric measures in case of an existing 
coordinate system. Besides, more available information, e.g., from labels or from other sources, may be 
allocated via spatial relations. 

Results: Toponyms, for instance, which were extracted in the framework of Paper II, allow to assign 
additional information, which may originate from the map itself or even from secondary sources like 
historical text documents, datasets, metadata, or official name collections in the form of gazetteers 
(Longley et al., 2015). The existence of a spatial reference, as implemented via toponym’s similarity in 
Paper II or shape similarity in Paper III, enables the combination and comparison of extracted historical 
geodata with other available data. Temporal progress in urban development can thereby be traced and 
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analyzed. This research question aims at the usability of the results of this dissertation and contributes to 
future research, which is addressed in chapter 5.2. 
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5 Discussion and outlook

5.1 Discussion 

Key findings and linking to previous research 

Automating the process of information extraction from large-scale historical maps is a key task to render 
them searchable, analyzable, and comparable with other maps. In contrast to manual attempts, automated 
workflows are designed to be applicable for various inputs and save time and effort. However, a full 
automation is not viable as minor human interaction is still needed for choosing tools, algorithms, and 
parameters or for postprocessing purposes. With the semi-automated workflows presented in this thesis, 
major challenges occurring in the manual comparison of large-scale historical maps could be diminished. 
Manual and strenuous labor is avoided by removing the identification and differentiation of single map 
objects like buildings, roads, or water areas from the users’ tasks. To further search through, process, and 
analyze information extracted from large-scale historical maps, a vectorization of their content is advisable. 
Related information such as toponyms or entire databases may be attached. A following spatial 
transformation further enables a geospatial processing of valuable information deduced from historical 
maps. 

The purpose of this dissertation was to contribute to research on the history of urban environment. As 
users complain about a general lack of appropriate tools, a comprehensive workflow for the semi-
automated extraction of information from large-scale historical maps was presented. Potentially new 
insights and formerly hidden knowledge can thereby be gained; urban developments and changes might 
become comprehensible. As investigated in Paper I, exploring such long-term urban transformations of 
e.g., single buildings is a major subject when comparing large-scale historical maps with others. In doing 
so, the heterogeneous semiology among maps often impedes the identification and differentiation of 
individual objects. The semi-automated workflows developed within the framework of this thesis deal 
with this issue. They are modeled after human perception by extracting map information not only based 
on colors but also on other visual variables. Thus, in Papers II and III, it was shown how the visual 
information of large-scale historical maps, i.e., semantics and geometries, can be extracted in a semi-
automated way. Therefore, available and generally accepted methods were combined with further 
enhancements. The results proved the applicability of these workflows to maps of similar visual 
complexity. However, the quality of results also strongly depends on an input’s resolution, format, and 
color depth. 

Another finding was that (fuzzy) similarity measures are suitable to automate the matching between 
different, e.g., historical and current, maps. By spatially transforming (e.g., georeferencing or rectifying) a 
historical map to an appropriate geodataset, even further historical information can be assigned via 
neighborly relations. 

In contrast to previous studies, which usually examined only single processing steps, this thesis provides a 
holistic end-to-end workflow for the semi-automated information extraction from large-scale historical 
maps. As a result of this comprehensive approach, a preliminary georeferencing of historical maps, as 
performed by many authors and causing unwanted distortions, is unnecessary. Many solutions, which 
superimpose historical on current maps for comparison purposes (cf. Figure 2 in Paper I for examples), 
are based on manual georeferencing and, moreover, cannot provide additional information on single map 
objects. 
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An initial evaluation of users’ needs regarding the interpretation and comparison of historical maps helped 
to specify the research objectives of this dissertation. The results from Paper II are consistent with previous 
literature referring to rather low text detection and recognition rates. However, the process of label 
extraction could be improved within the scope of this dissertation by extracting also rotated text, which is 
still an issue in current research. This research stands out against others by going one step further from 
text recognition: the spatial assignment of extracted labels within the historical map as well as their 
verification by means of current toponyms. 

Whereas past research rather treats labels as disturbing elements when extracting other map objects, an 
initial label elimination further helped to significantly facilitate the object extraction process in Paper III. 
A final demonstration of the workflow’s applicability proved beneficial, although a testing with alternative 
maps showing other cities and semiologies is advisable. Agreeing with many other authors, there is no 
universal method that can be applied to all historical maps. Especially when regarding monochrome maps, 
overlaps between objects, labels, map grids, etc. are still an issue. Therefore, large-scale historical maps 
cannot solely be segmented on the basis of their spectral information for the purpose of semi-automated 
information extraction. 

Strengths and limitations 

In the study of historical maps, potential sources of uncertainties should be considered. Unlike today, 
maps were not produced based on modern surveying or precise satellite imagery in the past but by means 
of rather inaccurate surveying or triangulation. Inaccuracies might have also been evolved due to lacking 
understandings, spatial references, or written records of locations and measures. Therefore, a one-to-one 
comparison between highly precise maps from present times and approximated historical maps is not 
straightforward. 

The user survey conducted in the course of Paper I represents a first attempt to assess and respond to 
actual challenges and requirements in the investigation of historical maps. However, further research 
examining the usefulness and applicability of the workflows developed in the context of this thesis should 
be done. One limitation of the label extraction process presented in Paper II is, for instance, that toponyms 
of e.g., streets and places should not change significantly over time, which is presupposed for a fuzzy 
matching between historical and current data. Further restrictions originating from the used tool Strabo 
concern handwritten and curved labels as well as overlapping map features. Nevertheless, by combining 
such available tools with minor enhancements, a comprehensive workflow to extract semantic information 
from large-scale historical maps could be developed. Thereby, the number of true positives was increased, 
but, at the same time, also false positives emerged. When executing the suggested solution for label 
extraction with other historical maps, manual user interaction is hardly needed. 

Certain limitations also arise from Paper III. For example, the usage of proprietary OBIA software impedes 
a general access to users. The subjective but universal definition of functions and parameters requires trial 
and error as well as human expert knowledge, which cannot be expected from any type of users. Therefore, 
the exchange and cooperation between developers and users must be strengthened. 

When applying object-based image analysis in the context of object extraction, it must be noted that all 
subsequent steps depend on the quality of the initial results. One of these steps, the matching of different 
vector datasets based on shape similarities, additionally demands a similar degree of detail, scale, and 
generalization among these files. Furthermore, there must be at least three geometries matching between 
two datasets to define control points for an affine transformation. The quality of the resulting spatial 
transformation further depends on the spatial distribution of these control points throughout the map. 
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Although the general applicability of the presented object extraction workflow is limited, eCognition 
allows a simple transferability of developed process chains. Unlike pixel-based approaches, which only 
regard color differences between single pixels, several visual variables may be considered within object-
based image analysis. Thus, objects from typically monochrome or low-contrast historical maps can be 
extracted. This is additionally facilitated by the preceding elimination of labels. 

To finally enable a direct comparison of data extracted from a large-scale historical map with a current 
counterpart, a rough spatial transformation was suggested in Paper III. The demonstrated approach largely 
prevents a spatial distortion of original shapes within a historical map. 

5.2 Outlook 

This dissertation has demonstrated how semi-automated processes for information extraction from large-
scale historical maps have the potential to contribute to the investigation of long-term developments in 
the urban space. The presented solutions show how objects and labels can be extracted in an exemplary 
way and further used for analyzing, processing, and comparing purposes. However, further investigations 
are needed in this context. A combination of results from the publications being part of this thesis would 
be useful to assign semantic descriptions to related map objects (see Figure 11). Thus, datasets from other 
sources can easily be linked. 

 
Figure 11: Vectorized map objects extracted from a large-scale historical map in the course of Paper III 
and spatially rectified current names of roads, buildings, and water areas, as extracted within the 
framework of Paper II. Base map is the historical map shown in Figure 5 

An additional extraction of roads and places would complete the object extraction from large-scale 
historical maps. Extracted road names may then be assigned directly to their corresponding geometries. 
However, Figure 11 shows how roads are often not represented by discrete features but rather in a similar 
way to figure-ground diagrams (cf. RQ1.3) so that an automated extraction is hardly feasible. Another 
open question in this context remains how starting and end points of single streets could be defined. 
Instead, current, point-like road names were spatially rectified and assigned in this thesis. Further research 
remains to be done concerning the allocation of point-like labels to polygonal roads and the derivation 
and assignment of original historical names. This also applies to other map objects. To generate 
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appropriate databases containing semantic information from both current and historical maps, historical 
names must be recorded as well. This allows a direct comparison between former and modern designations 
of e.g., individual roads or buildings. The provision of databases further enables a storage of additional 
data values such as class assignments, geometrical measures, or information from secondary sources.  

Improving the comparison of large-scale historical maps, which was a major objective of this thesis, is no 
straightforward matter because detailed reproductions of reality and precise accuracies were of minor 
importance in the past (Crom & Heinz, 2016). As investigated in Paper I, it could be helpful to adapt the 
visual appearance of maps to one another. Comparable to Ory et al. (2017), who generated several 
in-between representations by interpolation, the semiology, e.g., colors, textures, and line widths, of large-
scale historical might be applied to current maps or vice versa. According to users of historical maps (cf. 
Paper I), the manipulation of visual variables would be a conceivable approach to standardize map styles 
among maps from different ages. The purely visual comparison between historical and current maps may 
thus be simplified (Kang et al., 2019). In doing so, road features might be of particular interest. While 
streetscapes usually are linear in current geodata, they rather form polygonal features in historical maps. 

In terms of future research, an interpretation and evaluation of the results from this dissertation should be 
conducted. On the one hand, the examination of the performance, robustness, and accuracy of developed 
workflows is a remaining issue due to the developer’s subjective influence. On the other hand, there is a 
need for a qualitative results assessment (Lladós et al., 2001). To address the latter, a ground truth can be 
useful but provides an evaluation basis which solely depends on human perception. Validating results by 
means of a single and highly subjective benchmark is not recommended. Inaccuracies are common due to 
deviations originating from e.g., antialiasing or shadows drawn along object boundaries (Heitzler & 
Hurni, 2020; Lefèvre et al., 2019). Further investigation is therefore needed regarding the geometric 
accuracies of “positions, distances, areas, and angles of features on the map“ (Jenny & Hurni, 2011, 
p. 403) in comparison to reality or other, more reliable maps. Additionally, the correct assignment of 
objects to object classes should be researched in greater depth. In Wu et al. (2022), for instance, 
uncertainty maps are generated to evaluate the accuracy of segmentation results from historical maps.  

In addition to those already mentioned, several aspects should be subject to further investigations. First, 
the quantity of identifiable and extractable labels and objects should be increased in text detection and 
recognition tools. Second, more research is needed in the investigation of alternative map examples to 
analyze the applicability of the suggested workflows. An advancement of automatization is a reasonable 
step in future work with the aim to further reduce manual interaction. Third, the implementation of all 
processes involved in the presented workflows within an integrated program code is required to establish 
a comprehensive and stand-alone tool for the (semi-)automated information extraction from large-scale 
historical maps. In this context, further research should focus on the potential replacement of proprietary 
software for the entire workflow. 

In summary, this dissertation can be seen as an important step towards an increased automation regarding 
the extraction of information from large-scale historical maps. Contributing to the investigation of our 
past, this research provides a number of novel findings concerning the improved searchability, 
analyzability, and comparability of historical maps and may stimulate further investigation in this 
important research area.
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Abstract
In the investigation of urban development over centuries, the comparison of appropriate maps forms an essential component. 

The aim of this project is an improvement of an effective and intuitive comparison of historical and current map features. 

An adjustment of uniform visual variables to individual maps is therefore suggested. An appropriate framework presenting 

potential solutions for the deployment of a new methodology is based on the analyzed users’ demands. These requirements 

were identified and evaluated with the aid of purposive sampled experts interviewed with a pencil and paper questionnaire. 

Two major challenges concerning the comparison between historical and current maps were revealed in a statistical evalua-

tion: a general lack of technical tools and great varieties in semiology. The familiarity with their semiology has the greatest 

effect on the identification and distinction of map features. Therefore, an adaption of color composition, textures, and labels 

seems crucial in particular. Various approaches such as feature extraction or similarity measures to meet the mentioned 

challenges are suggested for future research.

Keywords Historical map · Empirical study · Semiology · Visual variables

Empirische Studie zur Entwicklung einer Methodik für eine bessere Vergleichbarkeit 
zwischen historischen und aktuellen Karten

Abstrakt
In der Erforschung von urbanen Entwicklungen über Jahrhunderte ist der Vergleich entsprechender Karten essentieller 

Bestandteil. Das Ziel dieses Projektes ist eine Optimierung für einen effektiven und intuitiven Vergleich zwischen historischen 

und aktuellen Geoobjekten. Zu diesem Zweck wird eine Vereinheitlichung der visuellen Variablen (Semiologie) von indivi-

duellen Karten angestrebt. Ein Überblick, der mögliche Lösungsansätze zur Entwicklung einer neuen Methode hervorbringt, 

basiert auf erhobenen Nutzeranforderungen. Diese wurden im Rahmen eines Papierfragebogens, welcher von einer Ziel-

stichprobe aus Experten beantwortet wurde, ermittelt. Eine statistische Auswertung brachte zwei große Herausforderungen 

beim Vergleich von historischen mit aktuellen Karten zum Vorschein: ein allgemeiner Mangel an technischen Werkzeugen 

sowie große Variationen in der Semiologie. Auf das Identifizieren und Differenzieren von Geoobjekten hat die Vertrautheit 

mit bekannter Semiologie den größten Einfluss. Insbesondere eine Anpassung der Farbzusammensetzung, Texturen und 

Beschriftungen ist daher wesentlich. Verschiedene Lösungsansätze wie Merkmalsextraktion oder Ähnlichkeitsmaße werden 

für künftige Forschungsvorhaben empfohlen, um die genannten Herausforderungen zu bewältigen.

Schlüsselwörter Historische Karte · Empirische Studie · Semiologie · Visuelle Variablen

1 Introduction

In the recent past, current geodata styled in a historical 

appearance is often seen on social media or in new-fashioned 

atlases. Modern city maps such as of London (see Fig. 1), 
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Paris, or Hamburg are visually transformed so that at first 

glance, they appear to be from and represent past centuries.

Assuming an appealing appearance to be the motivation 

for designers or printmakers to produce current maps in a 

historic style, the compliance of stylistic and especially car-

tographic conventions is of secondary importance as the use 

of colors, contours, textures, and illustrated details relies 

on highly subjective decisions. But what if such maps are 

applied in further scientific work—to measure distances, 

ascertain house owners, former street names, or the progress 

of urban structures?

As processing and analysis of historical maps is not as 

easy compared to their more recent counterparts, archi-

vists, librarians, historians, urban planners, cartographers, 

and geographers are frequently confronted with challenges 

while comparing current with historical geodata portraying 

one and the same section of a city. In such a comparison pro-

cess, long-term spatiotemporal urban transformations such 

as the development of demography, migration flows, or trad-

ing and road networks influencing urbanization processes 

are supposed to become visible. A possibility for extracting 

designations, addresses, or further database-supported infor-

mation from simple (paper) images representing historical 

maps is therefore required.

Owing to the lack of alternatives, users yet partly rely 

on very unconventional methods (own evaluation, see 

Sect. 4.3). As a first step of an overall project, the present 

study aims at setting foundations for the deployment of a 

new methodology to compare historical and current maps 

in a more effective way. This is to be achieved by applying 

uniform rules of representation to gain new knowledge in 

the subject of urban development.

Only a handful of scientific research efforts take up a uni-

form adjustment of visual characteristics to better compare 

current with historical geodata. The study presented here 

regards the users’ demands and the potential for an improve-

ment concerning an intuitive comparability on the basis of 

the maps’ semiological characteristics. This paper conse-

quently first, clarifies the terms of and connection between 

historical maps and semiology, second, reports on and evalu-

ates the outcomes of an on-topic user study implemented 

in terms of a requirement analysis, and third, based on its 

results, points out the rationale of the proposed following 

investigations.

2  Review of Related Literature 
and Approaches

From the esthetic point of view, numerous examples of cur-

rent geodata having a historical appearance can be found. 

Map designer and illustrator Mike Hall creates maps in a 

historical manner, particularly inspired by sixteenth up to 

eighteenth century mapmakers such as Willem Blaeu, John 

Ogilby, or John Rocque (M. Hall, personal communication, 

October 22, 2018). Besides portraying the physical world, 

Fig. 1  Map of modern London inspired by John Rocque’s 1746 Map of London, drawn up by map designer Mike Hall (Hall 2016a)
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he also designs city maps such as his Map of modern Lon-
don inspired by John Rocque (Hall 2016a) (see Fig. 1) or 
Maps of Glasgow for Denise Mina’s “The Long Drop” (Hall 

2016b). Nelson (2016) reports on the work of cartographer 

Christopher Wesson who transferred visual characteristics 

(colors, patterns, symbols, labels, and generalization) of an 

official ordnance survey map from 1801 to recent geodata of 

London. This mid-scale map was produced at a high level of 

detail mainly with the help of geographic information sys-

tems and image processing software. Similar works by Kay 

(2016) use OpenStreetMap to map the city of Edinburgh in 

the style of the early twentieth century. Also, Wellingtons 

Travel Co. (2017) illustrates a cityscape from 2012 appear-

ing to be historical in the course of their hand drawing The 
Grand Map of London.

While the standard of design in digital (web) maps is 

often criticized as low, users point out a frequent visual 

overload of information in historical maps (Beconytè 2011; 

Christophe et al. 2016; Ory et al. 2013). Analyzing their his-

torical content turns out to be complex and time-consuming. 

Also, the visual merger of labels with other map elements 

makes it difficult to differentiate. As a consequence of their 

heterogeneity due to varying manufacturing eras, different 

authors and drawing styles, old maps drawn by hand have 

considerable limitations regarding their machine readabil-

ity. Besides these consequences of manual production, also 

technical challenges become apparent such as the age of the 

maps themselves or such arisen from scanning (e.g., blur-

ring or pseudocolor), inducing a low image quality (Leyk 

and Boesch 2010). Though visually appealing, limitations of 

historical maps must be mentioned and considered as well.

Nevertheless, Field’s (2018) statement coincides with the 

results of the study presented in Sect. 4 that historical maps 

are generally favored over current ones when only consid-

ering their esthetic point of view. This may be explained 

not only by nostalgic or fashion-oriented reasons, but also 

by major efforts needed in intellectuality and time for the 

production of maps in earlier times. People still have a high 

degree of confidence in ancient maps. Unlike today, maps 

used to be powerful instruments for the communication of 

meanings in the past. Nowadays, various maps may be pro-

duced and disseminated in a minimum of time—regardless 

of their validity.

For the reverse process—making maps representing 

spatial information on historical circumstances in a current 

style—a majority is found solely on a very large scale or 

seen as artistically playful. However, series of unified repre-

sentations of the spatial development of antique cities such 

as Rome, Athens, or Jerusalem over various centuries are 

often seen in common school atlases (e.g., “Rom—Antike 

Metropole—Bauwerke” (n.d.), W.W. Norton and Company 

Inc. (2010)).

Aiming at the comparison between contemporary geo-

data and historical counterparts, various existing tools and 

approaches are known and applied by different users. One of 

the most common, but also most time-consuming methods 

is placing georeferenced historical maps on top of current 

satellite imagery or vector data—occasionally including 

functions to define different levels of opacity. The geopor-

tals of Klokan Technologies GmbH (2017), of the Archives 
nationales de Luxembourg & Musée d’Histoire de la Ville 
de Luxembourg (n.d.) or of various municipal administration 

agencies are only a few following this approach.

In terms of city maps, a common way to compare cor-

responding geographic features or locations, but different 

cartographic styles are so-called side by side viewers. One 

example is provided by the National Library of Scotland 

(n.d.b): official topographic maps from England are placed 

side by side with scanned and georeferenced equivalents 

from former times and synchronized with another, while 

users pan one of the maps (O’Brien 2014).

Other overlay methodologies are suggested by sliding 

map comparisons of the University of Minnesota (n.d.) (see 

Fig. 2, left) or virtual and interactively moveable magnify-

ing glasses showing historical map extracts on the base of 

their current counterparts [e.g., National Library of Scotland 

(n.d.a) (see Fig. 2, middle) and Geiling and Esri (2013)]. 

A superimposed printing of identical city map sections at 

the present time on one hand, as well as from 1800 on the 

other hand, was produced on behalf of the Landesbetrieb 

Fig. 2  Existing tools to compare historical with current geodata by the University of Minnesota (n.d.) (left), the National Library of Scotland 

(n.d.a) (middle), and the Landesbetrieb Geoinformation und Vermessung Hamburg (2014) (right)
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Geoinformation und Vermessung Hamburg (2014) (Fig. 2, 

right).

Further attempts on automated style conversion between 

various maps have already been made. Neural networks, as 

used, for instance, in self-controlled image tagging or user-

specific product recommendations, could be used for an 

image classification with the help of trained images (Desh-

pande, 2016). This shape recognition may be implemented 

via decision tree, filter-based, or statistical approaches. 

Another possibility of unifying two map styles by inter-

polating their colors and line widths into average values 

is described by Ory et al. (2017). Besides the mentioned 

approaches, several others such as the modification of the 

data’s visual portrayal via Styled Layer Descriptors and 

Symbology Encoding (Christophe et al. 2015, 2016) or the 

recognition of geometries and their spatial relationships 

(Gross 1994, as cited in Liu 2004) still cause problems when 

faced with hand-drawn lines and textures as well as overlap-

ping features.

In terms of an effective extraction of information derived 

from historical maps—on various objects, real locations, or 

metadata—research is overdue. None of the aforementioned 

approaches considers a transfer or derivation of any kind of 

ancillary information. Especially, suggestions for a universal 

approach are missing so that an interoperability between dif-

ferent map styles cannot be given yet (Budig and van Dijk 

2015; Christophe et al. 2016). Also, Field (2018, p. 323) 

confirms that “[…] replicating a[n] historical map with up-

to-date information is an entirely valid approach”. However, 

existing algorithms for extracting semantical information 

from bitmap images like historical maps are insufficient. An 

optimal balance between different ways of representation 

of maps needs to be achieved (Budig and van Dijk 2015; 

Christophe et al. 2016; Leyk and Boesch 2010). Setting out 

a framework to meet these challenges represents a further 

major objective addressed in Sect. 5.1 of this paper.

3  Terminology

3.1  Historical Maps

As different interpretations exist, a historical map in this 

paper describes a reduced and simplified representation of 

early geographic characteristics and structures produced in 

the past (based on Hake et al. 2002).

The boundary between the aforementioned and current 

maps is frequently drawn around the year 1850 (own evalu-

ation, see Sect. 4.3). This estimation may be traced back to 

major developments in the fields of mathematics and tech-

nology in the late 19th century. At that time, cartography 

profited from innovative methods in terms of accuracy such 

as the triangulation using theodolites (Thompson 2017).

The term ‘historical’ is described with reference to past 

events or phenomena as well as to reproductions in historical 

presentations by different dictionaries such as The American 

Heritage dictionary of the English language (Historical 2018) 

and Merriam-Webster (Historical n.d.). Hake et al. (2002) 

characterize maps from former times generally by a great age 

and obsolescence. These are often replaced by newer, edited 

versions and adapted to a modern way of presentation. A more 

blurred boundary between historical and current maps must 

therefore be assumed.

3.2  Semiology

In this study, ‘semiology’ is referred to as the sum of visual 

variables to be perceived, recognized, and differentiated by an 

observer of a map (Ory et al. 2017). To visually match geo-

graphic features between historical and current maps, semiol-

ogy is considered crucial in terms of this project.

Besides an appropriate structure, scale, and generaliza-

tion, it is also its graphical representation contributing to an 

intuitive understanding of a map. The latter mainly consists 

of graphical elements (points, lines, and polygons) as well as 

composite signs (signatures, halftones, diagrams, and fonts) 

representing coded information. Variations in graphical (Hake 

et al. 2002) or rather visual variables (Slocum et al. 2009) 

being applied to a map’s graphical representation serve not 

only an esthetic purpose, but also enable the differentiation of 

qualitative and quantitative contents (Roth 2017).

According to Bertin (1973), visual variables in cartogra-

phy are limited to size, shape, texture, orientation, location, 

color value (brightness), and hue. Morrison (1974) addition-

ally suggests color saturation and arrangement. Due to miss-

ing variables concerning uncertainties, MacEachren (1995) 

supplements crispness, resolution, and transparency (Hake 

et al. 2002; Roth 2017; Slocum et al. 2009).

Geographic features are represented by one or more vis-

ual variables. For a unique distinction and differentiation 

of cartographic content, visual variables such as the color 

black for buildings or rails, green for vegetation, or blue 

for water bodies are utilized (Hake et al. 2002; Larcher and 

Piovan 2018; Ory et al. 2015). In the special case of histori-

cal maps, water bodies for instance are often depicted with 

parallel dashed lines decreasing in their proximity and stroke 

width with an increasing distance as seen from the shore 

(Huffman 2010).

4  User Study

4.1  Aim

With the aim of analyzing present needs and requirements, a 

user study concerning the comparability between historical 
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and current maps was conducted. Considering the following 

key questions, a statistical evaluation was performed:

• What are the major challenges in historical maps and their 

comparison to current counterparts (see Sect. 4.3.1)?

• What are the most common topics in such comparison 

processes (see Sect. 4.3.2)?

• Which explicit map types are (not) suitable for common 

tasks the users are confronted with in their everyday 

work? Which semiological characteristics are stated (not) 

being suitable regarding these tasks for each map type 

(see Sect. 4.3.3)?

In terms of contents, the focus in this study is on geospa-

tial information most comparable to topographic city maps, 

both for recent and ancient analogs. Besides an inquiry for 

general challenges with historical maps and their compari-

son with current counterparts, explicit topographical maps 

representing the city of Hamburg were examined concern-

ing their readability as well as the users’ intuition regarding 

semiological characteristics.

4.2  Setup

As the interpretation of and between historical and current 

maps depends on different experiences from various user 

groups (Groupe μ 1992, as cited in Ory et al. 2015), 58 Ger-

man archivists, librarians, historians, urban researchers, pub-

lishers, curators and similar experts were asked for survey 

participation. Due to the specified requirement of a regular 

study of historical as well as current geodata, they were 

deliberately selected. The interviewed target group should 

therefore be able to read, perceive, and interpret this data.

A pencil and paper questionnaire including brief instruc-

tions was delivered to the respondents by mail. In total, 22 

questions were formulated as predominantly closed and 

semi-open questions. Only few open questions are included 

in the survey. This choice was made to enable a number of 

qualitative evaluations in addition to a quantitative analysis 

of results.

4.3  Results

After completion of the survey, a response rate of 57% 

(n = 31) was achieved. All gained information was 

anonymized, standardized and stored in a database to facili-

tate a statistical evaluation. Due to the small sampling and 

further non-response, a representativity in terms of demog-

raphy (such as age, gender, and occupation group) was not 

possible. As the actual participant group corresponds to the 

desired user group selected by purposive sampling, demo-

graphic criteria are not of primary importance.

4.3.1  Challenges with Historical Maps and Their 
Comparison with Current Counterparts

In juxtaposing historical with current maps, distinct objects 

represent frequent challenges considering their identifiabil-

ity and comparability as well as the derivation of further 

information. All respondents have been faced with these dif-

ficulties at least once in their work routine. In this context, an 

important reason mentioned by some of them are distortions 

caused by cartographic processes or regarding the presented 

state of reality. For half of them, these difficulties are due to 

great semiological varieties.

To facilitate the technical effort, 20% of interviewees use 

web tools such as Klokan’s Georeferencer (Klokan Technol-

ogies GmbH 2017) or similar map viewers to georeference, 

overlay, or view maps side by side. Even more respondents 

manage with Desktop-GIS (37%) or related tools and meth-

ods such as image processing software or they meet their 

needs for an analog comparison (40%). Among the differ-

ent user groups, librarians, archivists, and historians rarely 

make use of existing tools and software for a comparison 

between historical and current maps. Instead, especially 

librarians prefer using historical paper maps in combination 

with printed or digital, georeferenced maps representing a 

current urban image (see Fig. 3). Whereas one quarter of the 

surveyed librarians compared spatial data with each other, 

even none of the archivists do so.

Digital and georeferenced data on present circumstances 

are used almost exclusively by map experts such as cartog-

raphers. They utilize this for a juxtaposition with analog, 

digitized, as well as georeferenced historical data.

4.3.2  Content of Map Comparisons

Regarding the content, more than half of the respondents 

stated that they regularly (at least once a month, see Fig. 4) 

compare certain geoobjects—more precisely buildings 

and roads—between historical and current equivalents. As 

these two object types make up a rough urban structure, they 

seem to be the most relevant features for the majority of 

respondents. On the contrary, changes of water or vegetation 

areas over time as well as accompanying texts are of minor 

interest. In the following course of this project, a focus will 

therefore be placed on the semiological characteristics of 

buildings and roads as well as on their context within the 

urban structure.

4.3.3  Different Semiological Characteristics for Different 
Tasks

With the aid of explicit examples—both showing historical 

and current maps—the interviewees were asked for the most 

appropriate representations concerning various common 
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tasks (see Fig. 5). The tasks include the identification and 

the differentiation of geographic features such as buildings, 

roads, water bodies, and vegetation, as well as the visual 

recognition of an urban structure.

Among current maps, a generally high suitability of the 

representation of OpenStreetMap is noticeable (see Fig. 5, 

example 1). According to the study participants, it represents 

the most appropriate map for all mentioned tasks except the 

identification and differentiation of buildings. Color compo-

sition as well as the line width constitutes the deciding fac-

tors for a quick and intuitive identification of streets, water 

bodies, and vegetation and, in particular, for distinguishing 

different types of roads.

Against expectations, this choice does not seem to depend 

on users’ habits or the familiarity with map services: unlike 

the presentation of OpenStreetMap, Google Maps performs 

poorly for each of the mentioned tasks (Fig. 5, example 5). 

Instead, a local map design emerged as the most efficient 

concerning the identification of buildings and their distinc-

tion between different types (Fig. 5, example 2). In this 

map, differing building types are represented by varying 

texture patterns; furthermore, public buildings clearly dif-

fer from others in color. Labels indicating house numbers or 

abbreviations, to designate, for instance, public institutions, 

appear to be a key component for an intuitive recognition of 

map features. Besides labels, textures as well as the color 

composition of geometries can therefore be seen as major 

semiological elements enhancing the recognition of different 

objects in maps.

Also among the historical maps shown in Fig. 5 (exam-

ples 6–9), the applicability of one representation is salient. 

Being the only colored historical map, the color composition 

of example 6 represents the most appropriate semiological 

component facilitating the perception of different geoob-

jects. Although it might seem that solely water bodies dif-

fer substantially from other features due to their divergent 

color hue, color composition is also considered to be appli-

cable for the identification and differentiation of buildings 

and roads. For buildings, the variance of color values seems 

to be crucial, whereas the decisive factor for roads may be 

solely determined by the high-contrast overall presentation 

of the map. As the presented historical maps—apart from 

example 6—are grayscale images, the perception of their 

geoobjects based on color composition is correspondingly 

considered minimal.

Fig. 3  Share of resources used 

for both historical and current 

maps for their mutual com-

parison by librarians (left) and 

cartographers (right)
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Digitized without
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Fig. 4  Interviewees’ frequencies (relative) of comparing specific features, structures, or content between historical and current maps
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According to the majority of interviewees, the applicabil-

ity of map example 7 for the identification of buildings is 

comparable to the one of example 6. Contributing to a high 

degree of recognizability of roads in the case of example 7 

are rather the labels than the color composition. Further-

more, differences in textures (e.g., between parallel and 

contour hatching, stippling, and blending) and line widths 

are mentioned for an intuitive recognition of buildings and 

streets in map examples 6–8 of Fig. 5.

However, in examples 7–9, the perception of water bodies 

as well as vegetation is hardly feasible as related familiar 

semiology is not assigned. According to human intuition, 

visual variables such as the color green standing for vegeta-

tion and blue for water bodies usually serve to identify the 

appropriate features. This conclusion is also supported by 

the lack of color for vegetation areas in map examples 2 and 

6 in Fig. 5.

As can be seen from example 9 of Fig. 5, an unintuitive 

representation preventing recognizing and distinguishing 

map features may be induced by overlaying grids, missing 

contrast throughout the entire map, as well as insufficient 

labels.

With the aim of explaining a relationship between one 

dependent (e.g., identifying buildings) and several inde-

pendent variables (color composition, line width, texture, 

symbols, and labels), a logistic regression analysis was per-

formed. As results vary considerably, a general statement 

cannot be made regarding the impact of visual variables on 

the probability that one of the mentioned tasks can be per-

formed intuitively.

4.4  Summary

By conducting a first needs assessment among appropri-

ate user groups, major challenges in working with histori-

cal maps could be identified. Also, considerable difficulties 

regarding the comparison process between historical and 

current maps were presented in detail.
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Fig. 5  Map examples of current (top) and historical (bottom) maps 

shown in the user study for an evaluation of their applicability with 

respect to the identification of buildings, roads, water bodies, and 

vegetation, as well as to the differentiation of building types and 

road types in consequence of color composition, line width, texture, 

symbols, and labels (see diagrams). Top, from left to right: (1) Open-

StreetMap contributors; (2) Freie und Hansestadt Hamburg; (3) Esri 

et  al.; (4) ©2018 Microsoft Cooperation ©2018 HERE; (5) ©2018 

GeoBasis-DE/BKG (©2009); Bottom, from left to right: (6) Harvard 

University (n.d.); (7) Terstegge (n.d.); (8) Europeana (n.d.); (9) © 

SLUB/Kartensammlung (2018)
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Firstly, besides perspective distortions or unrealistic pres-

entations, variations in semiology make it difficult to distin-

guish between map objects. To collate former and present 

buildings and roads, the overall appearance of a map seems 

to have a major impact. While contrasting color values best 

serve for demarcating vegetation areas and water bodies, 

additional textures may be helpful to distinguish buildings, 

roads, and their particular types. Labels designating various 

map features seem to be advantageous for their intuitive rec-

ognition predominantly in colorless maps. The distinction of 

map objects such as buildings, roads, vegetation areas, and 

water bodies does not appear to depend on a map’s famili-

arity, but rather on the awareness of visual variables being 

assigned to corresponding objects.

A second lesson—according to actual users such as archi-

vists, librarians, historians, urban planners, cartographers, 

and geographers—is a current lack of helpful tools and 

instruments for an intuitive comparison between historical 

and current maps.

5  Future Research and Conclusion

5.1  Derived Project Concept for Further 
Investigations

Existing concepts solely considering partial aspects of the 

defined problem area (see Sect. 2) shall be optimized to pro-

vide a possible holistic solution. Appropriate approaches to 

facilitate the comparison process between historical and 

current maps are suggested in this section. These will be 

examined and implemented in the further course of the over-

all project.

With the aim of making historical geodata as editable 

and applicable as its current counterpart, several methods 

for feature extraction and classification may be applied in a 

first stage. As a result, geometric shapes (especially lines and 

polygons) can be derived from a historical map and assigned 

to different feature classes (e.g., roads and buildings as well 

as their subgroups), thus improving the information content 

compared to the original bitmap image.

• Similarly to the procedure with satellite imagery, image 
segmentation may be used to separate a bitmap image 

into patches having internally consistent properties (e.g., 

in size, shape, and texture). An object-based image analy-

sis even considers adjacent pixel values to generate and 

classify map features into buildings, roads, vegetation 

areas, and water bodies based on predefined rules (Lobo 

2018). A previous filtering process may be useful to 

reduce noise and stains which frequently exist in histori-

cal maps.

• Corner detectors such as the Harris corner detector fur-

ther enable the identification and distinction of plain sur-

faces, edges, and corners and therefore detect geometric 

features in bitmap images. One advantage of the Har-

ris detector is its independence of scale and orientation 

of individual features (Collins n.d.). Further testing is 

required to determine individual parameters.

• In decision tree-based approaches, fuzzy classifiers con-

tribute to vectorization processes in the course of shape 
recognition. Based on its adjacency to others, the aver-

age belonging of a curve segment can be estimated and 

assigned to classes representing lines, ellipses, or curves 

(Liu 2004, as cited in Chen and Xie 1996).

• For detecting textures of map features, pattern recogni-
tion appears to be useful. The approach of local binary 

pattern, for instance, enables the description of textural 

characteristics of a pixel’s surface in an image. By apply-

ing Gabor filters, differences between neighboring pix-

els and thus between textures can be detected (Prakasa 

2016).

Instead of performing visual analyses, similarity meas-
ures regarding the equality of objects between historical and 

current maps may be used for a matching process. With the 

help of this statistical correlation analysis, map objects are 

divided into elementary geometries representing nodes in 

a graph model. In combination with their relations to each 

other and depending on the relative distance, the most simi-

lar objects may be determined and assigned (Liu 2004, as 

cited in Li et al. 2000; Lladós et al. 2001; Peng et al. 2003).

Finally, the generation of a spatial database is desirable 

to assign former urban images and geoobjects to current 

ones.

In the further course of the project, a generic approach 

will be pursued, thus avoiding restrictions in existing solu-

tions such as the unique applicability due to colored geom-

etries or high-contrast contours. To further reduce limita-

tions (see Sect. 2), an initial noise reduction—originating 

from, e.g., hand drawings or scanning processes of historical 

maps—to a minimum promises an enhanced readability of 

historical maps and will therefore be pursued.

5.2  Conclusion

With the aim of improving the comparison between histori-

cal and current maps, this project addresses a wide spectrum 

of challenges which users have to face in their daily working 

routine. The main issues have been identified with the help 

of a user study.

Visual variables have a significant impact on the identifi-

cation and differentiation of map objects. The homogeniza-

tion of the diverse visual variables of maps (made by varying 

authors applying different production methods in different 



KN - Journal of Cartography and Geographic Information 

1 3

eras) is supposed to improve users’ former comparing pro-

cesses. Color was found to be the variable most appropri-

ate for an intuitive detection of vegetation and water areas. 

Texture, however, turned out to be suited for identifying and 

differentiating buildings and roads. These findings ought to 

be investigated in further research.
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B Automated extraction of labels from large-scale historical maps 

Reference 

Schlegel, I. (2021, June 8-11). Automated extraction of labels from large-scale historical maps [Paper 
presentation]. In P. Partsinevelos, P. Kyriakidis, & M. Kavouras. AGILE GIScience Series, 2. 24th AGILE 
Conference on Geographic Information Science, Chania. Copernicus Publications. https://doi.org/
10.5194/agile-giss-2-12-2021 

Abstract 

Historical maps are frequently neither readable, searchable nor analyzable by machines due to lacking 
databases or ancillary information about their content. Identifying and annotating map labels is seen as a 
first step towards an automated legibility of those. This article investigates a universal and transferable 
methodology for the work with large-scale historical maps and their comparability to others while reducing 
manual intervention to a minimum. We present an end-to-end approach which increases the number of 
true positive identified labels by combining available text detection, recognition, and similarity measuring 
tools with own enhancements. The comparison of recognized historical with current street names produces 
a satisfactory accordance which can be used to assign their point-like representatives within a final rough 
georeferencing. The demonstrated workflow facilitates a spatial orientation within large-scale historical 
maps by enabling the establishment of relating databases. Assigning the identified labels to the geometries 
of related map features may contribute to machine-readable and analyzable historical maps.



 
 

 

  



Automated Extraction of Labels from Large-Scale Historical 
Maps
Inga Schlegela (corresponding author) 

inga.schlegel@hcu-hamburg.de 

aLab for Geoinformatics and Geovisualization (g2lab), HafenCity University Hamburg, Hamburg, Germany 

Abstract. Historical maps are frequently neither 
readable, searchable nor analyzable by machines due to 
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content. Identifying and annotating map labels is seen 
as a first step towards an automated legibility of those. 
This article investigates a universal and transferable 
methodology for the work with large-scale historical 
maps and their comparability to others while reducing 
manual intervention to a minimum. We present an end-
to-end approach which increases the number of true 
positive identified labels by combining available text 
detection, recognition, and similarity measuring tools 
with own enhancements. The comparison of 
recognized historical with current street names 
produces a satisfactory accordance which can be used 
to assign their point-like representatives within a final 
rough georeferencing. The demonstrated workflow 
facilitates a spatial orientation within large-scale 
historical maps by enabling the establishment of 
relating databases. Assigning the identified labels to 
the geometries of related map features may contribute 
to machine-readable and analyzable historical maps. 
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Automatically extracting labels from historical maps is 
not as straightforward as it is the case for current maps 
(Chiang, 2017; Lin and Chiang, 2018). A frequent lack 
of in-depth information, which is generally 
implemented by databases within current maps, impairs 
a simple search or analysis of places, street or building 
names, and other local designations within historical 
maps. As a large part of existing attempts are restricted 
to e.g. a particular cartographic style and therefore not 
transferable to others, detecting text in these scanned 

and often complex maps is an ongoing challenge 
(Nazari et al., 2016). 

The purpose of this study is to demonstrate a universal 
solution for an automated detection and recognition of 
text elements from large-scale ( 1:10,000, Kohlstock 
(2004)) historical maps without the need of making 
major individual adjustments for individual maps. With 
this goal in mind, we have been able to locate and label 
geographical features which, in general, are not 
accessible from historical maps. Besides, a contribution 
to an approximate georeferencing of historical maps 
has been made. 

We present an automated workflow for detecting and 
recognizing labels from historical maps and comparing 
them with current street names. This matching enables 
a spatial referencing of further streets and places so that 
an initial spatial orientation within a historical map is 
possible. The gained information may be useful for 
subsequent database productions or comparisons 
between different maps, e.g. from various periods. 

This paper is structured as follows. In Sect. 2, an 
overview of current challenges and related work 
concerning text extraction from historical maps is 
presented. Section 3 illustrates details on our used data 
and methodology before experimental results of 
individual stages (detection, recognition, and 
comparison of map labels) of our end-to-end approach 
are reported in Sect. 4. Finally, Sect. 5 concludes the 
paper by discussing further potential enhancements and 
future work. 

Compared to current digital maps, a simple scan of a 
historical map represents no more than an ordinary 
bitmap image consisting of a number of pixels, each 
holding a color value. It can be seen as a hybrid of 
similar color regions, textures, and strokes (Ye and 
Doermann, 2015). An automated distinction between 
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text and other map elements such as geometries of 
buildings or roads is considered as major challenge. 

For monochrome historical maps, this differentiation 
cannot solely be based on on color information 
(Iosifescu et al., 2016). The great stylistic variety 
among historical maps and their individual typefaces 
raise a claim for further differentiators when applying 
automated approaches such as machine learning. 
Recurring patterns and shapes, which are utilized e.g. 
in the course of automated face detection or the 
identification of roads for autonomous driving, can 
rarely be found within old maps and their labelling 
(Nazari et al., 2016). Other, technically induced 
drawbacks turning the described issue into a complex 
task are a low graphical quality or perspective 
distortions which are caused by scanning processes, for 
instance. 

The mentioned aspects often cause unsatisfactory 
results when applying (semi-)automated text detection 
and recognition to historical maps. Manual post-
processing becomes necessary as soon as parts of map 
labels have not been identified or a context to similar 
words is missing (Chiang et al., 2020; Chiang and 
Knoblock, 2014). 

Both automated and semi-automated processes aiming 
at the identification of text in historical maps imply a 
series of advantages and drawbacks. With semi-
automated methods a higher recognition rate of a 
greater variety of map content can be achieved, 
whereas, at the same time, laborious manual processing 
is essential. Hence, only a small quantity of maps can 
be processed by such time-consuming approaches. 
Previous research also showed limitations to highly 
specific map types or typefaces (e.g. straight aligned 
and horizontal labels or uniform text sizes) do exist 
(Chiang and Knoblock, 2014). A number of authors 
have suggested the utilization of a Hough transform to 
extract text from images or maps but have not not 
considered curved labels (Fletcher and Kasturi, 1988; 
Velázquez and Levachkine, 2004) or even alphabetic 
characters (Chen and Wang, 1997). Methods employed 
by Goto and Aso (1999) and Pouderoux et al. (2007) 
which identify text in maps based on the geometry of 
individual connected components do not consider 
characters of various sizes. Cao and Tan (2002) made 
use of individual thresholds to detach the black map 
layer consisting of text and contours as well as of 
connected components to differentiate between those. 
Although this is considered a much faster approach 
compared to a Hough transform, their tailor-made size 
filters cannot handle overlaps between text and other 

map features apart from specific line types (Tombre 
et al., 2002). 

An increasing number of studies are based on the early 
involvement of a gazetteer or a comparable database 
available from other sources to match place names with 
those extracted by small-scale maps (Milleville et al., 
2020; Simon et al., 2014; Weinman, 2013). However, 
this so-called geoparsing only works with a 
comprehensive gazetteer and for place names which do 
not shift over time. These rarely exist for historical 
large-scale maps. 

To properly address the mentioned issues, Laumer 
et al. (2020) assigned each pixel either to a map’s 
foreground (resp. labels) or background with the help 
of convolutional neural networks. Within their 
approach, labels, or rather clusters built up from 
interrelated characters, were interpreted, manually 
matched, and corrected by the combined use of 
Google’s Vision API and a local gazetteer. Machine 
learning approaches may enable a universal solution to 
automatically detect and extract text from a variety of 
maps. Although their application requires a large 
amount of input training data it offers the advantage to 
process data without any manual intervention (Chiang 
et al., 2020). With Strabo, Chiang and Knoblock 
(2014) provide a command line tool for detecting text 
within maps which is not only based on color 
differences but also on other characteristics such as the 
similarity of text sizes or distance measures between 
individual characters. Its application may be promising 
when examining monochrome maps. 

Until now, machine learning has not been widely used 
to analyze historical maps. Instead, binarized connected 
components or other bottom-up approaches have been 
applied onto maps to detect labels (Weinman et al., 
2019). So far lacking in the scientific literature, this 
paper addresses an appropriate combination of 
automated text detection and recognition from 
historical large-scale maps with the aim of extracting 
machine-readable information. 

3 Materials and methods 

3.1 Data 

For demonstrating our suggested approach with an 
illustrative example, we chose a large-scale historical 
map of the city of Hamburg from 1841 (exemplary 
extract in Fig. 1). Map features such as buildings, built-
up areas, roads, railroads, stations, drainage, and docks 
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are illustrated (Hamburg, Germany 1853). Due to the 
map’s salient color composition and texture the human 
perception of map objects and their differentiation is 
facilitated (Schlegel, 2019). The dark labels, primarily 
designating streets, squares, and water bodies are 
clearly visible on the bright background but frequently 
connected to or even overlapping textured objects. 

According to general recommendations, a high 
resolution ( 300 dpi) of the scanned input map is ideal 
so that characters are large enough to be readable by 
automatic text recognition tools (Milleville et al., 
2020). With regard to a reduction of computational cost 
and time, an appropriate map subset illustrating as 
many differing map features as possible was chosen for 
further procedure. The input image, as seen in Fig. 1, 
was stored in lossless PNG format. 

 

Figure 1: Subset of Hamburg, drawn under the direction of 
Willm. Lindley, Esqr. C.E. April 1841; engraved by B.R. 
Davies used as exemplary dataset (Hamburg, Germany, 
1853). 

3.2 Text detection 

With the objectives of 

• reducing manual user interaction within the 
entire workflow and 

• increasing the number of true positive labels 
for a subsequent text recognition 

a separation of the map’s text from non-text elements 
was performed using the automatic machine learning 
approach Strabo 1  (Chiang and Knoblock, 2014; 
Weinman et al., 2019). Being based on OpenCV’s 
EAST text detector, Strabo is able to detect 
cartographic labels of different typefaces, sizes, 
orientations, and curvatures and even those overlapping 

                                                           
1 Li et al. (2019) 

with other map elements (Chiang and Knoblock, 2014; 
Tombre et al., 2002). Also, blurred, reflective, or 
partially obscured input images can be processed up to 
a certain point (Rosebrock, 2018a). The open source 
tool implements functions of available Python libraries 
(e.g. NumPy, OpenCV, SciPy, TensorFlow, Matplotlib) 
for vector and image processing, statistical 
computation, machine learning, and visualization. It 
separates a text layer from the rest of an input image 
based on differences in color, text size ratios, and 
appropriate text samples (Chiang and Knoblock, 2014). 
As an output, Strabo supplies a vector dataset including 
rectangular bounding boxes each holding an (raster) 
input image area where text was detected (see upper 
third of Fig. A1 in Appendix). 

3.3 Additional adjustments 

As is the case with many applications, Strabo regularly 
detects only parts of map labels or even omits them 
entirely. Further manual post-processing is necessary 
for these results (Chiang et al., 2020). While avoiding 
an individual editing for each map – whether via pre- 
or post-processing – we focus on a universal solution to 
this issue. Regardless of a map’s apparent condition, 
year of creation, style, or color composition a 
transferability to other similar large-scale maps is 
desirable. 

When working with Strabo we could determine the 
following points which might have prevented an 
adequate detection of labels:  

• Specific label orientation due to the lack of 
corresponding training data (Chiang, 2019). 
As suggested by Tesseract’s (see also 
Sect. 3.4) user documentation, we addressed 
this issue by repeatedly rotating the input 
image (Tessdoc, 2020). Thus, having five 
input images in total (rotated through 0°, 
+45°, +90°, -45°, and -90° resp.), the share of 
true positives of all existing labels throughout 
the map, called recall, could be increased by 
about 50% (see (b) in Fig. 3). As can be seen 
in Tab. 1, this also applies for other maps 
examined. 

• Overlapping map elements such as textures, 
lines, or other labels (see examples in Fig. 2). 
This is assumed to be a main drawback in the 
course of text detection (Abdullah et al., 2015; 
Tofani and Kasturi, 1998). A vast amount of 
existing algorithms operate on the assumption 
that black text is in contrast to different-
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colored features. However, with a fluent 
transition between labels and other map 
elements of the same color their 
differentiation is scarcely possible within 
typically black and white historical maps. Due 
to their occasionally recurring patterns, 
textures are often mistakenly identified as text 
by automated detection processes. Tofani and 
Kasturi (1998), Cao and Tan (2002), Chiang 
and Knoblock (2014), as well as Nazari et al. 
(2016) defined different thresholds based on 
connected components to distinguish between 
text and other map elements. This laborious 
task is certainly not adaptable to a large 
variance of maps. 

 

Figure 2: Overlaps between labels and other map 
elements are supposed to be a major challenge for 
automated text detection. 

These further drawbacks do not or rarely appear within 
our presented map but may be a general challenge for 
text detection: 

• Wide character spacing. Cartographic 
labeling principles indicate a smaller spacing 
between characters compared to words 
(Chiang and Knoblock, 2014; Yu et al., 2017). 
According to Strabo’s specification, the 
horizontal space between two characters must 
be smaller than the largest character so that 
they are connected to one word (Chiang et al., 
2016). This is not the case for e.g. 'Alter Wall' 
within the upper left part of our map subset 
illustrated in Fig. 1. 

• Extraordinarily curved labels. Strabo splits 
labels deviating substantially from a straight 
alignment into smaller parts in favor of an 
enhanced recognition of individual characters 
(Chiang et al., 2016). 

• Differing text sizes within a label. 

• Low graphical quality (Abdullah et al., 2015; 
Yu et al., 2017; Chiang et al., 2016). Efforts to 
emphasize and make use of the map’s whole 
RGB color range by linear contrast stretching 
(normalization) and global histogram 
equalization made only marginal 
improvements concerning the overall label 
detection rate (see (c) in Fig. 3 as well as 
Tab. 1). 

 

Figure 3: Detected text elements: true positives (blue) and false positives (purple). Strabo was applied to the original image 
subset (a), the combination of the original and the rotated input image through +45, +90, -45, and -90 degrees (b), and the 
combination of the original, rotated through +45, +90, -45, and -90 degrees, and enhanced (linear contrast stretching and 
global histogram equalization) input image (c). 
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Table 1. Quality of text detection by Strabo revealed by recall, precision, and f-score. The results are derived from the 
original, original + rotated (through +45°, +90°, -45°, -90°), as well as the original + rotated + enhanced (linear contrast 
stretching and global histogram equalization) input images. 

map (subset) 
number  
of pixels 

recalla precisionb f-scorec 

original map    original + rotated map    original + rotated + enhanced map 

as shown in Fig. 1 1081 x 881 41%  58%  66% 100%  91%  91% 58%  71%  77% 

subset of Fig. 1  468 x 380 34%  56%    92%  86%   50%  68%   

complementary map 1056 x 794 37%  70% 76%  78% 50%  74% 

a  = percentage of correct detected text elements in respect to the total number of existing 

text elements 

b  = percentage of correct detected text elements in respect to the total number of de-

tected elements (Pouderoux et al., 2007) 

c  with 100% indicating perfect recall and precision 

The algorithm developed by Chiang and Knoblock 
(2014) frequently generates multiple bounding boxes 
for individual labels which rather represent an identical 
one. Consequently, those bounding boxes belonging to 
one label overlap each other. Figure 4 illustrates how 
this spatial relation can be used for merging the 
affected bounding boxes with the aim to effectively 
separate off each label from the input image hereafter. 

 

Figure 4: Strabo’s outputted bounding boxes need to be 
merged per label to effectively separate off them from the 
map. 

In view of the aforementioned causes, overlapping 
bounding boxes meeting at least one of the following 
criteria were unified in the order as listed within an 
iterative procedure: 

1. The overlapping area between two bounding 
boxes is larger than 50% of the smaller 
bounding box’ area (Fig. 5 (1)). 

2. The distance between the centroids of two 
overlapping bounding boxes is larger than 1.5 

times the overall average bounding box height 
and, at the same time, the difference between 
their rotation angle is less than 8 degrees 
(Fig. 5 (2)). 

To achieve the desired results, the input data was 
converted into a local, metric coordinate reference 
system before calculating each bounding box’ surface 
area. For criteria (1), the ratio of the overlapping area 
between two bounding boxes to the area of the smaller 
one was determined. The two considered polygons 
were unified into a single one for ratios of at least 50%. 
Preliminary testing showed that an overlap of 50% or 
more indicates an incorrect double detection by the 
algorithm and therefore an identical label. This 
procedure was iterated until all ratios between two 
bounding boxes were less than 50%. 

Using further Python libraries such as GeoPandas, we 
were able to derive the coordinates of each bounding 
box’ centroid. NumPy’s mean() function helped us to 
determine the average of the two shortest side lengths 
over all bounding boxes which was assumed as their 
initial average height. In combination with their 
inclination provided by Strabo and normalized to a 
semicircle covering 0 to 180 degrees, these two 
variables could be used to find cases exceeding or 
falling below the thresholds defined from experience 
for criteria (2). Again, two bounding boxes were 
unified as long as they fulfilled the mentioned 
conditions.
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Figure 5: Criteria contributing to a unification of two bounding boxes: overlapping area >50% of the smaller bounding box’ 
area (1) and centroids’ distance >1.5 times the overall average bounding box height and rotation angle difference <8° (2).

As a result, each label represented on the input raster 
map and being localized by Strabo comprised exactly 
one appropriate bounding box. By applying ArcPy, 
Esri’s Python library for spatial data processing, the 
original input image could therefore be extracted by 
one of these bounding boxes respectively to generate 
individual text image areas. Being exported as 
individual raster files, they were rotated through their 
averaged rotation angle calculated on the basis of their 
original bounding boxes. This procedure was 
implemented to considerably improve the 
preconditions for the subsequent text recognition 
(Chiang et al., 2014). 

3.4 Text recognition 

Available text recognition approaches do rarely achieve 
satisfactory results regarding raster maps so that 
additional steps become necessary (Milleville et al., 
2020). With the help of a preliminary text detection an 
early knowledge about the exact location of text can 
contribute to systematically read content from input 
images such as historical maps. Combining text 
detection and recognition in an end-to-end approach 
not only improves recognition rates but also reduces 
computing time by focusing on text image areas solely 
(Ye and Doermann, 2015; Weinman et al., 2019). 

To convert the detected text image regions into a 
machine-readable format, resp. characters and strings, 
we used the free and open source engine Tesseract 
OCR2 (version 4.1.1) which is considered as one of the 
most accurate tools for optical character recognition 
(OCR) at present (van Strien, 2020). As all labels 
within the utilized map subset are in German, this 
language specification was defined for an improved 
automatic text recognition by Tesseract. Additionally, 
each input image should be considered as a single 
word. The workflow shown in Fig. A2 (see Appendix) 

                                                           
2 Weil et al. (2020) 

starts with an exemplary output from Tesseract for 
further processing, the string 'Fisch'. 

3.5 String similarity 

Given a character string for each detected text image 
area, our aim was to roughly spatially assign them to 
the input map (Fig. 1). To strengthen the recognition 
confidence by retaining the one text string turned right 
way up, Chiang and Knoblock (2013) suggest a 
juxtaposition of recognized and suspicious characters. 
However, neither this methodology nor a comparison 
of similar strings between different maps (such as 
recommended by Chiang and Knoblock (2014)) 
considers an appropriate ground truth. In practice, OCR 
results are rarely precisely identical with a potential 
ground truth. To attain real names of streets and places, 
further reference values are necessary. A great variety 
of existing approaches (e.g. Simon et al. (2014); 
Weinman et al. (2019)) are based on the comparison 
with a regional gazetteer. This is, in some cases, 
available – and therefore efficiently – only for small-
scale maps. We take one step further by comparing all 
recognized strings to an available database 3  holding 
names of current streets and places within the region 
covered by our map example in Fig. 1, the city center 
of Hamburg. As certain street names designate e.g. 
historical events or circumstances and therefore are 
subject to only minor changes over long periods, this 
local geodataset could be used as a comparable 
similarity measure (Hanke, 2014). 

To effectively measure the similarity between two 
strings, namely an OCR output stringh indicating a 
historical street or place on the one hand and a list of 
current street names (stringc) on the other hand, their 
Levenshtein Distance was defined. We were able to 
identify street names which are likely to be identical in 

                                                           
3  Freie und Hansestadt Hamburg, Behörde für 
Wirtschaft, Verkehr und Innovation (2020) 
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historical and recent maps by applying two different 
methodologies with the help of the python library 
fuzzywuzzy, which implements the Levenshtein 
algorithm: 

• ratio computes the number of character edits 
(adding, erasing, and replacing) which have to 
be done to transform stringh to stringc (Yu 
et al., 2017) and 

• partial ratio computes the similarity of the 
shorter substring stringh within parts of the 
longer stringc. 

Here, both measures appeared to be of equal value as 
both individual characters might be recognized 
incorrectly (  ratio) and only parts of strings might be 
identified (  partial ratio). 

The output values are defined in percentage ranging 
from 0 (no similarity) to 100 (identical). Figure A2 (see 
Appendix) gives several output examples including 
their percentage value of accordance for the input 
stringh 'Fisch'. A low score can be an indication of 
either a poor OCR outcome or a great difference 
between the historical and current street names stringh 
and stringc. Additional rules being based on various 
own findings were defined to exclude each stringh from 
further processing having few (<75%) or multiple 
identical matching values for stringc. On the basis of a 
defined threshold of 75%, the street names matching 
those stringh were continued to be used as control 
points for a subsequent georeferencing. 

3.6 Approximate georeferencing 

The dataset3 used for allocating current street names 
helped to perform an initial rough georeferencing of the 
historical map subset. Since each street within the 
mentioned geodataset consists of a variable number of 
linestrings, we defined different rules to find their 
centroids each representing a street’s approximate 
point-like location: When consisting of only one 
linestring, the point at half-length was assumed to 
represent the street’s centroid. For those streets 
comprising two linestrings, the interpolated point at 
half-length over both lines was specified as the 
corresponding centroid. For each street being 
represented by more than two lines, we built the 
centroid of their common rectangular bounding box. 
As the bottom section of Fig. A2 (see Appendix) 
illustrates, these labelled points served as control points 
for a georeferencing via affine transformation. 

4 Experimental results and evaluation 

This section points out the results of our methodology 
as presented in Sect. 3. We primarily conducted tests 
with the map subset shown in Fig. 1 and complemented 
other input as necessary. 

4.1 Text detection 

For the generation of bounding boxes each holding an 
individual text image area Strabo works best with RGB 
input images. Own tests confirmed the findings of 
other authors that there is no difference between 
lossless PNG and JPEG with smallest possible 
compression (at least 93% image quality (Mansurov, 
2018)) using as an input data format (Milleville et al., 
2020; Li et al., 2019). Our results in Tab. 1 reveal that 
the increase of the label detection rate was not as stark 
as that of Wilson (2020) when expanding an image’s 
spatial extent. 

Various challenges arose when working with Strabo. 
Due to their frequently similar visual characteristics, 
the algorithm does not differ between text and similar 
graphical elements such as textures or edges of map 
objects, particularly between those being of the same 
color. Suggested solutions to separate between 
isochromatic text and lines, such as the inclusion of 
connected components, may cause negative effects 
regarding the detection rate (Chiang and Knoblock, 
2014). 

To facilitate further processes – in particular text 
recognition and string similarity – the number of 
detected labels could be increased by own adaptions 
which were already presented in Sect. 3.3. As shown in 
Fig. 3 (b), rotating the input image lead to a perceptible 
increase in the number of correctly found text 
elements. In reference to a ground truth, the recall 
could be improved from 41% regarding the original 
map to 58% after combining it with rotated images 
through +45, +90, -45, and -90 degrees respectively 
(Pouderoux et al., 2007). Table 1 shows that 
examinations with further map subsets revealed an 
improved recall by up to 50% through this procedure. 
Initial image enhancements such as linear contrast 
stretching and global histogram equalization could 
contribute once more to an improved recall of 66% 
when regarding Fig. 1. A slight increase of elements 
falsely detected as text (false positives) and therefore a 
decrease in the overall precision can be observed in 
Fig. 3 (c) as well as Tab. 1. As these did not affect the 
averaged accuracy measure f-score to a high degree, 
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we used the combined input consisting of original, 
rotated, and enhanced images for further processing. 
An accurate localization of all text areas is not 
necessary since the final affine transformation requires 
only three ground control points. 

4.2 Text recognition 

Utilizing the derived and unified bounding boxes, the 
occurrence of text elements within the map could 
precisely be located. This enabled an improved reading 
of labels from the input map, the text recognition. As 
can be seen from Fig. A1 in Appendix, our workflow 
includes an extraction of all text image areas before 

bringing those to a horizontal orientation. Our 
experiences revealed that Tesseract is incapable of 
reading text being rotated 10 degrees and more. 
Recognizing rotated text is an ongoing and still not 
solved challenge in OCR (Ye and Doermann, 2015; Yu 
et al., 2017). However, map labels within the bounding 
boxes might be oriented in two directions. Firstly, right 
side up in a readable form and secondly, upside down, 
rotated 180 degrees. The cropped text image areas were 
consequently rotated through the rotation angle of their 
associated bounding boxes on the one hand and 
additional 180 degrees on the other hand. 

Table 2. Outputs from Strabo and Tesseract OCR as well as their Levenshtein Distance to current street names3 calculated 
with the help of the fuzzywuzzy library. 

Detected label 
by Strabo 

Rotation 
angle 

Rotated by 
rotation angle 

Recognized string  

by Tesseract OCR 

(stringh) 

Ground truth string 

from current street 

names3 (stringc) 

Average 
Levenshtein 

Distance  

 

179° no >Speersort| Speersort 100.0% 

 

1° no Catharıineıl Katharinenfleet 33.5% 

 

179° no I Beichei Siebeneichen 33.5% 

 

178° no chopenstehl Schopenstehl 98.0 % 

 

3° no Nicola; Nieland 31.0% 

 

167° 
no „ame - 0.0% 

yes HTollandısche Holländische Reihe 72.5% 

 

14° 
no ren Wöhren, Cremon 0.0% 

yes ud Hude 33.5% 

 

54° 

no AN - 0.0% 

yes | MARKT Marktweg 33.5% 

 

55° 

no N - 0.0% 

yes Adolphs Br. Adolphsbrücke 84.0% 

 

88° 

no - - - 

yes klopfen markt Hopfenmarkt 87.0% 

 
An appropriate input data pool for an optical character 
recognition by Tesseract OCR was hereby created. As 
the map’s original lossless PNG format performed poor 
for text recognition, all files were transferred in TIFF 
and RGB color mode. Further testing with grayscale 

and binary input images did not show any 
improvement. 

Regarding Tesseract’s output (examples shown in 
Tab. 2), a reasonable number of text strings could be 
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recognized distributed over the entire map. Only minor 
deviations from a manually prepared ground truth 
could be identified for horizontal labels. Similar results 
were also given for further tested input maps. Although 
Tesseract generally assumes a clean, plain input image 
and its model is trained on specific typefaces, 
interfering artifacts such as parts of lines, textures, and 
other map elements did not considerably deteriorate the 
outcomes (Rosebrock, 2018b). 

4.3 Matching to current data 

Several concurring names could be identified between 
historical and current streets and places. After applying 
fuzzywuzzy’s (partial) ratio the previously derived 
centroids (see Sect. 3.3) of Tesseract’s output on the 
one hand and the local geodataset3 including current 
street names on the other hand could be matched in a 
satisfactory manner for our map example (Fig. 1). As 
seen in Tab. 2, the average Levenshtein Distance of 
matching strings such as Adolphsbrücke, Hopfenmarkt, 
Schopenstehl, or Speersort exceeded our defined 
threshold of 75%. We could continue to use those 
labels having high matching rates and a good 
distribution over the raster map. In combination with 
their centroids they served as reference points for a 
subsequent allocation of all remaining streets as well as 
for an initial rough georeferencing of the historical 
map. By assigning street labels to specific locations 
within the map, the meaning and context (semantics) of 
those could be specified (see Fig. 6). 

 

Figure 6: Current names of streets and places spatially 
assigned to the georeferenced historical map. 

 

This study can be understood as a proof of concept for 
an automated end-to-end workflow to extract labels 
from large-scale historical maps. Our findings that 

detection and recognition rates are generally low 
(<80% and <60% on average respectively) are broadly 
consistent with Weinman et al. (2019) and point out 
necessary improvements for machine learning 
approaches (Ye and Doermann, 2015). By combining 
tools addressing text detection, recognition, and string 
similarity with further adjustments we were able to not 
only increase the overall recognition rate but also to 
provide a base for useful ancillary information such as 
the names of streets and places. This may be 
considered a promising aspect of searchable and 
analyzable historical maps. Furthermore, a 
georeferencing, which is frequently lacking for 
historical maps, could roughly be made. For best 
results, those labels having highest similarity rates and 
an appropriate scattering over the map should be 
considered as reference points. A great benefit may be 
a resulting facilitated comparison between different 
maps such as between historical and current ones. 

We demonstrated the possibility of transferring the 
suggested approach to a variety of maps due to 
omitting individual adjustments. Nevertheless, 
disturbing factors such as interfering artifacts from 
building corners, textures, or map grids may occur and 
can therefore still be challenging for different maps. 
Further testing with additional maps might be helpful 
to specify and minimize the sources of disturbance 
more precisely. 

To improve the overall accuracy of the presented 
approach, we suggest connecting identified single 
words to complete map labels. This may be achieved 
by looking closely at the adjacency and similarity of 
rotation angles of detected text image areas. Also, map 
labels covering multiple lines should be considered. 
The certainty of true positives may therefore be 
increased for all substeps within our comprehensive 
approach. 

Future research might continue to use our results to 
label further map features and to assign those to their 
related geometries. The identification of geometries 
such as from streets, buildings, or waterbodies may be 
facilitated by a preceding elimination of all detected 
labels within a map. Segmenting and classifying map 
objects based on their different properties could 
support the establishment of ancillary, informative 
databases and therefore enable the analyzability of 
historical maps. With this kind of feature matching, not 
only further map objects might be identified but also a 
more intuitive comparison between historical and 
current maps would become possible. 
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6 Data and software availability 

All research data and applications produced and 
applied within this publication can be found at 
https://doi.org/10.5281/zenodo.4721174 (Schlegel, 
2021). The repository is structured following Sect. 3 of 
this paper. 

The results were generated using QGIS Desktop 3.16.0 
(approximate georeferencing, Sect. 3.6), the command 
prompt in Windows 10 OS (Tesseract OCR, Sect. 3.4), 
the Linux (Ubuntu 18.04) command line via Windows-
Subsystem for Linux (Strabo, Sect. 3.2), as well as 
several Jupyter Notebooks (additional adjustments, 
Sect. 3.3 and string similarity, Sect. 3.5) written in 
Python. These scripts are available under the GNU 
GPLv3 license. 

The workflow underlying this paper was partially 
reproduced by an independent reviewer during the 
AGILE reproducibility review and a reproducibility 
report was published at 
https://doi.org/10.17605/osf.io/anv9r. 
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Appendix 

 

Figure A1: Workflow from label detection to recognition for a map subset including interposed further adjustments. 
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Figure A2: Workflow for matching historical to similar current street names with the aim to perform a rough georeferencing. 
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Ein holistischer Workflow zur semi-automatisierten Objektextraktion aus großmaßstäbigen 
historischen Karten

Zusammenfassung
Die Extraktion von Objekten aus großmaßstäbigen historischen Karten ist Gegenstand zahlreicher Forschungsprojekte. Um den 

urbanen Wandel im Laufe der Zeit zu untersuchen, bedürfen semi-automatisierte und holistische Ansätze jedoch weiteren Unter-

suchungen. In dieser Arbeit werden Methoden zur objektbasierten Bildanalyse und Vektorisierung auf drei verschiedene histori-

sche Karten angewendet. Mithilfe eines anschließenden Abgleichs sowie der Georeferenzierung eines entsprechenden aktuellen 

Geodatensatzes stellen wir ein Konzept vor, das sowohl die Analyse als auch den Vergleich der wertvollen Informationsquellen 

aus der Vergangenheit erlaubt. Nur geringfügige Änderungen waren notwendig, um den ganzheitlichen Arbeitsablauf auf andere 

großmaßstäbige Karten zu übertragen. Unsere Ergebnisse zeigten, dass die Extraktion und räumliche Zuordnung von Objekten 

wie Gebäude oder Straßen einen Vergleich zwischen Karten verschiedener Zeitalter ermöglichen und somit eine Grundlage für 

weitere historische Analysen schaffen. Im Zuge einer affinen Transformation ergab sich eine maximale Abweichung von 72 m 

zwischen beiden Datensätzen. Die Ergebnisse dieser Studie erleichtern damit die tägliche Arbeit von z. B. Stadtforschern oder 

Historikern. Dennoch sollte berücksichtigt werden, dass die vorgestellte subjektive Methodik spezifisches Fachwissen erfordert.
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1 Introduction

Historical maps are valuable sources when investigating spa-

tial changes over time (Herold 2018). As an essential tool for 

communicating geographic objects and their locations, they 
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are often the only source of information for the understand-

ing of spatio-temporal change (Sun et al. 2021; Kim et al. 

2014). With large-scale maps (approx. > 1:20,000)—espe-

cially “city maps”—we are able to study urban morphology 

(Meinel et al. (2009), as cited in Muhs et al. 2016). Fre-

quently, geographical, political, environmental, and other 

urbanization processes can be backtraced solely by means 

of historical maps.

For the analysis of the urban landscape of the past, it 

is inevitable to make the information from large-scale his-

torical maps accessible. Single map objects may provide 

insights into former names of roads and buildings or their 

evolution over time. But generally, physical scans (bit-

maps) of historical maps are not machine-readable. Manual 

attempts to acquire information from historical maps are not 

uncommon but error-prone, time-intensive, and non-trans-

ferable (Xydas et al. 2022; Chiang et al. 2020; Gobbi et al. 

2019). There is a need for (semi-)automated approaches to 

solve these problems.

In this study, we provide a holistic workflow to not only 

extract objects from large-scale historical maps, but also to 

derive benefits from the entirety of geometric, relational, 

and semantic information. Moreover, our semi-automated 

approach demonstrates how a spatial assignment between 

historical and current maps may be enabled and therefore 

provides a basis for further comparison processes between 

these.

An established strategy used to semi-automatically 

extract objects from historical maps while minimizing the 

reader’s subjective influence starts with image segmenta-

tion, which follows the principles of human perception: 

objects within an image are differentiated due to graphi-

cal variations (e.g., in light intensity, texture, or spatial 

context), artifacts, and deviations. Visually homogeneous 

image areas form so-called segments. By combining object 

segmentation and classification, the concept of geographic 

object-based image analysis (GEOBIA) is able to repro-

duce physically existing objects, like buildings or roads, 

from raster maps (Herold 2018; Hussain et al. 2013; Hay 

and Castilla 2008; Neubert 2005). However, authors agree 

that “there is no single extraction method that can be effec-

tively applied to all different historical maps” (Sun et al. 

2021). This is a complex task and only few studies have 

shown suggestions for further processing and the applica-

bility of their results.

Most research in this field aims at extracting and vec-

torizing geometries from historical maps to make them 

analyzable, but frequently comes with several limitations 

and preconditions. Many studies focus on the extraction of 

a single feature type such as streets (Chiang and Knoblock 

2013; Chiang and Knoblock 2012), river bodies (Gede 

et al. 2020), or different land use classes (Gobbi et al. 2019; 

Zatelli et al. 2019) like forest areas (Ostafin et al. 2017; 

Herrault et al. 2013; Leyk et al. 2006) or wetlands (Jiao et al. 

2020). Others assume homogeneously colored map regions 

(Chiang et al. 2011; Leyk and Boesch 2010; Ablameyko 

et al. 2002), which is rarely true for historical maps. Less 

complex (“binary”) maps containing homogeneously black 

objects or contours on white backgrounds were investigated 

by Xydas et al. (2022), Heitzler and Hurni (2020), Le Riche 

(2020), Iosifescu et al. (2016), Muhs et al. (2016), and Kim 

et al. (2014). But differentiating objects solely based on 

color differences is insufficient especially for widespread 

monochrome historical maps or due to ancient paper texture, 

noise, or dirt on the hand-drawn maps (Jiao et al. 2020; Pel-

ler 2018; Muhs et al. 2016; Arteaga 2013; Leyk and Boesch 

2010). Labels often remain unconsidered in the context of 

object recognition from historical maps as they commonly 

suffer from overlaps or gray-scale values similar to textures 

or contours of other map elements (Heitzler and Hurni 2020; 

Peller 2018). Other authors presume an existing coordinate 

system (Le Riche 2020; Gobbi et al. 2019; Iosifescu et al. 

2016) or a huge stock of training data, which is needed for 

machine learning approaches (Xydas et al. 2022; Heitzler 

and Hurni 2020; Jiao et al. 2020; Gobbi et al. 2019; Zatelli 

et al. 2019; Uhl et al. 2017). Moreover, few studies have 

focused on large-scale but rather small-scale maps (Gede 

et al. 2020; Heitzler and Hurni 2020; Gobbi et al. 2019; 

Zatelli et al. 2019; Loran et al. 2018; Uhl et al. 2017; Muhs 

et al. 2016; Herrault et al. 2013).

As existing research generally focuses on separate pro-

cesses involved in object extraction from historical maps, 

our study suggests a holistic approach composed of extract-

ing, vectorizing, and linking objects. We demonstrate the 

benefits of eliminating and assigning labels for this whole 

process and present applicabilities of the resulting geom-

etries. Because only by considering these techniques as a 

whole, we are able to answer location-related questions on 

the evolution of geographic features and make historical 

maps “accessible to geospatial tools and, thus, for spatio-

temporal analysis of landscape patterns and their changes” 

(Uhl et al. 2017). New qualitative and quantitative analyses 

as well as comparisons to other historical or current geo-

data become possible by searching through and processing 

information derived from historical maps (Gobbi et al. 2019; 

Chiang 2017; Iosifescu et al. 2016). For long-term backtrac-

ing of individual buildings, for instance, shape-based com-

parisons across different maps are useful (Le Riche 2020; 

Laycock et al. 2011).

In this work, we present a semi-automatic solution to 

make large-scale historical maps usable for spatial analysis 

while minimizing time-intensive and laborious manual user 

intervention. Based on our previous findings on the needs 

of users of historical maps (Schlegel 2019) as well as on the 

identification and extraction of map labels (Schlegel 2021), 

we demonstrate the general feasibility of a comprehensive 
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workflow composed of (1) eliminating labels, (2) extract-

ing geometries, (3) vectorizing and refining those, and (4) 

matching and spatially assigning the extracted map objects 

with current ones. Potential future applications, which are 

shown in the further course, may be involving semantic 

information from labels to annotate corresponding map 

features or an adjustment of a map’s visual appearance. 

Prospectively, new databases can be set up and comparative 

studies between different datasets become possible.

2  Literature Review

2.1  Elimination of Labels

Labels are valuable components in historical maps holding 

important metadata. However, text within a map is typically 

seen as a disturbing factor when extracting geometries. Mis-

interpretations in the context of segmentation may easily 

arise due to overlaps, direct adjacencies, or similar color 

values to map elements and structures such as lines or tex-

tures (Heitzler and Hurni 2020; Bhowmik et al. 2018; Chi-

ang 2017). Monochrome maps, in particular, have a reduced 

number of parameters to differentiate between text and other 

elements. However, an initial elimination of text or labels 

from historical maps can be seen as a major advantage for 

further object extraction processes (Gede et al. 2020). Pre-

vious attempts identified labels with the help of text rec-

ognition—subsequent to object recognition and vectoriza-

tion—or by shape recognition algorithms (Iosifescu et al. 

2016). Chrysovalantis and Nikolaos (2020) used binarized 

maps to separate text from other objects (see also Bhowmik 

et al. (2018)). By eliminating small pixel groups, they were 

able to remove letters. A GRASS GIS add-on developed by 

Gobbi et al. (2019) and Zatelli et al. (2019) replaces rel-

evant pixel values by means of low-pass filters within old 

cadaster maps. However, pixels must already be defined as 

“text” in advance. Telea (2004) and Bertalmío et al. (2001) 

suggest different image inpainting techniques, which are 

often applied for image restoration. Missing or damaged 

image regions are filled to create an image without giving 

the viewer a hint of changes. In our testing, these approaches 

caused an unsatisfactory blurring of the input image.

2.2  Object-Based Image Analysis

Many methodologies for (semi-)automated object extrac-

tion from historical maps were demonstrated in recent years 

but proven insufficient for various reasons. For instance, a 

common histogram thresholding or color space clustering 

(Herrault et al. 2013) ignores any spatial context, whereas 

artificial neural networks require an inadequate amount of 

training data (Gobbi et al. 2019).

Chrysovalantis and Nikolaos (2020) used GIS function-

alities to convert a historical multicolor map into a binary 

image and then to extract and vectorize geometries of build-

ings. However, textured or corrupt polygons could not be 

handled and labels were eliminated only partially. A simi-

lar approach was conducted by Iosifescu et al. (2016). By 

combining GIS operations with Python libraries, Gede et al. 

(2020) segmented and vectorized geometries of rivers as a 

function of their color whereas Le Riche (2020) extracted 

buildings from historical maps based on colors and textures. 

Zatelli et al. (2019) and Gobbi et al. (2019) used GIS and 

R to segment and classify features from historical land use 

maps by regarding their colors, sizes, and shapes. Additional 

machine learning techniques were applied by Gobbi et al. 

(2019).

In recent years, deep learning attempts via convolutional 

neural networks (CNNs) “have recently received consider-

able attention in object recognition, classification, and detec-

tion tasks” (Uhl et al. 2017) from historical maps (Jiao et al. 

2020, Heitzler and Hurni 2020, and Xydas et al. 2022). How-

ever, they suffer from major drawbacks. Results from CNNs 

strongly depend on the quality and generally low quantity of 

available training data. Often, these data stocks are created 

manually and solely on the basis of the input bitmap itself, 

which is time-consuming and impedes an applicability.

Originating from the field of remote sensing, geographic 

object-based image analysis may also be applied to scans 

of maps (Hay and Castilla 2008). In the broad field of car-

tography, only few authors use OBIA approaches to cre-

ate new geodata. Whereas Dornik et al. (2016) reproduced 

soil maps from climate and vegetation maps, Kerle and de 

Leeuw (2009) extracted point-based population data from 

paper maps to estimate long-term population growth. Edler 

et al. (2014) applied OBIA to extract and quantify the pres-

ence of roads, buildings, and land use classes and to further 

evaluate the complexity of topographic maps thereby.

In contrast to pixel-wise approaches, OBIA regards not 

only spectral information, but also, e.g., the shape, size, 

or neighborly relations of objects, and is, therefore, much 

closer to human perception. Hence, OBIA is often sug-

gested for object extraction from historical maps with the 

aim to make them machine-interpretable (Blaschke et al. 

2014). Many studies in the field of OBIA focus on maps 

of colors and smaller scales, presuppose a preceding geo-

referencing (Chrysovalantis and Nikolaos 2020; Gede et al. 

2020; Iosifescu et al. 2016) or well-defined shapes of objects 

(Chrysovalantis and Nikolaos 2020; Gobbi et al. 2019; Heit-

zler and Hurni 2020), or disregard intersections between 

map features.
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2.3  Vectorization and Vector Enhancement

As vector data can be better processed and analyzed than 

raster data, a majority of the mentioned authors proceed with 

a vectorization of extracted map objects. Brown (2002) and 

Arteaga (2013) use specific software tools to, respectively, 

vectorize the outlines of geologic structures and buildings 

from historical maps. Vectorization tools are also provided 

within ArcGIS, GRASS GIS (Gede et al. 2020), and the 

GDAL library (Jiao et al. 2020).

To purge vectorized objects, further simplification pro-

cesses may follow. Multiple software and tools, including 

eCognition, QGIS, ArcGIS (Godfrey and Eveleth 2015), 

SAGA GIS (Gede et  al. 2020), R (Arteaga 2013), and 

Python libraries, implement pre-built functions to smooth 

or simplify lines or polygons and to remove outliers, spikes, 

and other artifacts.

2.4  Object Matching

For the direct comparison of vector objects from different 

maps from various times, distance and similarity measures 

may be promising (Xavier et al. 2016). Matching geometries 

between different inputs is frequently performed on the basis 

of shape or spatial similarities (Tang et al. 2008) or identical 

attribute values (Frank and Ester 2006). However, semantic 

similarity approaches are not feasible as scanned historical 

maps usually hold no ancillary information. Even if names 

of roads or buildings were available—e.g., by a preceding 

text recognition—they would need to be assigned to their 

corresponding geometries.

When analyzing geometric relations, such as overlapping 

areas or distance measures (e.g., Euclidian or Hausdorff dis-

tance), only relative distances between objects are consid-

ered. This technique is useless when comparing not yet geo-

referenced datasets (Xavier et al. 2016). Region-based shape 

descriptors (e.g., area, convex hull, Moment or Grid descrip-

tor, see Ahmad et al. (2014)) regard all pixels within a shape 

and may therefore be promising for a comparison between 

identical real-world objects from different inputs. But due 

to uncertainties, they are rather considered complementary 

matching approaches. Additional similarity measures are 

necessary (Xavier et al. 2016). By regarding the spatial rela-

tionship between objects, Stefanidis et al. (2002) quantified 

their distances and relative positions. Samal et al. (2004) and 

Kim et al. (2010) consulted third objects to create an overall 

geographic context. Also, Sun et al. (2021) regarded spatial 

relationships by linking identical real-world objects from 

different historical maps. However, their knowledge graph 

approach presupposes the existence and assignment of labels 

to their corresponding geometries.

3  Data

For a proof of concept of our suggested methodologies, a 

large-scale (~ 1:11,000) historical map from the middle of 

the nineteenth century was chosen, which has already been 

object of research within related studies (Schlegel 2019, 

2021). The original non-georeferenced and undistorted 

version of the map scan was cropped to a smaller extent 

(~ 1000 × 800 m in reality) for reasons of runtime compres-

sion within all processes. No map projection is known. The 

map subset in Fig. 1 shows the city center of Hamburg with 

blocks of buildings, roads, and water areas. Apart from sub-

sequently colorized water areas, the map is drawn in black 

and white. Many data suppliers provide their raster scans 

with a resolution of 300 ppi which is considered adequate for 

object extraction purposes (Pearson et al. 2013). Lower pixel 

densities induce blurring and pixelation, whereas higher val-

ues tend to highlight interfering artifacts from, e.g., folds in 

paper, discolorations, or smudges (Peller 2018). We contin-

ued to work with the TIFF format (without compression) as 

it is lossless concerning the image’s original pixel values 

(Gede et al. 2020).

To demonstrate the transferability of the workflow, two 

more large-scale historical maps covering the same spatial 

area were used in the further course (see Fig. 9a, b). They all 

differ in their visual appearance and complexity in terms of 

contrasts, textures, or the existence of labels and gridlines.

For comparing the described data to a current coun-

terpart, official vector datasets including recent polygonal 

buildings (Landesbetrieb Geoinformation und Vermessung 

2022) and line-type roads (Behörde für Verkehr und Mobil-

itätswende (BVM) 2020) were used.

4  Object Extraction

4.1  Preparation for the Elimination of Labels

As similar color values and overlaps between labels and 

other map objects impede a clear discriminability, an initial 

elimination of labels designating real-world objects signifi-

cantly contributes to a facilitation of object recognition pro-

cesses. We suggest to make use of the output from previous 

label detection attempts (see Schlegel (2021)): vector bound-

ing boxes comprising text image areas, which can be seen 

in Fig. 1. An exemplary text image area is shown in Fig. 2a. 

With the aim to eliminate its content from the map, it was 

initially cropped by means of its original bounding box (see 

Fig. 2b) and rotated to the horizontal by its angle of align-

ment (Fig. 2c)—calculated by the used text detection tool 

Strabo (Li et al. 2018; Chiang and Knoblock 2014). How-

ever, these text image areas do not only include characters, 
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but also edges of buildings, which is an outgrowth of Strabo 

(see upper margin in Fig. 2c). This is counterproductive 

within the subsequent step of building segmentation as these 

image areas were supposed to be entirely eliminated from 

the map. Thus, building edges would become distorted. To 

retain these important edges, all pixels within a bounding 

Fig. 1  Map subset showing the city center of Hamburg (Harvard Map Collection, Harvard College Library et al. (n.d.)) with bounding boxes 

containing labels produced by a previous text detection

Fig. 2  Steps for separating building edges from labels shown with an 

exemplary dataset: a input map with bounding box containing text 

image area, which then was b cropped, c aligned horizontally, and d 

converted into a binary as well as e a three-class mask. The f result-

ing bounding box excluding building edges was g turned back to its 

original orientation
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box were differentiated by text and parts of buildings. A 

user-defined thresholding helped to generate a binary mask 

consisting of dark “foreground” and bright “background” 

pixels (see Fig. 2d). A further “foreground” differentia-

tion was needed to separate building edges from text pix-

els. However, similar color values, overlaps, and smooth 

transitions between text and buildings were challenging. 

For reclassifying former “foreground” into either “text” or 

“building edge” pixels, multiple thresholds and conditions 

had to be applied (Fig. 2e). As labels designating roads most 

commonly run parallel to nearby building edges, this step 

was performed row-wise. As Fig. 2f indicates, all pixels rep-

resenting “text” and “background” were combined and vec-

torized. The resulting polygonal bounding box was turned 

back by its initial rotation angle (see Fig. 2 g) and then used 

within the following object extraction steps.

4.2  Object Detection and Recognition

To detect homogeneous image regions and extract objects 

such as buildings or water areas from large-scale historical 

maps, we used object-based image analysis. In contrast to 

pixel-based approaches (e.g., Maximum Likelihood, Cluster-

ing, or Thresholding), which only regard spectral differences 

between pixels, OBIA generates image objects also based 

on common textures, shapes, context, etc. and is, there-

fore, more suitable for historical maps with limited spectral 

information and heterogeneous appearances (Blaschke et al. 

2014; Hussain et al. 2013).

As none of the many free and open source packages 

available for semi-automated feature extraction produces 

comparable results, we made use of the proprietary soft-

ware eCognition Developer 10.2 to generate GIS compat-

ible data from a historical map via OBIA (Kaur and Kaur 

2014). eCognition converts user-defined rule sets—built-up 

from functions, filters, statistics, etc. for image segmentation 

and classification—into machine-readable code. These con-

catenations of algorithms can be easily transferred to other 

images (Trimble Inc. 2022).

As Fig. 3a indicates, a first rough differentiation between 

dark (foreground) map features (e.g., buildings and labels) 

and the map’s bright background (water areas, roads, and 

places) was enabled by thresholding the input TIFF. The 

content of the labels’ bounding boxes, as shown in Fig. 2f, 

was simply classified as “background” and could therefore 

be eliminated (see Fig. 3b). The detection of further map 

objects is therefore significantly facilitated on the one hand 

and building edges remain unaltered on the other hand.

To extract contours of buildings, an edge detector was 

applied to the image. The building texture’s repeating pattern 

could be detected by means of a gray-level co-occurrence 

matrix—which measures the vertical invariance of adjacent 

pixel pairs—and analyzed by texture descriptors (Chaves 

2021; Trimble Inc. 2021). Regarding the original map in 

Fig. 1, public buildings (e.g., the townhall or churches) have 

a significantly darker texture and could, therefore, clearly 

be differentiated from other buildings based on their gray 

values. Water areas were identified by thresholding the RGB 

blue channel as well as applying supplementary texture 

descriptors to avoid false positives.

4.3  Vectorization

Generally, OBIA results in raster files containing individual 

image objects, subdivided into predefined single classes. For 

further processing and analysis purposes, a vectorization of 

this data is inevitable. Based on experiences of Iosifescu 

et  al. (2016) and Arteaga (2013), we applied GDAL’s 

polygonize function to perform a raster-to-vector conversion 

Fig. 3  Foreground objects separated from the map’s background a before and b after eliminating labels



KN - Journal of Cartography and Geographic Information 

1 3

for each map class. Several functions to simplify and smooth 

the vectorized map features, to close inlying minor gaps, 

and eliminate small isolated polygons were compiled within 

an end-to-end Python script. This way, interfering artifacts 

(e.g., islands, protrusions, or spikes) stemming from an 

imprecise segmentation or undetected labels could be han-

dled. The resulting polygons representing (public) buildings 

and water areas are shown in Fig. 4 and can be processed 

within future analysis operations.

5  Linking Historical and Current Datasets

Compared to previous studies dealing with object extrac-

tion from historical maps, we go one step further and pre-

sent an exemplary way of how qualitative and quantitative 

evaluations of long-term changes within a cityscape may 

be practically enabled. We therefore spatially assigned a 

more recent vector dataset to the historical counterpart 

as shown in Fig. 7. Our aim was to automate this coarse 

georeferencing process as far as possible. Due to changing 

names of roads and buildings over time, the lack of in-

depth information, or simply imprecise scales, distances, 

and directions within historical maps, we used the previ-

ously extracted geometries for georeferencing purposes 

(Rumsey and Williams 2002). As can be seen from Fig. 5, 

churches and other municipal buildings still exist over time 

and, beyond that, do not substantially change their basic 

shape and geographic location over time. Therefore, their 

object shapes could be matched and used for the definition 

of control points in the further course of georeferencing 

(Skopyk 2021; Havlicek and Cajthaml 2014).

5.1  Shape Matching

To define matching georeferencing control points between 

the historical and current dataset, identical real-world objects 

are to be identified. We, therefore, measured the shape simi-

larity between the extracted public buildings shown in Fig. 5 

(Sun et al. 2021; MacEachren 1985). A matching based on 

Fig. 4  Vectorized and revised features of the historical map
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spatial or semantic (attribute-based) similarities was imprac-

tical due to the lack of a coordinate system as well as further 

information concerning the historical map.

As Fig. 5 indicates, a side-by-side comparison between 

geometries of public buildings extracted from the historical 

map on the one hand and the official vector dataset contain-

ing current buildings on the other hand was performed. We 

implemented a matching of their shapes based on their Inter-

section over Union (IoU). After adjusting the aspect ratios 

of corresponding counterparts via rectangular bounding 

boxes (“envelopes” (Esri 2022)), their respective deviations 

could be quantified via IoU. As can be seen from Fig. 6, a 

building geometry and its envelope together form a binary 

mask—consisting of the values 1 (building geometry) and 0 

(envelope). A final superimposition of these masks helped to 

determine their overlapping area (intersection) proportion-

ally to their common area (union) (see Fig. 6). All “building” 

pixels with a value of 1 were considered for the IoU cal-

culation, which was conducted with the help of Python’s 

numpy library. Table 1 summarizes the IoU results for all 

detected public buildings continued to use for georeferenc-

ing purposes.

5.2  Georeferencing

5.2.1  Method Overview

The centroids of those geometries with the closest matches 

(see highlighted cells in Table 1) were defined as con-

trol points for a semi-automated, rough georeferencing 

between the historical and current dataset. To preserve 

the objects’ shapes and to keep spatial deformations to a 

minimum within the historical data, an affine transforma-

tion of all current buildings and roads was conducted. This 

Fig. 5  Vectorized public buildings (churches and townhall) from the historical map (upper row) and their counterparts from the current dataset 

(bottom row)

Fig. 6  Intersection over Union between the historical St. Petri Kirche and a its current counterpart as well as b the current St. Katharinen Kirche. 

The aspect ratio of the geometries’ envelopes was adjusted to one another, respectively
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was done via QGIS Vector Bender (Dalang 2019) using 

the three matching object pairs highlighted in Table 1 as 

well as Fig. 7. In our test case, only three control points 

with sufficient pointing accuracy could be found—such a 

small number is quite typical for historical maps. However, 

if available, a larger quantity of control points is advisable 

Table 1  Numerical results from Intersection over Union between historical and current buildings’ geometries

Historical map 
St. Katharinen 

Kirche 
St. Petri 
Kirche Rathaus 

Current 
dataset 

St. Katharinen Kirche 83,9% 74,9% 45,0% 
St. Petri Kirche 79,3% 84,4% 43,1% 

Rathaus 47,5% 45,9% 58,5% 
St. Jacobi Kirche 82,1% 80,2% 42,6% 

Mahnmal St. Nikolaia 54,0% 49,8% 26,1% 
aThe St. Jacobi Kirche was not classified as public building by eCognition whereas 
the (Mahnmal) St. Nikolai was reconstructed in another city district after being mainly 
destroyed during World War II and leaving only its tower until today (Claussen n.d.). 

a The St. Jacobi Kirche was not classified as public building by eCognition whereas the (Mahnmal) St. Nikolai was reconstructed in another city 

district after being mainly destroyed during World War II and leaving only its tower until today (Claussen n.d.)

Fig. 7  Georeferenced current buildings and roads based on the centroids of the highlighted St.-Katharinen-Kirche, St.-Petri-Kirche, and Rathaus
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to benefit from over-determination for the transformation 

process. Figure 7 shows that a georeferencing between 

historical and current geodata gives the chance to directly 

compare their contents and, thus, to evaluate changes 

within an area over time (Iosifescu et al. 2016).

5.2.2  Error Estimation

For a minimum of transformation bias, it is generally rec-

ommended to evenly spread georeferencing control points 

throughout the input (Clark and MacFadyen 2020). We, 

therefore, evaluated affine transformation results using 

alternative control points. In Table 2, the resulting offsets 

between the two datasets are quantified for three different 

cases. Case a) represents the initial georeferencing with 

centroids of three public buildings used as control points, 

as illustrated in Fig. 7. In case b), the upper right centroid 

(St.-Petri-Kirche) was replaced by the one of another public 

building located rather at the edge of the input (St.-Jacobi-

Kirche, see right margin in Fig. 7), whereas in case c), dis-

tinct crossroads close to the map’s edges provided an opti-

mum distribution of control points. Due to missing control 

points in the lower left image area, cases a) and b) resulted 

in greater deviations compared to c) (see Table 2). However, 

a visual inspection revealed only minor differences between 

the three approaches. In view of our objective, which was to 

roughly locate current map features and to enable a visual 

comparison of these with their historical counterparts, all 

three approaches delivered satisfactory results.

5.3  Geographic Context

To further assess the quality of the chosen control points, 

their geographic context was regarded. Based on the model 

from Samal et al. (2004), a contextual similarity between 

real-world matching map features was exemplarily com-

puted for case a). Figure 8 shows an example of how a 

proximity graph—connecting the centroids of four build-

ing geometries with the one of a known geometry from 

5.1—was built for each dataset. The offset between the two 

overlaying datasets could then be expressed by the length 

and angle of displacement between corresponding cen-

troids (see Table 3). The largest deviations of up to 1.8 cm 

(72 m in reality) and 3.4 cm (~ 34 m) on average between 

Table 2  Average of absolute offset, corresponding standard deviation, 

and RMSE between current, spatially assigned and historical refer-

ence data

The deviations were calculated based on the absolute distances 

between unambiguously matching crossroads. Unit: meters

Mean offset Standard devia-

tion

Root mean 

square 

error

Case a 359 439 37

Case b 275 386 29

Case c 180 278 17

Fig. 8  Exemplary proximity 

graph with displacement vectors 

between historical and current 

data

Table 3  Absolute offsets between historical and georeferenced cur-

rent data, expressed by the displacement vectors’ length and angle 

shown in Fig.  8. The real lengths were derived from the historical 

map’s original scale (Hamburg Feet)

Central building Vector # Length Angle (°)

Reality (m) Map (cm)

St. Katharinen 1 72.0 1.8 − 56.6

2 11.6 0.3 − 105.8

3 24.7 0.6 − 7.6

4 30.6 0.7 16.1
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historical and georeferenced current dataset deemed to be 

reasonable in view of our application case. 

6  Applicability of the Object Extraction 
Workflow

The following sections demonstrate in an exemplary way the 

transferability of the object extraction workflow described in 

4.2 by means of two more historical map subsets illustrating 

the same spatial extent of the city of Hamburg (hereinafter 

named as “map A” and “map B”, see Fig. 9a and b, respec-

tively). Minor changes had to be conducted to achieve opti-

mum results for the two different maps.

6.1  Map A

Rough building structures could be identified when apply-

ing the OBIA workflow to the label-less map A, illustrated 

in Fig. 9a. However, surface-filling geometries were not 

detected so that single processing steps had to be modified 

and added. For instance, to detect the conspicuous hatching 

of building geometries, a simple line detection algorithm 

was implemented. Water areas could be identified based 

on their outstanding hatching pattern consisting of isolated 

dashes. Small gaps were filled and object contours were 

closed with the help of morphological closing, which avoids 

expanding the segmented objects (Chiang et al. 2014; Gede 

et al. 2020). The resulting classified image objects can be 

seen in Fig. 10a.

Fig. 9  Alternative input maps by a Sammlung Christian Terstegge (n.d.) and b Harvard Map Collection, Harvard College Library et al. (2008)

Fig. 10  Segmentation results by the use of the adjusted workflows for a map A and b map B
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6.2  Map B

Due to its monotonous appearance, a straightforward appli-

cability of the workflow described in Sect. 4.2 was not fea-

sible for map B. The dark contours of building objects were 

extracted by means of thresholding so that their enclosed 

textures could simply be classified as buildings as well. Also, 

water areas could be identified by regarding their distinctive 

texture. Labels were differentiated and classified based on 

their neighborly relations to buildings and the maps’ back-

ground (roads and places), respectively. As can be seen from 

Fig. 10b, these relations were not unambiguous in each case.

The map objects’ quality highly depends on the map’s 

complexity. With a greater degree of complexity, OBIA 

results became less satisfying. Apart from visual overload, 

further challenges may impede a segmentation of historical 

maps:

• Stains, folds, and tears in the maps’ original material,

• detailed map objects and symbols (e.g., roofs of build-

ings, trees, or blades of grass),

• heterogeneous or absent textures, or

• overlaps between labels and other map features.

7  Potential Future Applications

With the geometries resulting from the workflow described 

in chapters 4 and 5, valuable analysis and comparison 

processes concerning urban morphological developments 

become possible. According to a preceding user study 

(Schlegel 2019), comparisons between historical and cur-

rent maps mainly relate to buildings and roads as well as 

general transformations in the urban structure. Figure 11 

shows two potential use cases: Users may select a his-

torical building whilst, in the background, an intersection 

algorithm finds appropriate current buildings and outputs 

related information such as its name or area (see Fig. 11a). 

Alternatively, current road names might be queried. By 

selecting a historical road section, the current road name 

may be returned from a database using the intersection 

area between the bounding box of the former and the cor-

responding line feature of the latter (see Fig. 11b).

Fig. 11  Exemplary use cases: comparing a historical with a a current building and b a current road section by selecting a historical feature. 

Based on their intersection area, related information is returned from a corresponding database



KN - Journal of Cartography and Geographic Information 

1 3

8  Discussion

For a considerable enhancement of object extraction pro-

cesses from historical maps, a preceding elimination of 

labels is advantageous. Based on the results of a text detec-

tion tool used in the course of previous research (Schlegel 

2021) and assuming that labels run parallel to roads and 

edges of buildings, we were able to eliminate straight text.

As gray values of labels often do not differ significantly 

from the ones of adjacent map objects such as contours or 

textures of buildings, their existence complicates efforts 

towards the extraction of geometries from a historical map. 

In the present work, text was separated from features of 

similar color by thresholding techniques so that a more 

precise object extraction became feasible. This procedure 

is irrespective of any preceding map enhancements or 

georeferencing and efficient especially for monochrome 

historical maps having a heterogeneous background. In 

contrast to other studies, our suggested approach neither 

mistakenly removes other map features nor substitutes 

original pixel values. Nevertheless, an optimization of 

the preceding text detection should be undertaken so that 

all map labels are considered for elimination in future 

research.

A main purpose of this study was to pave the way for a 

straightforward comparison of large-scale historical maps 

with recent counterparts. Vectorized and georeferenced 

map features allow their analyzability and searchability 

in the further course. With the help of enhanced object-

based image analysis as well as subsequent vector refine-

ment and linking processes, we address this issue within a 

semi-automated workflow. By applying OBIA approaches, 

not only spectral, but also textural, shape-dependent, or 

contextual characteristics of map objects are considered 

for their identification. Available techniques from image 

and vector processing contributed to an adequate quality of 

extracted features and to make a large-scale historical map 

analyzable and comparable. This is inevitable for investi-

gating urban transformations over time. On the downside, 

specific software, knowledge, and, in some instances, sub-

jective and individual solutions are required, especially 

within the object extraction domain. Consequently, a fully 

automated workflow is not realizable.

A critical view on the results shows that these strongly 

depend on a maps’ complexity and the quality of the 

underlying bitmap. All processing steps applied to a bit-

map are affected by its color depth, format, and resolution 

(Gede et al. 2020). Further improvements of the suggested 

methodology may involve a consideration of additional 

maps, e.g., showing other cities, and algorithms.

By roughly georeferencing large-scale historical with 

current maps and putting these on top of one another, a 

direct comparison of their individual objects is facilitated. 

We suggest to define georeferencing control points based 

on the shape and context similarities of map features 

such as public buildings. It is assumed that these build-

ings were already classified as such from preceding object 

extraction. To measure the similarity of objects between 

a historical and a current dataset, two methodologies are 

presented. It was found that corresponding geometries of 

churches have a high similarity as, usually, their shapes 

remain unchanged over centuries. When comparing these 

for matching purposes, both maps need to have a simi-

lar scale and degree of generalization. However, shape 

similarities are not invariably unambiguous. Distortions 

induced by adjusting the geometries’ aspect ratios may 

lead to biased results. Further similarity measures, such 

as the geographic context, are therefore necessary. The 

consideration of the geographic context of objects proved 

beneficial for a quality control of the control points defined 

for the final georeferencing. Its outcomes depend on the 

subjective choice of reference points. Finally, georefer-

encing current with historical maps does not necessarily 

improve their accuracy. Depending on the particular appli-

cation, it must be noted that shapes and lines, distances, 

or proportions may be distorted. Regarding our objective 

of comparing historical map content, the presented rough 

georeferencing proved to be satisfying for potential future 

applications.

9  Conclusion and Outlook

A major purpose of this study was to present the feasibil-

ity of a holistic workflow. Within an end-to-end solution, 

semi-automated approaches to extract and vectorize features 

from a large-scale, mainly monochrome, historical map were 

developed and applied for the purpose of providing knowl-

edge, of analyzability (e.g., in GIS), and comparability. A 

concluding georeferencing enabled a straightforward com-

parison to current counterparts and, in the further course, 

to understand changes within a cityscape over time. A sig-

nificant contribution could be made by previously eliminat-

ing map labels and separating them from other objects to 

improve their extraction results.

It was shown that a rough georeferencing is sufficient 

for the juxtaposition of historical and current map objects. 

With the presented methodologies, an appropriate spatial 

allocation without distorting map objects was achieved. The 

present findings confirm that each map has an individual 

need for adaption, but only minor adjustments are required 

to apply the suggested approaches to maps having a similar 

degree of complexity.

Overall, our results make a major contribution to extract 

valuable information from large-scale historical maps by 
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combining approaches for text detection (see Schlegel 

(2021)), the elimination of labels, OBIA, raster-to-vector 

conversions, and an approximate spatial referencing based 

on similarity measures. We thereby provide a starting 

point for gaining new insights from large-scale historical 

maps. It should be emphasized that this research serves as 

a demonstration of a feasible holistic workflow paving the 

way for the analyzability of large-scale historical maps as 

well as for their comparison to current counterparts. This 

was implemented by means of an initial example case. 

In terms of future research, it would be useful to extend 

the current findings by examining additional maps. Also, 

further considerations should include the practicabil-

ity of comparison analyses as illustrated exemplarily in 

chapter 7.
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