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Abstract
The extraction of objects from large-scale historical maps has been examined in several studies. With the aim to research urban 
changes over time, semi-automated and transferable holistic approaches remain to be investigated. We apply a combination 
of object-based image analysis and vectorization methods on three different historical maps. By further matching and georef-
erencing an appropriate current geodataset, we provide a concept for analyzing and comparing those valuable sources from 
the past. With minor adjustments, our end-to-end workflow was transferable to other large-scale maps. The findings revealed 
that the extraction and spatial assignment of objects, such as buildings or roads, enable the comparison of maps from different 
times and form a basis for further historical analysis. Performing an affine transformation between the datasets, an absolute 
offset of no more than 72 m was achieved. The outcomes of this paper, therefore, facilitate the daily work of urban researchers 
or historians. However, it should be emphasized that specific knowledge is required for the presented subjective methodology.

Keywords Historical maps · Object extraction · Object-based image analysis (OBIA) · Map comparison · Vectorization · 
Georeferencing

Ein holistischer Workflow zur semi-automatisierten Objektextraktion aus großmaßstäbigen 
historischen Karten

Zusammenfassung
Die Extraktion von Objekten aus großmaßstäbigen historischen Karten ist Gegenstand zahlreicher Forschungsprojekte. Um den 
urbanen Wandel im Laufe der Zeit zu untersuchen, bedürfen semi-automatisierte und holistische Ansätze jedoch weiteren Unter-
suchungen. In dieser Arbeit werden Methoden zur objektbasierten Bildanalyse und Vektorisierung auf drei verschiedene histori-
sche Karten angewendet. Mithilfe eines anschließenden Abgleichs sowie der Georeferenzierung eines entsprechenden aktuellen 
Geodatensatzes stellen wir ein Konzept vor, das sowohl die Analyse als auch den Vergleich der wertvollen Informationsquellen 
aus der Vergangenheit erlaubt. Nur geringfügige Änderungen waren notwendig, um den ganzheitlichen Arbeitsablauf auf andere 
großmaßstäbige Karten zu übertragen. Unsere Ergebnisse zeigten, dass die Extraktion und räumliche Zuordnung von Objekten 
wie Gebäude oder Straßen einen Vergleich zwischen Karten verschiedener Zeitalter ermöglichen und somit eine Grundlage für 
weitere historische Analysen schaffen. Im Zuge einer affinen Transformation ergab sich eine maximale Abweichung von 72 m 
zwischen beiden Datensätzen. Die Ergebnisse dieser Studie erleichtern damit die tägliche Arbeit von z. B. Stadtforschern oder 
Historikern. Dennoch sollte berücksichtigt werden, dass die vorgestellte subjektive Methodik spezifisches Fachwissen erfordert.

Schlüsselwörter Historische Karten · Objektextraktion · Objektbasierte Bildanalyse (OBIA) · Kartenvergleich · 
Vektorisierung · Georeferenzierung
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1 Introduction

Historical maps are valuable sources when investigating spa-
tial changes over time (Herold 2018). As an essential tool for 
communicating geographic objects and their locations, they 
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are often the only source of information for the understand-
ing of spatio-temporal change (Sun et al. 2021; Kim et al. 
2014). With large-scale maps (approx. > 1:20,000)—espe-
cially “city maps”—we are able to study urban morphology 
(Meinel et al. (2009), as cited in Muhs et al. 2016). Fre-
quently, geographical, political, environmental, and other 
urbanization processes can be backtraced solely by means 
of historical maps.

For the analysis of the urban landscape of the past, it 
is inevitable to make the information from large-scale his-
torical maps accessible. Single map objects may provide 
insights into former names of roads and buildings or their 
evolution over time. But generally, physical scans (bit-
maps) of historical maps are not machine-readable. Manual 
attempts to acquire information from historical maps are not 
uncommon but error-prone, time-intensive, and non-trans-
ferable (Xydas et al. 2022; Chiang et al. 2020; Gobbi et al. 
2019). There is a need for (semi-)automated approaches to 
solve these problems.

In this study, we provide a holistic workflow to not only 
extract objects from large-scale historical maps, but also to 
derive benefits from the entirety of geometric, relational, 
and semantic information. Moreover, our semi-automated 
approach demonstrates how a spatial assignment between 
historical and current maps may be enabled and therefore 
provides a basis for further comparison processes between 
these.

An established strategy used to semi-automatically 
extract objects from historical maps while minimizing the 
reader’s subjective influence starts with image segmenta-
tion, which follows the principles of human perception: 
objects within an image are differentiated due to graphi-
cal variations (e.g., in light intensity, texture, or spatial 
context), artifacts, and deviations. Visually homogeneous 
image areas form so-called segments. By combining object 
segmentation and classification, the concept of geographic 
object-based image analysis (GEOBIA) is able to repro-
duce physically existing objects, like buildings or roads, 
from raster maps (Herold 2018; Hussain et al. 2013; Hay 
and Castilla 2008; Neubert 2005). However, authors agree 
that “there is no single extraction method that can be effec-
tively applied to all different historical maps” (Sun et al. 
2021). This is a complex task and only few studies have 
shown suggestions for further processing and the applica-
bility of their results.

Most research in this field aims at extracting and vec-
torizing geometries from historical maps to make them 
analyzable, but frequently comes with several limitations 
and preconditions. Many studies focus on the extraction of 
a single feature type such as streets (Chiang and Knoblock 
2013; Chiang and Knoblock 2012), river bodies (Gede 
et al. 2020), or different land use classes (Gobbi et al. 2019; 
Zatelli et al. 2019) like forest areas (Ostafin et al. 2017; 

Herrault et al. 2013; Leyk et al. 2006) or wetlands (Jiao et al. 
2020). Others assume homogeneously colored map regions 
(Chiang et al. 2011; Leyk and Boesch 2010; Ablameyko 
et al. 2002), which is rarely true for historical maps. Less 
complex (“binary”) maps containing homogeneously black 
objects or contours on white backgrounds were investigated 
by Xydas et al. (2022), Heitzler and Hurni (2020), Le Riche 
(2020), Iosifescu et al. (2016), Muhs et al. (2016), and Kim 
et al. (2014). But differentiating objects solely based on 
color differences is insufficient especially for widespread 
monochrome historical maps or due to ancient paper texture, 
noise, or dirt on the hand-drawn maps (Jiao et al. 2020; Pel-
ler 2018; Muhs et al. 2016; Arteaga 2013; Leyk and Boesch 
2010). Labels often remain unconsidered in the context of 
object recognition from historical maps as they commonly 
suffer from overlaps or gray-scale values similar to textures 
or contours of other map elements (Heitzler and Hurni 2020; 
Peller 2018). Other authors presume an existing coordinate 
system (Le Riche 2020; Gobbi et al. 2019; Iosifescu et al. 
2016) or a huge stock of training data, which is needed for 
machine learning approaches (Xydas et al. 2022; Heitzler 
and Hurni 2020; Jiao et al. 2020; Gobbi et al. 2019; Zatelli 
et al. 2019; Uhl et al. 2017). Moreover, few studies have 
focused on large-scale but rather small-scale maps (Gede 
et al. 2020; Heitzler and Hurni 2020; Gobbi et al. 2019; 
Zatelli et al. 2019; Loran et al. 2018; Uhl et al. 2017; Muhs 
et al. 2016; Herrault et al. 2013).

As existing research generally focuses on separate pro-
cesses involved in object extraction from historical maps, 
our study suggests a holistic approach composed of extract-
ing, vectorizing, and linking objects. We demonstrate the 
benefits of eliminating and assigning labels for this whole 
process and present applicabilities of the resulting geom-
etries. Because only by considering these techniques as a 
whole, we are able to answer location-related questions on 
the evolution of geographic features and make historical 
maps “accessible to geospatial tools and, thus, for spatio-
temporal analysis of landscape patterns and their changes” 
(Uhl et al. 2017). New qualitative and quantitative analyses 
as well as comparisons to other historical or current geo-
data become possible by searching through and processing 
information derived from historical maps (Gobbi et al. 2019; 
Chiang 2017; Iosifescu et al. 2016). For long-term backtrac-
ing of individual buildings, for instance, shape-based com-
parisons across different maps are useful (Le Riche 2020; 
Laycock et al. 2011).

In this work, we present a semi-automatic solution to 
make large-scale historical maps usable for spatial analysis 
while minimizing time-intensive and laborious manual user 
intervention. Based on our previous findings on the needs 
of users of historical maps (Schlegel 2019) as well as on the 
identification and extraction of map labels (Schlegel 2021), 
we demonstrate the general feasibility of a comprehensive 



5KN - Journal of Cartography and Geographic Information (2023) 73:3–18 

1 3

workflow composed of (1) eliminating labels, (2) extract-
ing geometries, (3) vectorizing and refining those, and (4) 
matching and spatially assigning the extracted map objects 
with current ones. Potential future applications, which are 
shown in the further course, may be involving semantic 
information from labels to annotate corresponding map 
features or an adjustment of a map’s visual appearance. 
Prospectively, new databases can be set up and comparative 
studies between different datasets become possible.

2  Literature Review

2.1  Elimination of Labels

Labels are valuable components in historical maps holding 
important metadata. However, text within a map is typically 
seen as a disturbing factor when extracting geometries. Mis-
interpretations in the context of segmentation may easily 
arise due to overlaps, direct adjacencies, or similar color 
values to map elements and structures such as lines or tex-
tures (Heitzler and Hurni 2020; Bhowmik et al. 2018; Chi-
ang 2017). Monochrome maps, in particular, have a reduced 
number of parameters to differentiate between text and other 
elements. However, an initial elimination of text or labels 
from historical maps can be seen as a major advantage for 
further object extraction processes (Gede et al. 2020). Pre-
vious attempts identified labels with the help of text rec-
ognition—subsequent to object recognition and vectoriza-
tion—or by shape recognition algorithms (Iosifescu et al. 
2016). Chrysovalantis and Nikolaos (2020) used binarized 
maps to separate text from other objects (see also Bhowmik 
et al. (2018)). By eliminating small pixel groups, they were 
able to remove letters. A GRASS GIS add-on developed by 
Gobbi et al. (2019) and Zatelli et al. (2019) replaces rel-
evant pixel values by means of low-pass filters within old 
cadaster maps. However, pixels must already be defined as 
“text” in advance. Telea (2004) and Bertalmío et al. (2001) 
suggest different image inpainting techniques, which are 
often applied for image restoration. Missing or damaged 
image regions are filled to create an image without giving 
the viewer a hint of changes. In our testing, these approaches 
caused an unsatisfactory blurring of the input image.

2.2  Object‑Based Image Analysis

Many methodologies for (semi-)automated object extrac-
tion from historical maps were demonstrated in recent years 
but proven insufficient for various reasons. For instance, a 
common histogram thresholding or color space clustering 
(Herrault et al. 2013) ignores any spatial context, whereas 

artificial neural networks require an inadequate amount of 
training data (Gobbi et al. 2019).

Chrysovalantis and Nikolaos (2020) used GIS function-
alities to convert a historical multicolor map into a binary 
image and then to extract and vectorize geometries of build-
ings. However, textured or corrupt polygons could not be 
handled and labels were eliminated only partially. A simi-
lar approach was conducted by Iosifescu et al. (2016). By 
combining GIS operations with Python libraries, Gede et al. 
(2020) segmented and vectorized geometries of rivers as a 
function of their color whereas Le Riche (2020) extracted 
buildings from historical maps based on colors and textures. 
Zatelli et al. (2019) and Gobbi et al. (2019) used GIS and 
R to segment and classify features from historical land use 
maps by regarding their colors, sizes, and shapes. Additional 
machine learning techniques were applied by Gobbi et al. 
(2019).

In recent years, deep learning attempts via convolutional 
neural networks (CNNs) “have recently received consider-
able attention in object recognition, classification, and detec-
tion tasks” (Uhl et al. 2017) from historical maps (Jiao et al. 
2020, Heitzler and Hurni 2020, and Xydas et al. 2022). How-
ever, they suffer from major drawbacks. Results from CNNs 
strongly depend on the quality and generally low quantity of 
available training data. Often, these data stocks are created 
manually and solely on the basis of the input bitmap itself, 
which is time-consuming and impedes an applicability.

Originating from the field of remote sensing, geographic 
object-based image analysis may also be applied to scans 
of maps (Hay and Castilla 2008). In the broad field of car-
tography, only few authors use OBIA approaches to cre-
ate new geodata. Whereas Dornik et al. (2016) reproduced 
soil maps from climate and vegetation maps, Kerle and de 
Leeuw (2009) extracted point-based population data from 
paper maps to estimate long-term population growth. Edler 
et al. (2014) applied OBIA to extract and quantify the pres-
ence of roads, buildings, and land use classes and to further 
evaluate the complexity of topographic maps thereby.

In contrast to pixel-wise approaches, OBIA regards not 
only spectral information, but also, e.g., the shape, size, 
or neighborly relations of objects, and is, therefore, much 
closer to human perception. Hence, OBIA is often sug-
gested for object extraction from historical maps with the 
aim to make them machine-interpretable (Blaschke et al. 
2014). Many studies in the field of OBIA focus on maps 
of colors and smaller scales, presuppose a preceding geo-
referencing (Chrysovalantis and Nikolaos 2020; Gede et al. 
2020; Iosifescu et al. 2016) or well-defined shapes of objects 
(Chrysovalantis and Nikolaos 2020; Gobbi et al. 2019; Heit-
zler and Hurni 2020), or disregard intersections between 
map features.



6 KN - Journal of Cartography and Geographic Information (2023) 73:3–18

1 3

2.3  Vectorization and Vector Enhancement

As vector data can be better processed and analyzed than 
raster data, a majority of the mentioned authors proceed with 
a vectorization of extracted map objects. Brown (2002) and 
Arteaga (2013) use specific software tools to, respectively, 
vectorize the outlines of geologic structures and buildings 
from historical maps. Vectorization tools are also provided 
within ArcGIS, GRASS GIS (Gede et al. 2020), and the 
GDAL library (Jiao et al. 2020).

To purge vectorized objects, further simplification pro-
cesses may follow. Multiple software and tools, including 
eCognition, QGIS, ArcGIS (Godfrey and Eveleth 2015), 
SAGA GIS (Gede et  al. 2020), R (Arteaga 2013), and 
Python libraries, implement pre-built functions to smooth 
or simplify lines or polygons and to remove outliers, spikes, 
and other artifacts.

2.4  Object Matching

For the direct comparison of vector objects from different 
maps from various times, distance and similarity measures 
may be promising (Xavier et al. 2016). Matching geometries 
between different inputs is frequently performed on the basis 
of shape or spatial similarities (Tang et al. 2008) or identical 
attribute values (Frank and Ester 2006). However, semantic 
similarity approaches are not feasible as scanned historical 
maps usually hold no ancillary information. Even if names 
of roads or buildings were available—e.g., by a preceding 
text recognition—they would need to be assigned to their 
corresponding geometries.

When analyzing geometric relations, such as overlapping 
areas or distance measures (e.g., Euclidian or Hausdorff dis-
tance), only relative distances between objects are consid-
ered. This technique is useless when comparing not yet geo-
referenced datasets (Xavier et al. 2016). Region-based shape 
descriptors (e.g., area, convex hull, Moment or Grid descrip-
tor, see Ahmad et al. (2014)) regard all pixels within a shape 
and may therefore be promising for a comparison between 
identical real-world objects from different inputs. But due 
to uncertainties, they are rather considered complementary 
matching approaches. Additional similarity measures are 
necessary (Xavier et al. 2016). By regarding the spatial rela-
tionship between objects, Stefanidis et al. (2002) quantified 
their distances and relative positions. Samal et al. (2004) and 
Kim et al. (2010) consulted third objects to create an overall 
geographic context. Also, Sun et al. (2021) regarded spatial 
relationships by linking identical real-world objects from 
different historical maps. However, their knowledge graph 
approach presupposes the existence and assignment of labels 
to their corresponding geometries.

3  Data

For a proof of concept of our suggested methodologies, a 
large-scale (~ 1:11,000) historical map from the middle of 
the nineteenth century was chosen, which has already been 
object of research within related studies (Schlegel 2019, 
2021). The original non-georeferenced and undistorted 
version of the map scan was cropped to a smaller extent 
(~ 1000 × 800 m in reality) for reasons of runtime compres-
sion within all processes. No map projection is known. The 
map subset in Fig. 1 shows the city center of Hamburg with 
blocks of buildings, roads, and water areas. Apart from sub-
sequently colorized water areas, the map is drawn in black 
and white. Many data suppliers provide their raster scans 
with a resolution of 300 ppi which is considered adequate for 
object extraction purposes (Pearson et al. 2013). Lower pixel 
densities induce blurring and pixelation, whereas higher val-
ues tend to highlight interfering artifacts from, e.g., folds in 
paper, discolorations, or smudges (Peller 2018). We contin-
ued to work with the TIFF format (without compression) as 
it is lossless concerning the image’s original pixel values 
(Gede et al. 2020).

To demonstrate the transferability of the workflow, two 
more large-scale historical maps covering the same spatial 
area were used in the further course (see Fig. 9a, b). They all 
differ in their visual appearance and complexity in terms of 
contrasts, textures, or the existence of labels and gridlines.

For comparing the described data to a current coun-
terpart, official vector datasets including recent polygonal 
buildings (Landesbetrieb Geoinformation und Vermessung 
2022) and line-type roads (Behörde für Verkehr und Mobil-
itätswende (BVM) 2020) were used.

4  Object Extraction

4.1  Preparation for the Elimination of Labels

As similar color values and overlaps between labels and 
other map objects impede a clear discriminability, an initial 
elimination of labels designating real-world objects signifi-
cantly contributes to a facilitation of object recognition pro-
cesses. We suggest to make use of the output from previous 
label detection attempts (see Schlegel (2021)): vector bound-
ing boxes comprising text image areas, which can be seen 
in Fig. 1. An exemplary text image area is shown in Fig. 2a. 
With the aim to eliminate its content from the map, it was 
initially cropped by means of its original bounding box (see 
Fig. 2b) and rotated to the horizontal by its angle of align-
ment (Fig. 2c)—calculated by the used text detection tool 
Strabo (Li et al. 2018; Chiang and Knoblock 2014). How-
ever, these text image areas do not only include characters, 
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but also edges of buildings, which is an outgrowth of Strabo 
(see upper margin in Fig. 2c). This is counterproductive 
within the subsequent step of building segmentation as these 

image areas were supposed to be entirely eliminated from 
the map. Thus, building edges would become distorted. To 
retain these important edges, all pixels within a bounding 

Fig. 1  Map subset showing the city center of Hamburg (Harvard Map Collection, Harvard College Library et al. (n.d.)) with bounding boxes 
containing labels produced by a previous text detection

Fig. 2  Steps for separating building edges from labels shown with an 
exemplary dataset: a input map with bounding box containing text 
image area, which then was b cropped, c aligned horizontally, and d 

converted into a binary as well as e a three-class mask. The f result-
ing bounding box excluding building edges was g turned back to its 
original orientation
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box were differentiated by text and parts of buildings. A 
user-defined thresholding helped to generate a binary mask 
consisting of dark “foreground” and bright “background” 
pixels (see Fig. 2d). A further “foreground” differentia-
tion was needed to separate building edges from text pix-
els. However, similar color values, overlaps, and smooth 
transitions between text and buildings were challenging. 
For reclassifying former “foreground” into either “text” or 
“building edge” pixels, multiple thresholds and conditions 
had to be applied (Fig. 2e). As labels designating roads most 
commonly run parallel to nearby building edges, this step 
was performed row-wise. As Fig. 2f indicates, all pixels rep-
resenting “text” and “background” were combined and vec-
torized. The resulting polygonal bounding box was turned 
back by its initial rotation angle (see Fig. 2 g) and then used 
within the following object extraction steps.

4.2  Object Detection and Recognition

To detect homogeneous image regions and extract objects 
such as buildings or water areas from large-scale historical 
maps, we used object-based image analysis. In contrast to 
pixel-based approaches (e.g., Maximum Likelihood, Cluster-
ing, or Thresholding), which only regard spectral differences 
between pixels, OBIA generates image objects also based 
on common textures, shapes, context, etc. and is, there-
fore, more suitable for historical maps with limited spectral 
information and heterogeneous appearances (Blaschke et al. 
2014; Hussain et al. 2013).

As none of the many free and open source packages 
available for semi-automated feature extraction produces 
comparable results, we made use of the proprietary soft-
ware eCognition Developer 10.2 to generate GIS compat-
ible data from a historical map via OBIA (Kaur and Kaur 
2014). eCognition converts user-defined rule sets—built-up 

from functions, filters, statistics, etc. for image segmentation 
and classification—into machine-readable code. These con-
catenations of algorithms can be easily transferred to other 
images (Trimble Inc. 2022).

As Fig. 3a indicates, a first rough differentiation between 
dark (foreground) map features (e.g., buildings and labels) 
and the map’s bright background (water areas, roads, and 
places) was enabled by thresholding the input TIFF. The 
content of the labels’ bounding boxes, as shown in Fig. 2f, 
was simply classified as “background” and could therefore 
be eliminated (see Fig. 3b). The detection of further map 
objects is therefore significantly facilitated on the one hand 
and building edges remain unaltered on the other hand.

To extract contours of buildings, an edge detector was 
applied to the image. The building texture’s repeating pattern 
could be detected by means of a gray-level co-occurrence 
matrix—which measures the vertical invariance of adjacent 
pixel pairs—and analyzed by texture descriptors (Chaves 
2021; Trimble Inc. 2021). Regarding the original map in 
Fig. 1, public buildings (e.g., the townhall or churches) have 
a significantly darker texture and could, therefore, clearly 
be differentiated from other buildings based on their gray 
values. Water areas were identified by thresholding the RGB 
blue channel as well as applying supplementary texture 
descriptors to avoid false positives.

4.3  Vectorization

Generally, OBIA results in raster files containing individual 
image objects, subdivided into predefined single classes. For 
further processing and analysis purposes, a vectorization of 
this data is inevitable. Based on experiences of Iosifescu 
et  al. (2016) and Arteaga (2013), we applied GDAL’s 
polygonize function to perform a raster-to-vector conversion 

Fig. 3  Foreground objects separated from the map’s background a before and b after eliminating labels
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for each map class. Several functions to simplify and smooth 
the vectorized map features, to close inlying minor gaps, 
and eliminate small isolated polygons were compiled within 
an end-to-end Python script. This way, interfering artifacts 
(e.g., islands, protrusions, or spikes) stemming from an 
imprecise segmentation or undetected labels could be han-
dled. The resulting polygons representing (public) buildings 
and water areas are shown in Fig. 4 and can be processed 
within future analysis operations.

5  Linking Historical and Current Datasets

Compared to previous studies dealing with object extrac-
tion from historical maps, we go one step further and pre-
sent an exemplary way of how qualitative and quantitative 
evaluations of long-term changes within a cityscape may 
be practically enabled. We therefore spatially assigned a 
more recent vector dataset to the historical counterpart 
as shown in Fig. 7. Our aim was to automate this coarse 

georeferencing process as far as possible. Due to changing 
names of roads and buildings over time, the lack of in-
depth information, or simply imprecise scales, distances, 
and directions within historical maps, we used the previ-
ously extracted geometries for georeferencing purposes 
(Rumsey and Williams 2002). As can be seen from Fig. 5, 
churches and other municipal buildings still exist over time 
and, beyond that, do not substantially change their basic 
shape and geographic location over time. Therefore, their 
object shapes could be matched and used for the definition 
of control points in the further course of georeferencing 
(Skopyk 2021; Havlicek and Cajthaml 2014).

5.1  Shape Matching

To define matching georeferencing control points between 
the historical and current dataset, identical real-world objects 
are to be identified. We, therefore, measured the shape simi-
larity between the extracted public buildings shown in Fig. 5 
(Sun et al. 2021; MacEachren 1985). A matching based on 

Fig. 4  Vectorized and revised features of the historical map
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spatial or semantic (attribute-based) similarities was imprac-
tical due to the lack of a coordinate system as well as further 
information concerning the historical map.

As Fig. 5 indicates, a side-by-side comparison between 
geometries of public buildings extracted from the historical 
map on the one hand and the official vector dataset contain-
ing current buildings on the other hand was performed. We 
implemented a matching of their shapes based on their Inter-
section over Union (IoU). After adjusting the aspect ratios 
of corresponding counterparts via rectangular bounding 
boxes (“envelopes” (Esri 2022)), their respective deviations 
could be quantified via IoU. As can be seen from Fig. 6, a 
building geometry and its envelope together form a binary 
mask—consisting of the values 1 (building geometry) and 0 
(envelope). A final superimposition of these masks helped to 
determine their overlapping area (intersection) proportion-
ally to their common area (union) (see Fig. 6). All “building” 

pixels with a value of 1 were considered for the IoU cal-
culation, which was conducted with the help of Python’s 
numpy library. Table 1 summarizes the IoU results for all 
detected public buildings continued to use for georeferenc-
ing purposes.

5.2  Georeferencing

5.2.1  Method Overview

The centroids of those geometries with the closest matches 
(see highlighted cells in Table 1) were defined as con-
trol points for a semi-automated, rough georeferencing 
between the historical and current dataset. To preserve 
the objects’ shapes and to keep spatial deformations to a 
minimum within the historical data, an affine transforma-
tion of all current buildings and roads was conducted. This 

Fig. 5  Vectorized public buildings (churches and townhall) from the historical map (upper row) and their counterparts from the current dataset 
(bottom row)

Fig. 6  Intersection over Union between the historical St. Petri Kirche and a its current counterpart as well as b the current St. Katharinen Kirche. 
The aspect ratio of the geometries’ envelopes was adjusted to one another, respectively
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was done via QGIS Vector Bender (Dalang 2019) using 
the three matching object pairs highlighted in Table 1 as 
well as Fig. 7. In our test case, only three control points 

with sufficient pointing accuracy could be found—such a 
small number is quite typical for historical maps. However, 
if available, a larger quantity of control points is advisable 

Table 1  Numerical results from Intersection over Union between historical and current buildings’ geometries

Historical map 
St. Katharinen 

Kirche 
St. Petri 
Kirche Rathaus 

Current 
dataset 

St. Katharinen Kirche 83,9% 74,9% 45,0% 
St. Petri Kirche 79,3% 84,4% 43,1% 

Rathaus 47,5% 45,9% 58,5% 
St. Jacobi Kirche 82,1% 80,2% 42,6% 

Mahnmal St. Nikolaia 54,0% 49,8% 26,1% 
aThe St. Jacobi Kirche was not classified as public building by eCognition whereas 
the (Mahnmal) St. Nikolai was reconstructed in another city district after being mainly 
destroyed during World War II and leaving only its tower until today (Claussen n.d.). 

a The St. Jacobi Kirche was not classified as public building by eCognition whereas the (Mahnmal) St. Nikolai was reconstructed in another city 
district after being mainly destroyed during World War II and leaving only its tower until today (Claussen n.d.)

Fig. 7  Georeferenced current buildings and roads based on the centroids of the highlighted St.-Katharinen-Kirche, St.-Petri-Kirche, and Rathaus
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to benefit from over-determination for the transformation 
process. Figure 7 shows that a georeferencing between 
historical and current geodata gives the chance to directly 
compare their contents and, thus, to evaluate changes 
within an area over time (Iosifescu et al. 2016).

5.2.2  Error Estimation

For a minimum of transformation bias, it is generally rec-
ommended to evenly spread georeferencing control points 
throughout the input (Clark and MacFadyen 2020). We, 
therefore, evaluated affine transformation results using 
alternative control points. In Table 2, the resulting offsets 
between the two datasets are quantified for three different 
cases. Case a) represents the initial georeferencing with 
centroids of three public buildings used as control points, 
as illustrated in Fig. 7. In case b), the upper right centroid 
(St.-Petri-Kirche) was replaced by the one of another public 
building located rather at the edge of the input (St.-Jacobi-
Kirche, see right margin in Fig. 7), whereas in case c), dis-
tinct crossroads close to the map’s edges provided an opti-
mum distribution of control points. Due to missing control 

points in the lower left image area, cases a) and b) resulted 
in greater deviations compared to c) (see Table 2). However, 
a visual inspection revealed only minor differences between 
the three approaches. In view of our objective, which was to 
roughly locate current map features and to enable a visual 
comparison of these with their historical counterparts, all 
three approaches delivered satisfactory results.

5.3  Geographic Context

To further assess the quality of the chosen control points, 
their geographic context was regarded. Based on the model 
from Samal et al. (2004), a contextual similarity between 
real-world matching map features was exemplarily com-
puted for case a). Figure 8 shows an example of how a 
proximity graph—connecting the centroids of four build-
ing geometries with the one of a known geometry from 
5.1—was built for each dataset. The offset between the two 
overlaying datasets could then be expressed by the length 
and angle of displacement between corresponding cen-
troids (see Table 3). The largest deviations of up to 1.8 cm 
(72 m in reality) and 3.4 cm (~ 34 m) on average between 

Table 2  Average of absolute offset, corresponding standard deviation, 
and RMSE between current, spatially assigned and historical refer-
ence data

The deviations were calculated based on the absolute distances 
between unambiguously matching crossroads. Unit: meters

Mean offset Standard devia-
tion

Root mean 
square 
error

Case a 359 439 37
Case b 275 386 29
Case c 180 278 17

Fig. 8  Exemplary proximity 
graph with displacement vectors 
between historical and current 
data

Table 3  Absolute offsets between historical and georeferenced cur-
rent data, expressed by the displacement vectors’ length and angle 
shown in Fig.  8. The real lengths were derived from the historical 
map’s original scale (Hamburg Feet)

Central building Vector # Length Angle (°)

Reality (m) Map (cm)

St. Katharinen 1 72.0 1.8 − 56.6
2 11.6 0.3 − 105.8
3 24.7 0.6 − 7.6
4 30.6 0.7 16.1



13KN - Journal of Cartography and Geographic Information (2023) 73:3–18 

1 3

historical and georeferenced current dataset deemed to be 
reasonable in view of our application case. 

6  Applicability of the Object Extraction 
Workflow

The following sections demonstrate in an exemplary way the 
transferability of the object extraction workflow described in 
4.2 by means of two more historical map subsets illustrating 
the same spatial extent of the city of Hamburg (hereinafter 
named as “map A” and “map B”, see Fig. 9a and b, respec-
tively). Minor changes had to be conducted to achieve opti-
mum results for the two different maps.

6.1  Map A

Rough building structures could be identified when apply-
ing the OBIA workflow to the label-less map A, illustrated 
in Fig. 9a. However, surface-filling geometries were not 
detected so that single processing steps had to be modified 
and added. For instance, to detect the conspicuous hatching 
of building geometries, a simple line detection algorithm 
was implemented. Water areas could be identified based 
on their outstanding hatching pattern consisting of isolated 
dashes. Small gaps were filled and object contours were 
closed with the help of morphological closing, which avoids 
expanding the segmented objects (Chiang et al. 2014; Gede 
et al. 2020). The resulting classified image objects can be 
seen in Fig. 10a.

Fig. 9  Alternative input maps by a Sammlung Christian Terstegge (n.d.) and b Harvard Map Collection, Harvard College Library et al. (2008)

Fig. 10  Segmentation results by the use of the adjusted workflows for a map A and b map B



14 KN - Journal of Cartography and Geographic Information (2023) 73:3–18

1 3

6.2  Map B

Due to its monotonous appearance, a straightforward appli-
cability of the workflow described in Sect. 4.2 was not fea-
sible for map B. The dark contours of building objects were 
extracted by means of thresholding so that their enclosed 
textures could simply be classified as buildings as well. Also, 
water areas could be identified by regarding their distinctive 
texture. Labels were differentiated and classified based on 
their neighborly relations to buildings and the maps’ back-
ground (roads and places), respectively. As can be seen from 
Fig. 10b, these relations were not unambiguous in each case.

The map objects’ quality highly depends on the map’s 
complexity. With a greater degree of complexity, OBIA 
results became less satisfying. Apart from visual overload, 
further challenges may impede a segmentation of historical 
maps:

• Stains, folds, and tears in the maps’ original material,
• detailed map objects and symbols (e.g., roofs of build-

ings, trees, or blades of grass),
• heterogeneous or absent textures, or
• overlaps between labels and other map features.

7  Potential Future Applications

With the geometries resulting from the workflow described 
in chapters 4 and 5, valuable analysis and comparison 
processes concerning urban morphological developments 
become possible. According to a preceding user study 
(Schlegel 2019), comparisons between historical and cur-
rent maps mainly relate to buildings and roads as well as 
general transformations in the urban structure. Figure 11 
shows two potential use cases: Users may select a his-
torical building whilst, in the background, an intersection 
algorithm finds appropriate current buildings and outputs 
related information such as its name or area (see Fig. 11a). 
Alternatively, current road names might be queried. By 
selecting a historical road section, the current road name 
may be returned from a database using the intersection 
area between the bounding box of the former and the cor-
responding line feature of the latter (see Fig. 11b).

Fig. 11  Exemplary use cases: comparing a historical with a a current building and b a current road section by selecting a historical feature. 
Based on their intersection area, related information is returned from a corresponding database
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8  Discussion

For a considerable enhancement of object extraction pro-
cesses from historical maps, a preceding elimination of 
labels is advantageous. Based on the results of a text detec-
tion tool used in the course of previous research (Schlegel 
2021) and assuming that labels run parallel to roads and 
edges of buildings, we were able to eliminate straight text.

As gray values of labels often do not differ significantly 
from the ones of adjacent map objects such as contours or 
textures of buildings, their existence complicates efforts 
towards the extraction of geometries from a historical map. 
In the present work, text was separated from features of 
similar color by thresholding techniques so that a more 
precise object extraction became feasible. This procedure 
is irrespective of any preceding map enhancements or 
georeferencing and efficient especially for monochrome 
historical maps having a heterogeneous background. In 
contrast to other studies, our suggested approach neither 
mistakenly removes other map features nor substitutes 
original pixel values. Nevertheless, an optimization of 
the preceding text detection should be undertaken so that 
all map labels are considered for elimination in future 
research.

A main purpose of this study was to pave the way for a 
straightforward comparison of large-scale historical maps 
with recent counterparts. Vectorized and georeferenced 
map features allow their analyzability and searchability 
in the further course. With the help of enhanced object-
based image analysis as well as subsequent vector refine-
ment and linking processes, we address this issue within a 
semi-automated workflow. By applying OBIA approaches, 
not only spectral, but also textural, shape-dependent, or 
contextual characteristics of map objects are considered 
for their identification. Available techniques from image 
and vector processing contributed to an adequate quality of 
extracted features and to make a large-scale historical map 
analyzable and comparable. This is inevitable for investi-
gating urban transformations over time. On the downside, 
specific software, knowledge, and, in some instances, sub-
jective and individual solutions are required, especially 
within the object extraction domain. Consequently, a fully 
automated workflow is not realizable.

A critical view on the results shows that these strongly 
depend on a maps’ complexity and the quality of the 
underlying bitmap. All processing steps applied to a bit-
map are affected by its color depth, format, and resolution 
(Gede et al. 2020). Further improvements of the suggested 
methodology may involve a consideration of additional 
maps, e.g., showing other cities, and algorithms.

By roughly georeferencing large-scale historical with 
current maps and putting these on top of one another, a 

direct comparison of their individual objects is facilitated. 
We suggest to define georeferencing control points based 
on the shape and context similarities of map features 
such as public buildings. It is assumed that these build-
ings were already classified as such from preceding object 
extraction. To measure the similarity of objects between 
a historical and a current dataset, two methodologies are 
presented. It was found that corresponding geometries of 
churches have a high similarity as, usually, their shapes 
remain unchanged over centuries. When comparing these 
for matching purposes, both maps need to have a simi-
lar scale and degree of generalization. However, shape 
similarities are not invariably unambiguous. Distortions 
induced by adjusting the geometries’ aspect ratios may 
lead to biased results. Further similarity measures, such 
as the geographic context, are therefore necessary. The 
consideration of the geographic context of objects proved 
beneficial for a quality control of the control points defined 
for the final georeferencing. Its outcomes depend on the 
subjective choice of reference points. Finally, georefer-
encing current with historical maps does not necessarily 
improve their accuracy. Depending on the particular appli-
cation, it must be noted that shapes and lines, distances, 
or proportions may be distorted. Regarding our objective 
of comparing historical map content, the presented rough 
georeferencing proved to be satisfying for potential future 
applications.

9  Conclusion and Outlook

A major purpose of this study was to present the feasibil-
ity of a holistic workflow. Within an end-to-end solution, 
semi-automated approaches to extract and vectorize features 
from a large-scale, mainly monochrome, historical map were 
developed and applied for the purpose of providing knowl-
edge, of analyzability (e.g., in GIS), and comparability. A 
concluding georeferencing enabled a straightforward com-
parison to current counterparts and, in the further course, 
to understand changes within a cityscape over time. A sig-
nificant contribution could be made by previously eliminat-
ing map labels and separating them from other objects to 
improve their extraction results.

It was shown that a rough georeferencing is sufficient 
for the juxtaposition of historical and current map objects. 
With the presented methodologies, an appropriate spatial 
allocation without distorting map objects was achieved. The 
present findings confirm that each map has an individual 
need for adaption, but only minor adjustments are required 
to apply the suggested approaches to maps having a similar 
degree of complexity.

Overall, our results make a major contribution to extract 
valuable information from large-scale historical maps by 
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combining approaches for text detection (see Schlegel 
(2021)), the elimination of labels, OBIA, raster-to-vector 
conversions, and an approximate spatial referencing based 
on similarity measures. We thereby provide a starting 
point for gaining new insights from large-scale historical 
maps. It should be emphasized that this research serves as 
a demonstration of a feasible holistic workflow paving the 
way for the analyzability of large-scale historical maps as 
well as for their comparison to current counterparts. This 
was implemented by means of an initial example case. 
In terms of future research, it would be useful to extend 
the current findings by examining additional maps. Also, 
further considerations should include the practicabil-
ity of comparison analyses as illustrated exemplarily in 
chapter 7.
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