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ABSTRACT Point clouds are generated by light imaging, detection and ranging (LIDAR) scanners or depth
imaging cameras, which capture the geometry from the scanned objects with high accuracy. Unfortunately,
these systems are unable to identify the semantics of the objects. Semantic 3D point clouds are an important
basis for modeling the real world in digital applications. Manual semantic segmentation is a labor and
cost intensive task. Automation of semantic segmentation using machine learning and deep learning (DL)
approaches is therefore an interesting subject of research. In particular, point-based network architectures,
such as PointNet, lead to a beneficial semantic segmentation in individual applications. For the application
of DL methods, a large number of hyperparameters (HPs) have to be determined and these HPs influence
the training success. In our work, the investigated HPs are the class distribution and the class combination.
By means of seven combinations of classes following a hierarchical scheme and four methods to adapt the
class sizes, these HPs are investigated in a detailed and structured manner. The investigated settings show
an increased semantic segmentation performance, by an increase of 31% in recall for the class Erroneous
points or that all classes have a recall of higher than 50%. However, based on our results the correct setting
of only these HPs does not lead to a simple, universal and practical semantic segmentation procedure.

INDEX TERMS 3D point clouds, data hyperparameter, hierarchical class combination, hyperparameter,
PointNet, semantic classes, semantic segmentation, unbalanced data.

I. INTRODUCTION
Scenes of the real world are scanned with depth imaging
cameras and light imaging, detection and ranging (LIDAR)
scanners in a short time with high geometric resolution
and accuracy [1]. The digitized scenes are mostly unsorted,
unstructured and incomplete point clouds [2], [3], which
form the basis of a geometric model. These kind of models
are useful in a wide variety of applications such as, urban
planning, tourism marketing, indoor navigation, robotic
control, autonomous driving, building construction plan-
ning, building operation, heritage preservation, archaeologi-
cal investigations, forestry and agriculture, or infrastructure
maintenance [4], [5], [6], [7], [8]. The creation of these
models is often done by hand, because humans are excellent
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at interpreting visualized 3D point clouds and identifying
semantic objects within them. Automated modeling by an
algorithm requires that each point carries semantic features
that can be used to form discrete semantic objects in a scene.
Extending the point cloud with semantic features is semantic
segmentation. The automated semantic segmentation is often
performed by Machine Learning (ML) and Deep Learning
(DL) approaches, which are a current research topics [4], [7],
[9], [10].

DL-methods for semantic segmentation of 2D images
achieve very high accuracies, but cannot be simply applied
to point clouds due to the above mentioned properties. Many
approaches exist where the point cloud is first transformed
into an order and structure [11], [12]. However, point-based
methods such as PointNet [13] or RandLA-Net [14] omit this
step and can perform a semantic segmentation directly from
the original point cloud. In order to use these semantically
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segmented point clouds to create a building information
model (BIM), the semantic point segments must meet certain
accuracy requirements that arise from the model specifica-
tions [15]. These accuracy requirements are defined in the
Level of Accuracy (LoA) [16], Level of Detail (LoD) [17]
or the Level of Development (LoDev) [18]. For a BIM of
the level LoA2 (15 mm to 500 mm) or LoDev 200 (design
planning) and higher, the point cloud segments often cannot
fulfill the geometric or semantic requirements, so that an
improvement of the semantic segmentation step is necessary.
Considering the complexity of the point cloud datasets, the
automatic semantic segmentation is a key processing step for
an efficient modeling.

Increased accuracy of these semantic segmentation meth-
ods is possible with training data [19] and Hyperparameters
(HPs) [20], in addition to the adaptation of the network
architecture. HPs are selected before training and commonly
prior knowledge is used for the selection. They control and
influence the training progress [20]. In this work the influence
of the HPsUnbalanced class distributions and differentClass
combinations are investigated using the established network
architecture PointNet (Section IV). For this purpose, four
data- or algorithm-based methods for harmonizing class sizes
are applied and adapted. In addition, a hierarchical class
definition for frequent classes in a BIM is developed and
applied. Further central contributions of this work are:

• A review of HP determination methods, data augmen-
tation methods, and hierarchical semantic segmentation
methods (Section II).

• The creation of a new medium-sized dataset that is
suitable for BIM applications (Section III).

• The systematic evaluation of data augmentation
methods and of hierarchical class combinations
(Section V and VI).

All findings are summarized in Section VII and an outlook
on further investigations is given.

II. STATE OF THE ART
A ML model is influenced by a large number of HPs. One
key challenge when working with complex ML methods is to
fully capture these HPs and to define the optimal values for
them, as investigated by [21], [22], [23], and [24]. In Fig. 1,
the relevant HPs for semantic segmentations are grouped into
six clusters. The top row represents general HPs that relate to
network architecture, regulation, optimization, and initializa-
tion [25]. In the bottom row (area with the blue background),
Data Hyperparameters (DHPs) are shown. The DHPs depend
on the data characteristics and not on the chosen model.

DHPs can be distinguished according to semantic, struc-
tural, geometrical and spectral characteristics of the dataset.
The semantic characteristics of point clouds are described
by [26], [27], and [28]. In terms of structural characteristics,
the definition of point neighborhood [29], data augmenta-
tion [30], and the unbalanced class distribution for training
data in general (e.g., images) [31] are topics that have already

been investigated in other studies. Generally, geometrical and
spectral features of point clouds are often used as training
data by manual augmentation of point feature spaces [32].
These hand drawn features are point normals, eigenvalues,
density values or mixed features [33], [34], [35]. So far, only
few studies on the unbalanced class distribution and hierar-
chic semantic segmentation in point clouds are published.
An overview of them is presented in Sections II-B and II-C.

A. PointNet
DL-models for semantic segmentations of point clouds
are usually distinguished by the input formats into which
the point cloud is transformed. A categorization is pre-
sented in [36]. In their work, a categorization is made
into discretization-based / structure-based (e.g., as voxel),
projection-based (e.g., 2D-image), and point-based (e.g., raw
points or graph) methods, which can further refined (Fig. 2).
While initially discretization-based [37], [38], [39] and
projection-based methods [40] were predominantly used,
nowadays most of the (non-real-time) models are point-
based [41]. Point-based methods use the unordered points
themselves to perform semantic segmentation.

One of the most widely used point-based method is
PointNet [13]. PointNet addresses the structural disadvan-
tage of the point cloud format when processing them with
DL-methods. This means that points do not have to be placed
in a fixed order prior to processing. They can be arranged free
in orientation and position in space.

The full functionality of PointNet is explained in the
first published article from the developers [13] and in many
reviews such as [43] and [44]. In the following, the central
processing steps of PointNet are presented for a better under-
standing of our investigations. Furthermore, the limitations of
PointNet will be outlined.

1) PROCESSING STEPS OF PointNet
Processing with PointNet can be divided into three main
steps. In the first processing step, the features are trans-
formed into a uniform n-dimensional space using an affine
transformation (with the T-Net module of PointNet). The
transformation parameters are learned by the network. This
transformation ensures that all input blocks are nearly at
the same position and almost have the same orientation.
An example with a point cloud of a chair is given in Fig. 3.
This transformation is repeated after the first extraction of
depth features, so that the depth features are also aligned in
the complex feature space (e.g., 64 dimensions) [13].

The second processing step is the extraction of depth
features-based on the input features (e.g., 3D coordinates,
point normals or color values) or previous depth features.
This is done using different transformation layers or a multi-
layer-perceptron [13]. In most implementations of PointNet,
a 1D or a 2D convolutional layer is used. As shown in
Fig. 4a, the rows of the tensor are equal to the number of
block points and only one column is occupied. The features
of the points are arranged in the depth layer of the tensor.
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FIGURE 1. Influencing variables and parameters for the development of a DL-based semantic segmentation method. The parameters and influencing
variables shown are a selection and might be adapted for other applications.

FIGURE 2. Preparation of point clouds for semantic segmentation with
DL, by projection into image space, organization into a 3D structure, and
usage of the raw point cloud. (Figure taken from [42] and adapted.)

Each convolutional filter contains only one value (which is
fixed within the convolution), so the depth features are based
only on the previous features of a point (Fig. 4a). Depending
on the implementation, different numbers of convolutional
layers and filters are used.

The third processing step is the aggregation of the features
of the individual points into a global feature vector for the
respective input block. This is done using the max-pooling
function, in which only the largest value is kept for each
feature (Fig. 4b). It results in a feature vector that can be
used for classification of the point cloud block. For seg-
mentation, this global feature vector is taken and appended
to all individual point feature vectors. There is now a com-
bination of inter-point and global features for each point,
from which further depth features are generated. The depth
features are used to classify each point (e.g., with a softmax
function) [13].

FIGURE 3. Intention of the T-Net module is that a point cloud is always
aligned in a similar way by means of an affine transformation.

2) LIMITATIONS AND ADVANCEMENTS OF PointNet
The central problem with PointNet is the selection of points
for a block. This for instance is the case, if the area to
be segmented semantically is very large, the point densi-
ties are in-homogeneous or different frequent classes are
included. Regarding this challenge, different extensions, such
as PointNet++ [45] or a systematic neighborhood searches,
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FIGURE 4. Convolution (a) and max-pooling (b) functions for feature
enhancement and aggregation with PointNet.

such as by [46] have been developed. However, these devel-
opments also encounter limitations with extra-large and
highly detailed datasets.

B. UNBALANCED CLASS DISTRIBUTION
One major concern for the semantic segmentation task solved
with ML methods is, that different semantic classes in
real-world data consist of different numbers of individual data
objects [47]. For example, the background of an image is
described by the majority of individual pixels and therefore it
is learned more frequent by most ML algorithms. Often the
algorithm learns only the background, because this way the
highest accuracy is achieved for the whole dataset [31].

Basically, this problem exists for all ML methods, such
as Support Vector Machine, k-Nearest-Neighbor (kNN),
K-Mean Clustering, Convolutional Neural Network (CNN)
and all kind of data types, such as data series, images,
image databases or point clouds [48]. Various methods are
developed to solve the class imbalance problem for certain
data types. These methods can be clustered into four method
groups (Fig. 5).

FIGURE 5. Four method groups to address the problem of unbalanced
class distribution. Arranged according to similarities of methods.

The first method group, the data-based methods, encloses
all methods, which actively change the number of the indi-
vidual data objects (e.g., points or images). The dataset is
filtered or augmented in such away that the number of objects
between different classes becomes equal or more similar.

Methods that reduce the number of data objects are
referred as under-sampling (US) methods. These methods
randomly [49] or systematically [50], [51], [52] select data
objects per class to establish equality and ensures that only
original (measured) data is used. The US methods have the
central disadvantage that parts of the knowledge are not used

and therefor learning is only performed on a subset of the
information. The use of only a subset could lead to changes
in the local neighborhood [31].

Unlike US, random [49] or systematic [48], [53], [54], [55]
over-sampling (OS) methods enlarge the dataset and augment
it with artificial or duplicated data. One popular method is
the Synthetic Minority Oversampling Technique (SMOTE)
by [56], where the neighborhood is considered to control
the OS method. The datasets become large without gain-
ing any new knowledge. In addition, typical data objects
in the infrequent classes are emphasized strongly, therefore
the trained model may not transfer well to new unknown
datasets. Methods that minimize the adverse influence of
both approaches use the original and OS datasets in different
training phases [57] or combine the OS andUSmethods, each
based on the epoch result [48].

The second group of methods are the algorithm-based
methods. They modify the learning algorithm and aim for
a stronger impact of classes with fewer data objects. That
can be either done by adapting the loss function [58], [59],
[60], modifying the network architecture [61], [62], [63],
[64] or weighting the predictions [65], [66]. Learning can
advantageously be done directly with raw data. But, if the
class differences are very large, weighting can lead to a wrong
relationship and a minor class may becomes too dominant.

The third group of methods are named as hybridmethods.
They apply data- and algorithm-based methods together. The
data are combined in a first phase at the level of ordinal
features [47] or at the level of derived features to obtain highly
differentiable features in the training data. The features can
be created by grouping the initial features and deriving new
features [67]. Other approaches create embedded features
and adjust it in favor of the minor class [68] or taking into
account possible high and low classification probabilities
based on the feature distribution within the classes and its
boundaries [69]. Hybrid methods are applied to CNN such
that remaining differences due to the equalization of class
sizes or optimization of the data are made by adjusting a loss
function or using multiple loss functions.

The last method group is ensemble learning. These meth-
ods are applied to traditionally weak learning methods, such
as Decision Trees or K-mean clustering. In ensemble learn-
ing, different classifiers or the same classifier are trained
with different combinations of data or parameters. The results
of all classifiers are evaluated to a combined result using
hard or soft voting [70] (stacking and bagging). Boosting,
as in SMOTEBoost [71], can be used as an alternative. Here,
after each run, the classification parameters (e.g., selection of
training data) are adjusted so that more attention is payed to
hard-to-learn features.

C. HIERARCHICAL CLASS COMBINATION FOR
SEMANTIC SEGMENTATION
The term hierarchical semantic segmentation is used in two
definitions. The first definition is about the geometric size
change of the segments. The segments can grow (segments
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are merged) or shrink (segments are split) in the integrative
and hierarchical segmentation process. The names and num-
bers of the classes always remain the same. In this approach,
the semantics is added to the segments in a subsequent clas-
sification [72], [73]. Often, the point clouds are transformed
into graphs, which are gradually refined or generate local
features [74], [75], [76].

The second definition focuses on different classes at dif-
ferent stages of the segmentation. Here, the class definition
is hierarchical and the semantic information changes by each
level. This definition of hierarchical semantic segmentation
is less described in literature, because for a semantic seg-
mentation usually a fix set of semantic classes is defined
in advanced and the process is done in one step. Frequent
and infrequent classes are determined and segmented in the
same step. In contrast, if the set of semantic classes is com-
plex and/or oriented to a predefined hierarchical semantic
schema, such as the CityGML [77], the Industry Foundation
Classes (IFC) [18] or a non-institutional schema [78], [79],
[80] another strategy can be applied. This performs semantic
segmentation in several sub-steps. Semantic schemes usually
have multiple aspects, such as geometry and semantic, and
are organized into LoD [17]. The semantic LoD determines
which class is determined in which level. Thereby, for each
point only one class should be defined in one LoD. As shown
in [81], this approach can help to better distinguish semantic
classes with similar geometric features that appear in different
LoDs. In addition, a combination of features from different
LoD can help to increase the semantic accuracy for a semantic
segmentation [81].

III. DATASET
Our dataset consists of more than 76 million individual points
representing 27 rooms of the HafenCity University Hamburg
main building (Figs. 6, 7 and 8). A subset of the point cloud
was created for this work and contains the class Erroneous
Points (subset A). This subset was extended by an existing
dataset without the class Erroneous Points (subset B). Subset
B was originally created for the Level 5 Indoor Naviga-
tion project [82] and was reorganized and improved for our
experiments. The dataset is organized by rooms, which can
be selected individually. The rooms are different in terms
of furnishings, usage and shapes. Seminar rooms, lecture
halls, offices, coffee kitchens, corridors and entrance halls are
present in the dataset.

All rooms were surveyed using terrestrial laser scanners
Z+F Imager 5010 or 5016. The survey was performed with
a resolution of 6mm at a distance of 10m and the quality
level ‘‘normal’’ [83]. Small and good observable rooms up to
about 75m2 were surveyed from a single viewpoint. Larger
or winding rooms were surveyed with multiple viewpoints
so that all furnishings and building parts were captured com-
pletely. Small coverage gaps (e.g., on walls or on the floor due
to obscuring furniture) are present in the data and accepted if
the overall geometry of the semantic classes per room can be
derived from the point cloud (Fig. 9).

FIGURE 6. Point cloud dataset from the main building of HafenCity
University Hamburg (entrance level).

FIGURE 7. Point cloud dataset from the main building of HafenCity
University Hamburg (office level).

FIGURE 8. Point cloud dataset from the main building of HafenCity
University Hamburg (lecture hall level).

The registration of the individual point clouds were carried
out via discrete targets, which were measured automatically
and manually in the scanned point clouds. Using the coor-
dinates of a geodetic net measurement (via total station) the
scanned point clouds are transferred into a global and uniform
coordinate system (geo-referencing). The division by rooms
was done in a manual segmentation procedure. For this pur-
pose, the spaces are roughly selected in the entire point cloud
and a partial point cloud is copied. The partial point clouds
are processed so that only points of the respective room are
included. This procedure leads to a more complete point
cloud, because points of viewpoints in neighboring rooms are
considered.

The second segmentation step is based on the semantic
classes and was performed with CloudCompare [84] and
Autocad Recap [85]. To achieve a high quality of the man-
ually classified points, each point cloud was semantically
segmented at least three times by different annotators. The
annotators were previously trained in the task and received
feedback on intermediate results. The individual segmen-
tations of the same rooms were combined so that coarse
individual errors are removed.
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FIGURE 9. Gaps (white areas) in the point cloud caused by occlusions
(e.g., furniture), and which are tolerated in the dataset.

IV. METHODOLOGY
The influence of certain DHPs, especially for point clouds
are still little systematically studied. The semantic classes are
usually defined according to the application, such as process-
ing areal LIDARpoint clouds for industrial use [2] or having a
Scan2BIM application [4]. The semantic segmentation of all
defined classes is usually achieved in one step. Reference [86]
observed that the class definition and the class content have an
influence on the semantic segmentation result. As an alterna-
tive to the application-oriented class definition, an algorithm-
oriented class definition is also possible. This insight leads to
a process in which the DHPs are set in favor to the algorithm
by considering: The number of classes, the number of points
per class, the presence or absence of erroneous points and
the geometric difference of the objects in different classes.
To investigate the DHP, an application and experimentation
environment (AEE)was developed inwhich the commonHPs
and DHPs can be easily customized. The AEE offers different
options for the point cloud augmentation using balancing
(improvement) techniques.

FIGURE 10. Processing steps for semantic segmentation of point clouds.
The filled boxes are examined in detail.

The investigations follow the workflow shown in Fig.10.
The data recording is followed by the registration, the orga-
nization of the sub-scans, and the manual semantic seg-
mentation of the point clouds, so that these can be used as
training and evaluation data. These steps are followed by
a dataset optimization, which is the central focus of this
work (Sections IV-B and IV-C). Next, the data is prepared
for the processing step with the chosen automatic semantic

segmentation method (Section IV-A) and the algorithm is
trained. The efficiency of the training is evaluated with
‘‘unknown data’’ of the same dataset (e.g., other rooms).

A. APPLICATION AND EXPERIMENTATION ENVIRONMENT
Our work is based on the DL-architecture PointNet [13],
for which optimal HPs were determined based on com-
prehensive preliminary investigations and literature research
[41], [87]. PointNet is one of the established and founda-
tional DL-architectures whichmakes our investigation results
comparable with other studies. All parameters of the network
architecture (except for the number of classes) remain as in
the implementation of [88]. The AEE is developed that Point-
Net can be replaced by other point-based DL-architectures.

Themain drawback of PointNet is that only a small number
of points and only local features are used to assign a point
to a class. Our approach to control the input of points is
simple and is based on a random and uniform splitting of
the point cloud into three equally sized sub-point clouds and
the determination of a Local Neighborhood Box (LNB). The
origin of coordinates of the entire point cloud is defined by
the smallest values for the x- and y-coordinates. This origin
of coordinates is used for the first sub-point cloud. For the
following sub-point clouds, it is shifted in the x-y-plane by
a fraction of the LNB edge length and additionally rotated
by a fix angle (Fig. 11). For each of the shifted and rotated
sub point clouds, the LNB are determined using the structure
algorithms of pyntcloud library.
The local neighborhood is defined by a 1 x 1mLNBwhose

height is the maximum possible room height of the dataset.
By shifting and rotating, six different local neighborhoods
are created for each original LNB. The rotated point cloud
is an extension of the original point cloud. From each LNB
a certain number of n randomly selected points is taken as
network-input until all points have been fed into the network.
If there are not n points left, the input is filled by random
copied points from the LNB. In addition to the global nor-
malized room coordinates (xglo, yglo, and zglo) and the point
normals (xn, yn, zn), the local normalized coordinates of the
LNBs (xloc, yloc, zloc) are calculated. These nine geometric
features are used as input features for all experiments.

B. METHODS FOR HARMONIZING THE UNBALANCED
CLASS DISTRIBUTION
The semantic classes of point clouds from real objects differ
by the number of points. Objects, such as walls and floors,
take up more area (as well as points), compared to objects,
such as doors and erroneous points. This is due to the fact
that most surveying systems regularly scan surfaces with a
fixed angular increment related to the sensor, which changes
with distance. In addition, the measuring systems capture
areas and not edges. Two backwards arise from the capture
conditions for the training of semantic segmentation meth-
ods. First, a lot of information is collected which provides
no or little new information for the separation of semantic
objects. Second, there is often a lack of information about
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FIGURE 11. Describing the neighborhood for PointNet inputs using overlapping LNBs.

geometrically complex and variable objects, as well as of the
class edge areas.

ML-based semantic segmentationmethods learn a relation-
ship between input features and semantic class over large
amounts of data and try to determine an optimal separation
over the majority of point features. If one class is dominant
in the number of points, it can be observed that the best
results are obtained by assigning almost all or all points to
this class. In processing of medical images, this problem
is well known by the fact that only a few pixels show the
anomaly and most pixels show normal organs [89]. For our
point clouds, the problem is transferable, because most points
belong to frequent classes, such as wall, floor or ceiling.
The underlying idea to solve this topic is to focus on the
information that is important for the separation of the classes
and to increase its importance. These is usually done by
augmenting the points of the infrequent classes. The emphasis
on the infrequent class(es) is investigated in the experimental
studies of Section V-D by means of four techniques. These
techniques are the SMOTE [56], the stack augmentation (SA)
and two adaptions of the loss function.

1) SMOTE
In the applied implementation of SMOTE, the amount of all
classes are expanded to the number of points of the largest
class. Thereby, all classes consisted of the same number
of points and are given homogeneously distributed into the
model. Other variants of the SMOTE implementation, e.g.
up to 50% of the size class or a combination with a US
method could be examined alternatively. By using SMOTE,
the expansion is controlled by the local neighborhood, so the
later learning focus is placed on the areas of the point cloud
that describe infrequent and usually more complex object
classes. SMOTE uses the kNN algorithm to determine the k
nearest neighbors of each point. The number of neighbors k is
the factor by which the point cloud is augmented. If k = 1,
then the point cloud is doubled. If the point cloud should be

augmented to a certain number, then the multiplication num-
ber is k + 1. The unnecessary points have to be (randomly)
deleted afterwords. For the calculation of the coordinates of
the augmented points, the vector between the starting point
and the nearest point is determined. The vector between this
points is multiplied with a random value from 0 to 1 and
added to the starting point. The coordinates of a new point
are located in between both original points (Fig. 12). With
SMOTE the density of the point cloud is artificially increased
in the areas of the minority classes [56].

FIGURE 12. Calculations for data augmentation with the SMOTE method
by [56]. In this example the point cloud is multiplied by k = 5 times.

2) STACK AUGMENTATION
SA is also a data-based augmentation method. However, the
data is not augmented in a process ahead of DL-method and
not to a fix amount of points. Instead the dataset is expanded
during the creation of the training dataset. The advantage of
the SA is a smaller increase of data, thus the augmentation
is mainly applied to points of infrequent classes. The basic
idea of the approach has been developed by [55]. They split
the point cloud into chunks as network-input (similar to a
voxel). Within a chunk the number of points was reduced to
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a fixed amount of 4096 points. The content of the chunks is
analyzed in regard to the number of points per class. Chunks
with many points of infrequent classes are augmented more
frequently than chunks with many points of frequent classes.
The frequency of each chunk is determined by a nonlinear
function. Using this data augmentation strategy, [55] are able
to achieve an increase of about 10% for recall and precision
for the outdoor laser scanner dataset Semantic3D [37].

FIGURE 13. Process of stack augmentation for an optimization of the
class distribution.

We adapt the method of [55] for our data processing and
simplify the calculation for the augmentation factor. The
augmentation and the analysis was performed on the basis of
a stack with 1024 points, which is the input for the PointNet.
Stacks are similar to chunks, however they do not have a
fixed spatial dimension, since a stack consists of randomly
selected points of an LNB (Fig. 13). The augmentation degree
is determined by calculating the target proportion for each
class (if all classes would be equal) and comparing it with
the actual distribution. If the actual proportion of a class is
smaller than the target proportion, then stacks in which this
class is dominant are copied into an augmentation dataset
(Fig. 13, step 1). The augmented dataset is duplicated after all
stacks have been analyzed. The number of augmentations (n)
is determined by the fact that the smallest class must have its
target proportion (Fig. 13, step 2). For instance, the points of
a point cloud should be classified into three semantic classes,
so the target proportion is 33.3% to which the smallest class
is augmented.

With this augmentation method, the focus should be
directed to the infrequent objects in the point cloud but with-
out losing information of large objects. Especially points in
the edge zones, where small and large semantic objects meet,
should be used more in the training. Stacks that contain a
majority of infrequent classes should be augmented. This can
be a stack, that consists only of points of the infrequent classes
(Fig. 14b), but also stacks which contain few points of the
frequent classes (Fig. 14a). Stacks with a majority of frequent
classes are not augmented (Fig. 14c).

3) WEIGHTED LOSS FUNCTION
The third and forth methods for minimizing the unbalance
class distribution are algorithm-based and addresses the loss

FIGURE 14. Geometric visualization of the stacks for input to a network.
The black box represents the boundaries of a stack. (a) Majority of points
is from the infrequent class. (b) Only points from the infrequent class are
present. (c) Majority of points are from the frequent class. This stack will
not be used for augmentation.

function that is used to calculate the classification error after
each training pass. The loss function type used in this work
is the Categorical-Cross-Entropy (CCE) loss function which
is extended by two weighting options. The concept of loss
calculation is shown in Fig. 15 and can be briefly described
as follows.

FIGURE 15. Process of feature extraction, classification and loss
calculation at PointNet. Prediction class score (s) and ground truth label
target (t) vector as one-hot encrypted matrix.

The raw training data given to the network is unbalanced,
and the depth features are computed based on the original
data. Applying a classification function (e.g., softmax), a one-
hot-encode class vector for each point is determined based
on the features. The class vector consists of the same number
of elements as possible target classes (C) exists. In the case
of the softmax function, the vector is normalized such that
the vector sum is always one and the values of the vector
express the probability for each class. In the predictions of
the DL-method, commonly the maximum value of each point
vector is determined and the one-hot encryption is decrypted.
Also, the class vector is used to determine the loss during
the training. For PointNet the CCE function from (1) is
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commonly used.

CCE = −
C∑
c=1

tc ∗ ln(sc) (1)

The CCE function is used to calculate the loss of a clas-
sification by summation of all multiplications between the
logarithmized elements of the class vector (sc) and the cor-
responding elements of the target vector (tc) from ground
truth (GT) label. Thereby, mean loss of each input stack and
for the entire point cloud is determined. The mean loss does
not distinguish whether the classes of the points are difficult
or easy to learn or if the points are frequent or infrequent.
Classes that occur infrequently and have a high loss are
included in the mean value to a less extent than classes that
occur frequently. The algorithm learns frequently occurring
classes better. Tominimize this disadvantage of the infrequent
classes, the CCE can be improved by a weight vector (w),
as described in (2).

WCCE = −
C∑
c=1

tc ∗ wc ∗ ln(sc) (2)

The target vector (tc) is multiplied with the weight vec-
tor (wc), allowing the loss of the infrequent classes being
emphasized in the mean loss. This loss function is called
weighted CCE (WCCE) loss function and is shown in (2).

wc = 1−
Pc
P

(3)

The calculation of these weights is usually done by the
class distribution [90]. The weights in our experiments are
calculated and tested using two independent experiments.
In the first experiment, the proportion of a class is deter-
mined by calculating the ratio of the amount of points of
one class (Pc) and calculating the amount of all points (P).
The ratio of Pc and P boost the frequent classes, so it must
be subtracted from 1 to emphasize the infrequent classes (3).
This method reduces the loss, which can lead to a too early
termination of the training phase. To minimize this reduction
of the loss, the weights can be calculated according to (4).

wc =
1
C
−
Pc
P
+ 1 (4)

Theminor or superior proportion of each class is calculated
by (4).Minor or superior proportion result from the difference
to a class distribution having classes of the identical size. This
leads to the fact that frequent classes get weak weights and
infrequent classes get strong weights without changing the
total amount of the loss.

The two WCCE functions are developed on the basis
of [91] code and have been integrated as an option into the
AEE. A major advantage of this method is that the weighting
is only effective during training and (theoretically) the algo-
rithm does not have to be trained again on the original data.
The feature extraction and the classification itself are only
indirectly influenced by learnable weights.

FIGURE 16. Semantic model for the examinations. A distinction is made
between the main classes of Building parts, Interior and Erroneous
Points. Sub-classes are considered separately starting from level 2. Each
level can and cannot include erroneous points.

C. HIERARCHICAL SEMANTIC CLASS COMBINATION
The class definition specifies the semantic classes in which
a point should be subdivided. The size of the individual
semantic classes is indirectly given by this class definition.
In applications where weak ML methods, such as Random
Forrest, are used, hierarchical class definitions are used to
increase the efficiency [92], [93]. A hierarchical class defi-
nition consists of several levels. General classes are defined
in the top layer, which are subdivided further and further
until the target classes for an application are reached. For
instance in the top layer, building parts and interior can
be distinguished, which can be further distinguished into
classes, such as Wall, Floor, Ceiling or Window. Using a
hierarchical class definition can be beneficial for the semantic
segmentation because fewer distinctions in one step need to
be made and the imbalance of the classes are minimized by a
optimal definition. The study of [81] on PointNet++ shows
that combining feature vectors from different hierarchical
layers of the class definition results in a better discrimination
for some classes. In their research unmanned aerial vehicle
LIDAR data is analyzed and [81] state that many different
semantic classes are geometrically similar. If these geometric
classes are already separated by previous levels, confusion
between these classes is eliminated.

Based on the work of [81] and our theoretical considera-
tions, we developed a class definition for indoor applications,
which is summarized in Fig. 16. The full hierarchical class
definition is shown in Tables 13 and 14 in the appendix.
By developing this, trade-offs were made between semantic
reasonableness, the different geometric shapes of objects in
a class, and class sizes. The goal is to form classes that are
usable for a possible semantic application, that are geometri-
cally different, and are as similar in distribution as possible.
In particular, the equal class distribution is often in contradic-
tion to other goals. These goals can possibly be achieved by
combining the infrequent and geometrically similar classes
Door and Windows into Opening.

In addition to the classes for real objects, the class Erro-
neous Points is formed as an extra semantic class for a subset
of the dataset. This semantic class includes the points that are
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caused by the measurement system, the measurement setup
or unfavorable object properties (e.g., highly reflective). The
works from [26] and [94] state that this class can have a
measurable influence on the semantic segmentation results.
Usually the class Erroneous points is determined with a cor-
rectness and precision of less than 20%. Even if the erro-
neous points are difficult to determine, such a semantic class
can theoretically contribute to an improvement of the other
classes [42]. In the following experiments, semantic segmen-
tation is performed with and without this class. It should
be noted that in the case of semantic segmentation without
the class Erroneous Points, these points were removed from
the point cloud using parameter-based filters and manually
segmentation.

The semantic class definition is structured in such a way
that only a subset of the points is segmented semantically
in the lower levels. Thus, it is assumed that the previous
level already has sufficient segmentation accuracy. In our
experiments, the manually created semantic point clouds
are used, so that a consideration of the maximum possible
segmentation is performed. For the investigations, different
splits resp. semantic generalization degrees are used in the
3rd and 4th level and all investigations were carried out for all
augmentation methods of Section IV-B. The classes are split
into seven combinations, the classes for each combination are
shown in Table 1.

TABLE 1. Used class combinations including sub-classes.

V. EXPERIMENT SETUP
In this work, the AEE is used for analyzing the influence
of the DHPs. The four data and algorithm-based augmen-
tation methods for minimizing the influence of class size
differences, as described in Section IV, are investigated in
detail. In addition, the influence of a step-wise semantic class
definitions is determined.

A. RESEARCH FIELD AND QUESTIONS
The semantic segmentation of point clouds makes point
clouds interpretable for machines. It is one of the key steps
for the automated high-accurate digitization of the real world,
as performed by surveyors. From a surveyor’s perspective, the
data, the data quality and the DHPs are of high interest for
the evaluation of different point clouds in terms of reliability,
efficiency and accuracy. For the development of an automatic
processing method, it is necessary to estimate the influence of
the individual DHPs. The DHPs, class combination and class
distribution are examined in detail in the following, in order

to determine these influencing variables for the following
developments or to neglect them, if they do not show a signifi-
cant influence. Our investigations clarify which improvement
for the semantic and geometrical accuracy can be achieved
with a data or algorithm-based data augmentation method.
Furthermore, we investigate if classes can be learned better
by a step-wise segmentation of the point cloud.

B. HARDWARE, SOFTWARE AND HYPERPARAMETER
Training for all experiments was performed on a single
workstation. The parameters of the hardware used for the
computations are summarized in Table 2. The AEE was
developed entirely in Python and uses Tensorflow and Keras
as DL-frameworks (Table 3). Programming was preformed
for a single GPU. An adaptation for a multi-GPU system is
given.

TABLE 2. Hardware used for our AEE development and in the
experiments.

TABLE 3. Software and software versions used for our AEE development
and in the experiments.

All experiments on one class combination with the dif-
ferent data augmentation methods are performed as one
block of experiments. In order to compare the methods,
the semantic segmentation with the original point clouds
are performed for each level. The duration of the training
varied from 49 to 287minutes due to the size of the given
subset and the data expansion methods. As an example, run
times for all basic types of class sets are shown in Fig. 15.
Longest run times were observed for the SMOTE and the
SA method, since the number of points increases for both
methods. A reduction of the run time was observed for the
WCCEa method for the predominant cases, which can be
explained by the general reduction of the loss (Fig. 17).
The initial set of common HPs were determined based

on the work of [1], [2], [8], and [13] and optimized
empirically. The optimized HPs are summarized in Table 4.
To reduce the learning time, early-stopping was introduced.
The training is stopped after 25 epochs in which the metric
eval-loss does not decrease by more than 0.01. To optimize
loss, the common Adam optimizer [95] is used with a learning
rate that is reduced while training progresses. This should
help to increase the learning efficiency. Batch size, number
of epochs, points per stack and stack size were selected
identically for all experiments.
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FIGURE 17. Selection of training run times for the class combinations and
the different data augmentation methods.

TABLE 4. Selected HPs for all experiments.

C. EVALUATION PARAMETER
The evaluation of the semantic segmentation is carried out
with the three evaluation parameters recall (RP), precision
(PP) and standard deviation of the false positive (SDFP)
points. The parameters True Positive (TP), False Negative
(FN) and False Positive (FP) points are determined by com-
parison with the GT labels. The parameter nC in (7) (geomet-
ric accuracy) stands for number of points for the current class.
xi is a predicted point for this class and xGT is the closest point
to xi from the set of GT points for this class (reference point
cloud). The main evaluation parameters are determined using
(5) to (7). These scores were determined at the room level and
were averaged for the analysis.

RP =
TP

TP+ FN
(5)

PP =
TP

TP+ FP
(6)

SDFP =

√√√√ 1
nC

nC∑
i=1

(xi − xGT )2 (7)

The SDFP points describes how precise the geometry
of an object class is and can be seen as a supplementary
parameter to the semantic PP. If SDFP points is greater than
an application-related threshold (e.g., 100mm), then gross
segmentation errors are present. In most cases the segments
of this object class cannot be used for the target application.
The geometry of the segments is strongly changed (enlarged).
If SDFP is smaller than the threshold, this parameter can
be used to examine whether the segments are suitable for a
particular LoD representation. This evaluation parameter can
vary between different classes in a dataset.

Class equality (CE) for class combinations is introduced
as an additional parameter and is determined using (8).

Values close to 1 indicate an unequal class size and values
close to 0 indicate an equal class size. The parameter CTc is
the proportion in case of an equal distribution of points per
class and the parameter CAc is the actual proportion of points
per class.

CE =
Pc∑
c=1

‖(CTc − CAc)‖ (8)

A detailed class definition is available for each class com-
bination. Further parameters concerning the point cloud qual-
ity were not considered for the analysis of these experiments.
The manual semantic segmentation is reviewed for major
errors.

D. PROCEDURE OF THE EXPERIMENTS
The experiment can be divided into two phases as shown in
Fig. 18. In phase 1 of the experiment, 35 different exper-
iments consisting of data augmentation methods and class
combinations are studied. All experiments were initialized
with random learnable parameters (weights). The weights of
the network are randomly but they were used identically for
all experiments, so only the influence of the training process
is shown by different segmentation performances.

FIGURE 18. Evaluation and Transfer Learning strategy.

An analysis of the results is performed according to the
scoring scheme of Fig. 19. The best weight set is used for a
detailed investigation and the Transfer Learning (TL) in the
second phase. In the TL phase, on the basis of the best weight
set, nine new trainings are executed per combination without
using a data augmentation method. The data augmentation
methods SMOTE and SA change the point clouds and new
unwanted patterns may appear. These patterns can adversely
affect the generalization, so they should be avoided if possi-
ble. The aim of phase 2 is to describe the influence of TL.

The evaluation scheme defines that at least half of the
points in each class are correctly identified and that there are
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FIGURE 19. Selection scheme for Transfer Learning and semantic segmentation evaluation.

not more false points than true points in the class (‘‘Require-
ment fulfilled’’). This requirement seems logical from a
human perspective, assuming that something is learned, if it
is done more frequently correct than incorrect. However,
in semantic segmentation with DL, this requirement is rarely
met, and for a large number of tasks it does not have to be
met. In order to evaluate which weight set provides the best
performance, two additional levels have to be defined. The
levels: ‘‘Requirements meet with restriction’’ and ‘‘Require-
ments not fulfilled’’. The requirements are meet with restric-
tions, if either RP or PP is less than 50% for one class.
The requirements are not fulfilled, if both RP and PP is
less than 50% for one class. In these cases, the best weight
set is the one with the highest detectability and PP of the
weakest classes. This evaluation scheme is primarily used to
determine the best weight set for the subsequent comparison
of the combinations.

VI. RESULTS AND DISCUSSION
Training results are stored as weight sets and can be loaded
for evaluation with the full dataset. The evaluation of the
weight sets from phase 1 and 2 is performed with the full
test dataset or subset B, as described in Section III. From
nineweight sets per combination, the weight set that preforms
best to the evaluation scheme of Fig. 19 is selected and is
analyzed in more detail below. In addition to the four data
augmentation methods (Section IV-B), a not adapted version
of the network architecture (Base method) is trained for each
class combination.

The influence of the investigated HPs is expressed by the
evaluation metrics RP, PP and SDFP points for each class
(Section V-C) and in the form of a class average. These
evaluation metrics allow a detailed evaluation for the creation
of a BIM, based on a semantically segmented point cloud. The
RP shows how complete a class is detected and the PP shows
how many points of other classes are erroneously assigned to
the considered class. For the creation of a structural model
(walls, ceilings and floors), it is important that the segments
of the relevant classes are as semantically precise as possible
(high PP) and the predicted segments are geometrically iden-
tical to the GT segments (low SDFP of points). A complete
assignment of all points can often be considered as less
meaningful for this application. However, a high RP for the
class Erroneous Points is very important, since all erroneous
points should be removed from the data.

A. CLASS COMBINATION 1
The first examined class combination (combination 1) con-
sists of the two classes Erroneous Points andObjects. Accord-
ing to the test procedure (Fig. 18), three (intermediate) results
are available for each class combination and each augmen-
tation method. For the SMOTE method of combination 1
(shown in Fig. 20a - d), the following evaluations are based on
the best-retrained (Fig. 20c) and the TL (Fig. 20d) semantic-
segmented point clouds. The Basemethod and the SAmethod
do not meet the requirements. All other methods meet the
requirements with restrictions from the evaluation scheme.
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FIGURE 20. Sample point cloud of combination 1 with applied SMOTE method. (a) GT Point cloud. (b) Semantically segmented point cloud with random
training. (c) Segmented point cloud by retrained best random version. (d) Semantically segmented point cloud with applied TL.

TABLE 5. Semantic accuracy of the class combination 1 (subset A). The
symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

The CE rate is high for all methods, with 0.96, except of
SMOTE. The present class combination is unfavorable for
DL-based semantic segmentation.

In Table 5 it can be seen, that the methods SMOTE,
WCCEa and WCCEb increase the recognizability of the
small class. The erroneous points are better recognized,
which leads to a more precise class Object in this binary-
class case. Less precise is the class Erroneous Points for these
methods and more points of the class Object are recognized
as erroneous points. For the class Erroneous Points the PP
decreases by 23% (Table 5). The SDFP points improve for
the methods SMOTE and WCCEa by approximately 10mm
(Fig. 21). The SDFP points for the class Object is smaller than
100mm, so that erroneous points change the object geometry
at most by this amount. A model of captured structure can
be created with this uncertainty. Such a model can be used
for indoor pedestrian navigation or creating a rough spatial
map [96].

FIGURE 21. Geometric accuracy of the class combination 1 (subset A).
The geometric accuracy is expressed by the SDFP points.

Applying TL in phase 2, the semantic and geometric accu-
racy of all methods are equal to the Basemethod. The TL does
not provide any advantage in this case. The methods SMOTE,
WCCEa and WCCEb without TL improve the separation
of the classes. This can be seen for SMOTE by comparing
Fig. 20a with Figs. 20c and 20d.

B. CLASS COMBINATIONS 2-1 AND 2-2
The second class combination consists of the classes Inte-
rior and Building Parts, with (combination 2-1) and without
(combination 2-2) the class Erroneous Points.

For combination 2-1 (Table 6), the Base method and the
SA method do not meet the requirements. All other meth-
ods meet the requirements with restrictions. These findings
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TABLE 6. Semantic accuracy of the class combination 2-1 (subset A). The
symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

FIGURE 22. Geometric accuracy of the class combination 2-1 (subset A).
The geometric accuracy is expressed by the SDFP points.

are similar to combination 1. The CE rate for the Base,
WCCEa andWCCEbmethods is highwith 0.76. The SMOTE
method has the optimal class distribution and the SA method
improves the rate to an moderate score of 0.54. The propor-
tion of the smallest class (Erroneous Points) remains at 4% as
in combination 1.

The larger classes Interior and Building Parts show a PP
value higher than 80% and RP of higher than 65% (Tabel 6).
The RP for these classes is decreased by the augmentation
methods in favor of an increase of the erroneous points by
up to 31% (e.g., for SMOTE). The RP for erroneous points
of the method SA increases by 6% in comparison to the
Base method at the lowest. However, the SA method is the
only method with a PP higher than the Base method for all
object classes and the average SDFP points is lower with
202mm (Fig. 22). Therefore, thismethod achieves the highest
accuracy (Table 6 and Fig. 22). The PP of the erroneous points
for all other augmentation methods decrease by a maximum
of 15% (e.g., for SMOTE) compared to the Base method.
In comparison, the object classes have a high PP of more
than 80%.

The geometric accuracy varies with a SDFP points from
129mm to 410mm. These SDFP points are very high and
indicate major errors in the segmentation as shown in Fig. 23.
Interior objects located within a range of about 200mm from

FIGURE 23. Example of major semantic segmentation errors in class
combination 2-1. The parts of the wall (class Building Parts) become a
segment of the class Interior.

the wall cannot be reliably recognized. In the further course
of the investigation, it is shown that the ceiling and floor are
better separable from the furniture. A separation of wall and
interior is only possible with this very high inaccuracy. The
lowest SDFP points for the building parts can be obtained
with the WCCEb method. For an overview model of a build-
ing, the point cloud of the class building parts can be used.
This point cloud can also be used as the basis for a fast manual
or parametric algorithm-based further processing.

The TL of the augmentationmethods with the Basemethod
leads overall to a small improvement of the semantic accuracy
for the object class, but disfavors the class Erroneous Points
by a decrease in RP.

The investigated methods lead to an improvement in the
detectability of the class Erroneous Points. The recognition
and PP of the object classes are not improved by the augmen-
tation methods. The semantic PP of these classes are high as
shown in Table 6. The geometric accuracy is low by LoA1
(according to the schema of [16]) and as shown in Fig. 22.
For combination 2-2 (subset B), all augmentationmethods

meet the requirements with restrictions. The CE rate for
the Base, WCCEa and WCCEb methods is moderate with
0.46. The SMOTE and the SA method have an optimal class
distribution (Table 7). No erroneous points are included in
this dataset.

RP and PP of the Base method and the augmentation
methods are at the same accuracy level. For the class Building
Parts, the RP of the methods SMOTE, SA and WCCEa is
reduced by up to 3% in comparison to the Base method. The
recognizability of the class Interior is increased by up to 11%
for these methods. In this context, the SA method is the only
augmentation method with an improvement in both parame-
ters, RP and PP (Table 7). The PP of the class Building Parts
is very high with as values of 96% and 97% for all methods.
However, the PP of the Interior is very low with a value of
approximately 30% for all methods (Table 7). Points of the
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TABLE 7. Semantic accuracy of the class combination 2-2 (subset B). The
symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

FIGURE 24. Geometric accuracy of the class combination 2-2 (subset B).
The geometric accuracy is expressed by the SDFP points.

class Building Parts are sorted to a greater extent into the
class Interior. This can also be seen in the SDFP points for
the Interior, which are larger than 2000mm (Fig. 24).

Subset B contains more different spaces with larger dimen-
sions, so that larger SDFP points are also possible, as shown
in Fig. 24. Furthermore, it can be observed that the SDFP
points does not increase with larger rooms in subset B.
Compared to subset A with erroneous points, this parameter
even decreases.

The data augmentation methods do not lead to any increase
in semantic and geometric accuracy for this class combina-
tion. It can be observed that the PP of the infrequent classes
is not increased. The applied methods only increase the rec-
ognizability of the infrequent classes, but the discrimination
is not increased. The reason for this is a lack of generaliz-
ability of the Base method for the used dataset. Rooms in
the dataset differ strongly in terms of completeness, object
surfaces, object geometries and sizes. An examination of
the individual rooms shows that rooms with a 20m x 20m
floor space, in which the scanner is positioned in the center,
are best semantically segmented. In these rooms, there are
usually only tables and chairs. Here, the RP and PP are higher
than 88% for all methods. In rooms with rare objects, such
as shelves, the semantic accuracy is usually less than 50%.
The conditions in the different rooms influence segmentation
quality strong.

The combination 2-1 and 2-2 can not be compared,
because they consist of different rooms. For a comparison

TABLE 8. Semantic accuracy of the class combination 2-2 (subset A).

the subset A without erroneous points is therefore used. The
results for this subset are shown in Table 8. The compari-
son of these data with (Table 6) and without (Table 8) the
class Erroneous Points shows that the absence of this class
leads to an increase of up to 23% in the semantic accu-
racy of the object classes. An improvement through the data
augmentation methods cannot be identified in the presented
investigation.

C. CLASS COMBINATIONS 3-1, 3-2, 3-3 AND 3-4
The class Building Parts is further subdivided to distinguish
individual building parts (application level). The choice of
classes is based on those frequently used in as-built models
or in BIM applications [97], such as defined in the IFC
standard [98]. The subdivision is carried out for two levels
in order to examine if combining the infrequent classes door
and window leads to a better semantic segmentation.

In the combination 3-1 all building parts (floor, ceiling,
window, door and wall), as well as the erroneous points are
included. Combination 3-2 is identical to combination 3-1
without the class Erroneous Points. In combination 3-4
the infrequent classes Window and Door are combined
as Opening (level 3), all other classes remain unchanged
as in combination 3-1. The combination 3-3 is identical to
combination 3-4 without the class Erroneous Points. All class
combinations are shown in Table 1.

For combination 3-1, non of the methods meet the require-
ments (Table 9). The CE rate for the Base, WCCEa and
WCCEb methods reaches a high value of 0.84. The SMOTE
method shows the optimal class distribution and the SA
method improves the rate to a moderate score of 0.52.

The SMOTE method is not suitable for class combina-
tion 3-1, because the semantic accuracy is reduced compared
to the Base method. The average RP is 32% and the average
PP is 39%. The Base method and all other methods have a RP
of more than 58% for the frequent classes. For the infrequent
class Door (< 1% of the dataset) the RP varies between 20%
to 30%. This class cannot be learned by the methods as shown
in Table 10.
The PP of the classes Floor and Ceiling is 99% for the

data augmentation methods. In contrast, the PP of the class
Window is very low (< 45%) for all methods, because many
points, especially of the class Wall and Door are assigned
due to the large geometrical similarity of this class (Table 9).
This low semantic accuracy correlates with a low geometric
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TABLE 9. Semantic accuracy of the class combination 3-1 (subset A). The
symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

TABLE 10. Semantic accuracy of the class combination 3-4 (subset A).
The geometric accuracy is expressed by the SDFP points.The symbols ↑

and ↓ indicate a change of more and less than 10%, resp., compared to
the base method.

accuracy for this class. The SDFP points is larger than
6000mm, so that this semantic class occupies nearly the
whole room.

Since the classes Window and Door are not learned by
the methods, they are combined in an intermediate step to
the class Opening. The idea behind the summary is, that this
class could be subdivided in the case of a good semantic
segmentation in a following step, without negatively affecting
the class Wall.

For combination 3-4 the Base, WCCEa and WCCEb
methods meet the requirements with restrictions. The method
SA does not meet the requirements and the SOMTE class
meets the requirements. The CE rate for the Base, WCCEa
and WCCEb methods is high with a value of 0.72. The
SMOTE method shows the optimal class distribution and the
SA method improves the CE rate to a sufficient score of
0.26. Due to the rough description of the distribution for these
combination, it can be seen that an increase of the semantic
accuracy is achieved (Table 10). The recognizability of the

TABLE 11. Semantic accuracy of the class combination 3-2 (subset B).
The symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

class Opening is low compared to the other classes. The PP
of this class is for almost any method below 50%, and the
SDFP points is higher than 3600mm. Nevertheless, a good
semantic segmentation can be performed with the SMOTE
method. But it does not work for the combination 3-1.

For combinations 3-1 and 3-4, the TL phase leads to results
comparable to the Base method.

For combination 3-2, no method meet the requirements.
The CE rate for the Base, WCCEa and WCCEb methods
is with 0.72 high. The SMOTE method shows the optimal
class distribution and the SA method improves the rate to a
moderate score of 0.38 (Table 11).

For combination 3-2, the majority of the points of the
classes Door and Window are not assigned to the correct
classes. In addition, the geometrically similar class Wall is
less recognized compared to combinations 3-1 and 3-4. The
PP of Door and Window is low with a maximum of 33%
over all methods (Table 11). The geometric accuracy of the
two classes has a high SDFP points. For the class Window,
the SDFP points is larger than 4300mm and for the class
Door it is larger than 3600mm. Based on these evaluation
parameters, it can be stated that the class distribution has
no influence in this case. A semantic segmentation with the
class combination 2-2 leads to a high semantic and geometric
accuracy only for the classes Floor and Ceiling. Also, the
combination of the classes Door and Window to Opening in
an intermediate step is tested in combination 3-3, too.

For combination 3-3, the methods Base, SA and WCCEb
meet the requirements. The SMOTE and the WCCEa meth-
ods meet the requirements with restrictions. The CE rate for
the Base, WCCEa and WCCEb methods is with value of
0.40 moderate. The SMOTE method shows the optimal class
distribution and the SA method improves the rate to an score
of 0.08. The class distribution becomes favorable after the
consolidation (Table 12).
The combination 3-3 leads to an increase in the semantic

segmentation accuracy of all classes. The RP of the class
Opening is higher than 50% for all methods. The class Wall,
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TABLE 12. Semantic accuracy of the class combination 3-3 (subset B).
The symbols ↑ and ↓ indicate a change of more and less than 10%, resp.,
compared to the base method.

with which the class Opening is often confused, is correctly
recognized only by SMOTE and WCCEa of the point major-
ity. Based on the low PP of 29% to 32%, the confusion
with the class Opening is confirmed (Table 12). Even with
this combination, the neighboring classes Wall and Opening
cannot be accurately separated. Larger variations for different
rooms are observed here, but there are no rooms that can be
segmented semantically very accurately. An influence of the
class Erroneous Points is not observed.

A TL with the Base method results in an increase of 1% to
3% for RP and PP for all methods and classes.

D. SUMMERY AND OVERALL FINDINGS
The results show for the investigated settings, class definition
and class combination, that two examined DHPs have only a
minor influence on the semantic and geometric accuracy of
semantic segmentation. The applied augmentation methods
lead to an improved recognition of the infrequent classes.
In the classification step, points are more often assigned
to an infrequent class. This leads to a reduction in PP of
infrequent classes. The SDFP points remains unchanged
or even decreases due to the used augmentation methods.
The PP of the segmentation improves stronger for frequent
classes.

The number of classes itself has no influence on the
semantic segmentation performance. Instead, the geometric
similarity and the distance of the objects are important for
distinguishing classes. The classes Floor and Ceiling can be
well distinguished because of the large geometric distance
(no shared boundary), whereas the classes Window and
Wall are difficult to distinguish. When defining a class, the
geometric distinguishability of the objects must be taken
into account. This must be valid for the entire dataset,
since rooms, for example, vary strong in size, shape and
furnishing.

Using a class combination without erroneous points leads
to an increase in PP and RP for the classes that already have
a higher PP in a semantic segmentation with the class Erro-
neous Points. Classes that have a lower semantic PP in the

semantic segmentation with erroneous points are recognized
worse without this class and have a lower PP.

Applying an additional TL phase, where the previous result
serves as a starting point for training with the Base method,
does not lead to an increase in accuracy. For the SMOTE
and SA methods, it result in less frequent detection of the
infrequent classes and a similar performance as with the Base
method.

VII. CONCLUSION AND OUTLOOK
The performance of DL-methods in semantic segmentation
is influenced among other factors by HPs. In this work,
the DHP, class combinations and methods to minimize the
unbalanced classes have been studied. For the investigation,
an AEE has been developed in which the established PointNet
architecture has been implemented.

The class combinations were organized in a hierarchic
order, so that a semantic segmentation is performed only
for a particular part of the point cloud, for combinations in
level 3 and 4. Infrequent classes were combined and semanti-
cally segmented afterwards. This resulted in higher semantic
and geometric accuracy for the class Building Parts and its
frequent sub classes. The class Erroneous Points leads to a
slightly higher semantic accuracy for infrequent classes.

The use of two data-based augmentation methods and two
algorithm-based methods only achieved a small increase in
semantic recognition. The applied methods usually increase
the RP, so that the infrequent classes are recognized more
often and the more frequent classes become more precise.
This is advantageous for the combinations in level 1 and 2,
because only the more frequent classes are needed for a
building modeling.

The primary goal of this work is to increase RP and PP
to over 50% for all classes using the augmentation methods.
This goal was only achieved for the combination 3-4 with the
SMOTE method. An increase in RP to a value higher than
50% is achieved with the SMOTE method additional four
times, whereas the WCCEa method fulfills it for five of the
seven combinations. This increase of the RP is achieved four
times with the WCCEb method. The SA method results in an
increase in RP and PP, but less than 50% in most cases. With
the Base method, a RP of all classes higher than 50% was
achieved twice. The primary goal was partly achieved.

In the course of the investigation, it was discovered that
the geometric similarity of classes must be considered when
forming the class combinations. Also, the choice of LNB has
a large impact on the segmentation performance. Based on
our observations, the choice of the local neighborhood and the
differences between the individual rooms in the dataset are
highly influential. The focus of further investigations should
be on these DHPs. The influence of data augmentation meth-
ods is measurable, but currently of little relevance according
to our sample BIM application. In terms of augmentation
methods, we plan to examine the impact of US methods
as well as a combination of US methods, OS methods and
weighted loss functions.
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TABLE 13. Semantic class definitions for the classes of two top levels.

TABLE 14. Semantic class definition for classes of the super-class Building Parts.

APPENDIX
CLASS DEFINITION
The class definition for the two upper levels (Fig. 14) are
shown in Table 13. The class definitions for the super-class
Building Parts are summarized in Table 14. This class defini-
tion is developed for a semantic segmentation as a basis for
creating a BIM model of a public building.
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