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Abstract. The GRACE satellites provide signals of total ter-
restrial water storage (TWS) variations over large spatial
domains at seasonal to inter-annual timescales. While the
GRACE data have been extensively and successfully used to
assess spatio-temporal changes in TWS, little effort has been
made to quantify the relative contributions of snowpacks, soil
moisture, and other components to the integrated TWS sig-
nal across northern latitudes, which is essential to gain a bet-
ter insight into the underlying hydrological processes. There-
fore, this study aims to assess which storage component dom-
inates the spatio-temporal patterns of TWS variations in the
humid regions of northern mid- to high latitudes.

To do so, we constrained a rather parsimonious hydrolog-
ical model with multiple state-of-the-art Earth observation
products including GRACE TWS anomalies, estimates of
snow water equivalent, evapotranspiration fluxes, and grid-
ded runoff estimates. The optimized model demonstrates
good agreement with observed hydrological spatio-temporal
patterns and was used to assess the relative contributions of
solid (snowpack) versus liquid (soil moisture, retained water)
storage components to total TWS variations. In particular,
we analysed whether the same storage component dominates
TWS variations at seasonal and inter-annual temporal scales,
and whether the dominating component is consistent across
small to large spatial scales.

Consistent with previous studies, we show that snow dy-
namics control seasonal TWS variations across all spatial
scales in the northern mid- to high latitudes. In contrast, we
find that inter-annual variations of TWS are dominated by
liquid water storages at all spatial scales. The relative contri-
bution of snow to inter-annual TWS variations, though, in-
creases when the spatial domain over which the storages are
averaged becomes larger. This is due to a stronger spatial co-
herence of snow dynamics that are mainly driven by tempera-
ture, as opposed to spatially more heterogeneous liquid water
anomalies, that cancel out when averaged over a larger spa-
tial domain. The findings first highlight the effectiveness of
our model–data fusion approach that jointly interprets multi-
ple Earth observation data streams with a simple model. Sec-
ondly, they reveal that the determinants of TWS variations in
snow-affected northern latitudes are scale-dependent. In par-
ticular, they seem to be not merely driven by snow variability,
but rather are determined by liquid water storages on inter-
annual timescales. We conclude that inferred driving mech-
anisms of TWS cannot simply be transferred from one scale
to another, which is of particular relevance for understanding
the short- and long-term variability of water resources.
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1 Introduction

Since the start of the mission in 2002, measurements from the
Gravity Recovery and Climate Experiment (GRACE) pro-
vide unprecedented estimates of changes in the terrestrial wa-
ter storage (TWS) across large spatial domains (Tapley et al.,
2004; Wahr et al., 2004). Due to their global coverage and
independence from surface conditions, the data represent a
unique opportunity to quantify spatio-temporal variations of
the Earth’s water resources (Alkama et al., 2010; Werth et al.,
2009). Therefore, GRACE data have been widely used to di-
agnose patterns of hydrological variability (Seo et al., 2010;
Rodell et al., 2009; Ramillien et al., 2006; Feng et al., 2013),
to validate and improve model simulations (Döll et al., 2014;
Güntner, 2008; Werth and Güntner, 2010; Chen et al., 2017;
Eicker et al., 2014; Girotto et al., 2016; Schellekens et al.,
2017), and to enhance our understanding of the water cycle
on regional to global scales (Syed et al., 2009; Felfelani et
al., 2017).

Despite the high potential of GRACE data for hydrolog-
ical applications (Döll et al., 2015; Werth et al., 2009), the
measured signal vertically integrates over all water storages
on and within the land surface, which challenges the inter-
pretation of the driving mechanism behind TWS variations.
To facilitate insight into the underlying processes, hydrolog-
ical models are frequently used to separate the measured
TWS into its different components such as groundwater,
soil moisture, and snowpacks (Felfelani et al., 2017). How-
ever, as a consequence of uncertain model structure, forcing,
and parametrization, model-based partitioning is ambiguous
(Güntner, 2008) and may lead to diverging conclusions, es-
pecially on regional scale (Long et al., 2015; Schellekens et
al., 2017).

While the uncertainties of catchment-scale hydrological
models are commonly reduced by calibrating the model pa-
rameters against discharge measurements, the majority of
macro-scale models rely on a priori parametrization. So far,
only a few models used to assess hydrological processes on
continental to global scales are constrained by observations,
and if so, they are mainly calibrated against the observed dis-
charge of large river basins (Long et al., 2015; Döll et al.,
2015). Recently, several studies showed the benefits of ad-
ditionally including GRACE TWS data in model calibration
(Werth and Güntner, 2010; Xie et al., 2012; Chen et al., 2017)
or by means of data assimilation (Eicker et al., 2014; Forman
et al., 2012; Kumar et al., 2016). However, although these
approaches improve model simulations, they do not reduce
the uncertainty in the partitioning of TWS due to the pa-
rameter equifinality problem (Güntner, 2008). Therefore, it is
desirable to include multiple observations, ideally of several
hydrological storages and fluxes, to constrain model results
(Syed et al., 2009).

Nowadays, the increasing number and quality of Earth-
observation-based products provides valuable information on
a variety of hydrological variables over large scales, and thus

facilitates the constraint of model simulations with multi-
ple data streams simultaneously. While this can provide a
more robust understanding of how variations in water stor-
ages translate into the observed TWS (Werth and Güntner,
2010), it is very challenging in practice and has rarely been
implemented.

On the one hand, this is due to the limitations and in-
herent uncertainties of each Earth-observation-based product
that need to be considered when comparing simulations and
observations. For example, satellite-based soil moisture re-
trievals only capture the upper 5 cm of soil under snow-free
conditions and therefore are difficult to compare to modelled
soil water (Lettenmaier et al., 2015), while large-scale obser-
vations of snow mass based on passive microwave sensors
are known to suffer from uncertainties in deep and wet snow
conditions (Niu et al., 2007), and multispectral sensors solely
provide estimates of snow cover in the absence of clouds
(Lettenmaier et al., 2015).

On the other hand, the application of multi-criteria cali-
bration approaches is limited by the increasing complexity
of most macro-scale hydrological models over time (Döll et
al., 2015). This high model complexity is not only associ-
ated with conceptual issues related to over-parametrization
(Jakeman and Hornberger, 1993) and large computational de-
mand, but has also been shown to not necessarily improve
model performance (Orth et al., 2015). Therefore, it is de-
sirable to implement a rather parsimonious model structure
(Sorooshian et al., 1993), especially in multi-criteria model–
data fusion approaches.

Applying multiple observational constraints is particularly
beneficial in regions where hydrological dynamics are poorly
understood and thus their representation in models varies
widely. This is the case for snow-dominated regions as the
northern high latitudes (Schellekens et al., 2017), which are
among the areas most prone to the impacts of climate change
(Tallaksen et al., 2015). These regions have been experienc-
ing the strongest surface warming over the last century glob-
ally (IPCC, 2014), a trend which is expected to be exacer-
bated in the future and to significantly change hydrologi-
cal patterns (AMAP, 2017). Therefore, solid understanding
of present hydrological processes and variations is crucial,
yet the effect of complex snow dynamics on other storages
and water resources is relatively unknown (van den Hurk et
al., 2016; Kug et al., 2015). While it has been shown that
snow mass is the primary component of seasonal variations
of TWS in large northern basins (Niu et al., 2007; Rangelova
et al., 2007), it is not known what drives the TWS variations
on inter-annual or longer timescales in these regions. More-
over, most analysis has so far focused on individual river
basins and do not provide a comprehensive picture over large
spatial scales.

In this study, we therefore aim to investigate the contri-
butions of snow compared to other (liquid) water reservoirs
to spatio-temporal variations of TWS in the northern mid- to
high latitudes. To do so, we establish a model–data fusion ap-
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Figure 1. Experiment design and considered time periods for forcing and analysis (grey) as well as model calibration and evaluation (orange).

proach that integrates multiple Earth-observation-based data
streams including GRACE TWS along with estimates of
snow water equivalent (SWE), evapotranspiration, and runoff
into a rather simple hydrological model. This model is de-
signed as a combination of standard model formulations yet
aims to maintain low complexity in order to facilitate multi-
criteria calibration and to focus on variables that can be con-
strained by observations.

First, we explain the applied methods, including the imple-
mented model, the data used, and the multi-criteria calibra-
tion approach. The following section presents and discusses
the results obtained with the optimized model. In the results,
we describe the calibrated model parameters and evaluate the
model performance with respect to observed patterns of TWS
and SWE. Subsequently, the relative contributions of snow
and liquid water storages to TWS variations are assessed
on seasonal and inter-annual scales. Thereby we first focus
on spatially integrated values across the study domain, and
secondly on the composition on local grid scale. Finally, we
summarize our findings and draw the conclusions.

2 Data and methods

The following section provides an overview on the experi-
mental set-up, followed by a more detailed description of the
model, the input data, and the methods for model calibration
and analysis.

2.1 Experiment design

To assess the composition of TWS variations in northern
mid- to high latitudes, we optimized a simple hydrological
model on daily time steps at a 1◦× 1◦ latitude–longitude res-
olution. We defined the area of interest as humid land sur-
face north of 40◦ N, excluding Greenland as well as grids
with > 90 % permanent snow cover and > 50 % water frac-
tion. Humid areas are derived based on an aridity index
AI≥ 0.65, which was calculated as the ratio of precipitation
and potential evapotranspiration (United Nations Environ-
ment, 1992). Therefore, we used the same precipitation and
potential evapotranspiration data as for model forcing (see
Sect. 2.3). To mask out grids with > 90 % permanent snow

cover and > 50 % water fraction, we applied the SYNMAP
land cover classification (Jung et al., 2006). This dataset has
an original resolution of 1 km and was used to determine the
fraction of land cover classes within each 1◦× 1◦ grid cell.

Forced with global observation-based climate data, the
model parameters were constrained for a subset of the study
domain by multiple Earth observation data products using a
multi-criteria calibration approach. These products include
terrestrial water storage anomalies as seen by the GRACE
satellites (Watkins et al., 2015; Wiese, 2015), measurements
of snow water equivalent obtained in the GlobSnow project
(Luojus et al., 2014), evapotranspiration fluxes based on
FLUXCOM (Tramontana et al., 2016), and runoff estimates
for Europe from E-RUN based on E-OBS (Gudmundsson
and Seneviratne, 2016). Once the model parameters were cal-
ibrated, we evaluated the model against the same data, tak-
ing into account the entire study domain. Finally we applied
the calibrated model to quantify the contributions of snow
and liquid water storages to the integrated TWS. Thereby we
considered different spatial domains (local grid cell and spa-
tially aggregated) and temporal scales (mean seasonal and
inter-annual variations).

Due to the differences in the temporal coverage of the ob-
servational data streams, model calibration and evaluation
were conducted for the period 2002–2012, while analysis of
TWS components covers the whole period of 2000–2014.

An overview on the experiment design and the selected
time periods is provided by Fig. 1, while the following sec-
tions give a detailed description of the individual steps.

2.2 Model description

We designed a conceptual hydrological model with low com-
plexity and a total number of 10 adjustable parameters. The
model considers major hydrological fluxes such as snowmelt,
sublimation, infiltration, evapotranspiration, and (delayed)
runoff and includes water storages in the snowpack, in the
soil, and due to delay in runoff (Fig. 2). It is forced by pre-
cipitation (P ), air temperature (T ), and net radiation (Rn)
and calculates all hydrological processes on daily time steps
for individual grid cells. A simple schematic diagram of the
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Figure 2. Schematic structure of the model with calculation of
TWS. Boxes denote the water storages (mm): snow water equiv-
alent SWE, soil moisture SM, retained water RW, liquid wa-
ter W and total terrestrial water storage TWS. Fluxes are rep-
resented by arrows. Red colour identifies forcing data: precipita-
tion P (mm day−1), air temperature T (◦C), and net radiation Rn
(MJ m−2 day−1); green colour indicates variables constrained
by observations: evapotranspiration ET (mm day−1), runoff Q
(mm day−1), SWE (mm), and TWS (mm).

model is shown in Fig. 2, while a detailed description of mod-
elled processes is provided in Sect. S1 in the Supplement.

In the first step, precipitation P is partitioned into liq-
uid precipitation (rainfall) and snowfall based on a temper-
ature threshold of 0◦ C. Accumulating snowfall increases the
snowpack represented by the snow water equivalent (mm),
which depletes by sublimation and melt if T exceeds 0 ◦C.
We calculate sublimation based on the GLEAM model (Mi-
ralles et al., 2011) and apply an extended degree-day ap-
proach to estimate snowmelt (Kustas et al., 1994). Since the
presence of snow can be highly variable in one grid cell, we
model the fractional snow cover (–) following Balsamo et
al. (2009), which is used to scale snowmelt and sublimation.

Similar to the WaterGAP model (Döll et al., 2002), incom-
ing water from rain and snowmelt is allocated to soil mois-
ture (SM) and land runoff (Qs) depending on soil moisture
conditions (Bergström, 1991). SM is represented by a one-
layer bucket storage that depletes by evapotranspiration (ET).
We calculate ET as the minimum of demand-limited poten-
tial ET following the Priestley–Taylor formula (Priestley and
Taylor, 1972) and supply-limited ET following Teuling et
al. (2006).

As land runoff results from an effective soil water recharge
formulation, the calculated runoff is essentially all the water
that cannot be stored in the soil. Thus, it implicitly contains
both surface and subsurface runoff as well as the percola-
tion to deeper water storages such as groundwater, as well
as contributions from surface water bodies. To account for
runoff contributions from slow-varying storages, we calcu-

late runoff from each grid cell (Q) by applying an expo-
nential delay function on Qs (Orth et al., 2013). Based on
mass balance, we derive the amount of retained land runoff
(RW), which implicitly accounts for the effects of several
water pools that are not explicitly represented in the model
(groundwater, lakes, wetlands, and the river storage). The
sum of RW and SM is then taken as the total liquid water stor-
age (W ). Frozen soil water is not explicitly included in the
model. Further, the model does not account for lateral flow
of water among grid cells and does not consider river routing
explicitly. While the effect of the routing can be significant
in large river basins of humid regions (Kim et al., 2009), it
is negligible on the spatial scale of a grid cell (as also shown
by small influence of the delayed storage component), and at
the temporal scale of monthly aggregated values. To ensure
that the model calibration is not affected by river routing, we
do not compare simulated runoff to measured river discharge
of large basins in our model–data fusion approach.

Finally, the sum of liquid water storage and snow is taken
as the modelled terrestrial water storage (TWSmod) of a grid
cell for the given time step. Since the delayed runoff contri-
bution is minor at the monthly timescale, we, for simplicity,
only focus on the contributions of SWE and total W to TWS
in this study.

2.3 Input data

As meteorological forcing we used globally available, daily
cumulated gridded precipitation sums (mm day−1), aver-
age air temperature (◦C), and net radiation (MJ m−2) from
March 2000 to December 2014.

Precipitation values originate from the 1◦ daily precipita-
tion product version 1.2 of the Global Precipitation Clima-
tology Project (GPCP-1DD) (Huffman et al., 2000; Huffman
and Bolvin, 2013), which combines remotely sensed pre-
cipitation and observations from gauges. Temperature was
obtained from the CRUNCEP version 6.1 dataset (Viovy,
2015), which is a merged product of Climate Research
Unit (CRU) TS.3.23 observation-based monthly climatol-
ogy (1901–2013) (New et al., 2000) and the National Cen-
ter for Environmental Prediction (NCEP) 6-hourly reanal-
ysis data (1948–2014) (Kalnay et al., 1996). Net radiation
is based on radiation fluxes of the SYN1deg Ed3A data
product of the Clouds and the Earth’s Radiant Energy Sys-
tems (CERES) program of the US National Aeronautics and
Space Administration (NASA) (Wielicki et al., 1996).

Rather than using a single data stream, e.g. discharge mea-
surements at the outlet of large continental catchments as
used in traditional large-scale hydrological studies, we cal-
ibrated the model against multiple observation-based data
streams on the grid scale. The integrated datasets include ter-
restrial water storage anomalies (TWSobs) (mm), snow wa-
ter equivalent (SWEobs) (mm), evapotranspiration (ETobs)
(mm day−1), and gridded runoff estimates for Europe (Qobs)
(mm day−1).
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TWSobs is derived from the GRACE Tellus Mascon
product version 2 based on the GRACE gravity fields
Release 05, processed at NASA’s Jet Propulsion Labora-
tory (JPL) (Watkins et al., 2015; Wiese, 2015). The GRACE
solutions were corrected for geocentric motion coefficients,
according to Swenson et al. (2008), and for variations in
Earth’s oblateness (C20 coefficient) obtained from satel-
lite laser ranging (Cheng et al., 2013). The glacial iso-
static adjustment has been accounted for using the model
by A et al. (2013). The dataset provides monthly anomalies
of equivalent water thickness relative to the January 2004–
December 2009 time-mean baseline for the period 2002–
2016. Unlike previous GRACE products based on spheri-
cal harmonic coefficients, the JPL RL05M dataset uses equal
area 3◦× 3◦ spherical cap mass concentration blocks (mas-
cons) to solve for monthly gravity field variation. To ensure
a clean separation along coastlines within land–ocean mas-
cons, a Coastline Resolution Improvement (CRI) filter has
been applied (Watkins et al., 2015). For each mascon, un-
certainties were estimated by scaling the formal covariance
matrix. To enable hydrological analysis at sub-mascon reso-
lution, we used the provided gain factors to scale the original
TWSobs values.

To gain confidence in the partitioning of the integrated
TWS, we additionally used SWE estimates from the Eu-
ropean Space Agency’s (ESA) GlobSnow SWE v2.0 prod-
uct (Luojus et al., 2014). The dataset provides daily SWE
values (mm) for the non-alpine Northern Hemisphere based
on assimilating passive microwave satellite data and ob-
served snow depth from weather stations by applying a semi-
empirical snow emission model. Compared to data from
stand-alone remote sensing approaches, GlobSnow SWE
shows superior performance, even though validation against
ground-based measurements still reveals a systematic under-
estimation of SWE under deep snow conditions due to a
change in the microwave behaviour of the snowpack (Derk-
sen et al., 2014; Takala et al., 2011; Luojus et al., 2014).

The ET product is based on FLUXCOM (http://www.
fluxcom.org, last access: 8 April 2016), i.e. upscaled esti-
mates of latent energy that were derived by integrating local
eddy covariance measurements of FLUXNET sites, remote
sensing, and meteorological data using the Random Forest
(Breiman, 2001) machine learning algorithm (Tramontana
et al., 2016). In this study, we apply the Random Forest
(Breiman, 2001) realization of FLUXCOM-RS+METEO
(see Tramontana et al., 2016 for details). While the prod-
uct captures seasonality and spatial patterns of mean an-
nual fluxes well, predictions of inter-annual variations re-
main highly uncertain (Tramontana et al., 2016). In addi-
tion, the performance of FLUXCOM ET was found to be
lower in extreme environments that are not well represented
by FLUXNET sites such as those in the Arctic. An underes-
timation of the order of 10 %–20 % of ET can be expected
owing to missing energy balance correction prior to upscal-
ing for this respective FLUXCOM ET realization. To calcu-

late ETobs (mm day−1), we assume a constant latent heat of
vaporization of 2.45 MJ kg−1.

Similar to TWS that represents the vertically integrated
water storage, observations of river discharge spatially inte-
grate hydrological processes within a basin. Thus, they pro-
vide an invaluable tool for model validation at large scales.
However, it is desirable to apply gridded products to evalu-
ate model performance at local (grid) scale. Therefore, we
used the observation-based gridded runoff product E-RUN
version 1.1 (Gudmundsson and Seneviratne, 2016) as a con-
straint for runoff processes. This dataset is based on observed
river flow from 2771 small European catchments that was
spatially disaggregated to upstream grid cells using a ma-
chine learning approach. The data provide mean monthly
runoff rates per unit area for each grid, so that river routing
is not necessary to directly compare runoff estimates with
modelled runoff. Similar to the ET data, gridded runoff esti-
mates show high accuracy for the mean seasonal cycle across
Europe, and poorer agreement regarding monthly time series
and inter-annual variations (Gudmundsson and Seneviratne,
2016).

Table 1 summarizes the main features of the data used
in this study. If required, the data streams were resampled
from their original resolution to a consistent 1◦× 1◦ latitude–
longitude grid and common daily (meteorological forcing)
and monthly (calibration data) time steps. Data preparation
further included extraction of the relevant, overlapping time
period and area under consideration.

2.4 Multi-criteria calibration

In this study, calibration is intended to identify the set of
10 model parameters (Table 2) that achieves the best fit be-
tween simulations and observations for all grid cells while
regarding all observational data simultaneously. Thereby, we
aimed to exploit the strength of each data stream, while con-
sidering known uncertainties and biases. For this purpose, we
defined a cost function that takes into account the weakness
of each observed variable and evaluates the overall model
fit with one value of total cost (see subsequent section).
To minimize total costs and thus find the optimal parame-
ter values, we applied the covariance matrix evolution strat-
egy (CMAES) (Hansen and Kern, 2004) search algorithm.
The CMAES, as an evolutionary algorithm, is a stochastic,
derivative-free method for non-linear, non-convex optimiza-
tion problems. Compared to gradient-based approaches, it
performs better on rough response surfaces with disconti-
nuities, noise, local optima, and/or outliers and is a reliable
tool even for global optimization (Hansen and Kern, 2004).
Additionally, the CMAES guided search in the parameter
space makes the algorithm less computationally demanding
than other global optimization approaches, which enumer-
ate a large number of possible solutions (e.g. Monte Carlo–
Markov chain methods) (Bayer and Finkel, 2007).
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Table 1. Overview on data applied for meteorological forcing and multi-criteria calibration and model evaluation (NH: Northern Hemi-
sphere).

Variable Dataset Coverage and resolution Reference

Spatial Temporal

Meteorological forcing

P precipitation GPCP 1dd v1.2 1◦× 1◦ daily Huffman et al. (2000),
global 1996–present Huffman et al. (2016)

T air CRUNCEP v6.1 0.5◦× 0.5◦ daily Viovy (2015)
temperature global 1901–2014

Rn net radiation CERES SYN1deg Ed3A 1◦× 1◦ 3-hourly Wielicki et al. (1996)
global Mar 2000–May 2015

Calibration and evaluation

TWS terrestrial GRACE Tellus JPL- 0.5◦× 0.5◦ monthly Watkins et al. (2015),
water storage RL05M v2 global 2002–2016 Wiese et al. (2016b)
anomalies

SWE snow water GlobSnow v2.0 0.25◦× 0.25◦ daily Luojus et al. (2014)
equivalent non-alpine NH 1979–2012

ET evapotranspiration FLUXCOM 0.5◦× 0.5◦ daily Tramontana et al. (2016)
global 1982–2013

Q runoff EU-RUN v1.1 0.5◦× 0.5◦ monthly Gudmundsson and Seneviratne (2016)
Europe 1950–2015

Table 2. Adjustable model parameters, their meaning, calibration range (theoretical range in brackets), optimized value including estimated
uncertainty, and the corresponding equation in S1.

Parameter Description Unit Range Optimized Eq.

(theoretical) value ± uncertainty (%)

Snow

psf scaling factor for snowfall – 0–3 (∞) 0.67 ±1× 10−3 (< 1 %) (S2)
snc minimum SWE that ensures complete snow mm 0–500 (∞) 80 ±19 (24 %) (S3)

cover of the grid
mt snowmelt factor for T mm K−1 day−1 0–10 2.63 ±0.26 (10 %) (S4)
mr snowmelt factor for Rn mm MJ−1 day−1 0–3 0.90 ±0.05 (6 %) (S4)
sna sublimation resistance – 0–3 0.44 ±0.01 (3 %) (S5)

Soil

sexp shape parameter of runoff–infiltration curve – 0.1–5 1.46 ±0.02 (2 %) (S12)
smax maximum soil water holding capacity mm 10–1000 (0–∞) 515 ±9 (2 %) (S12)
eta alpha coefficient in Priestley–Taylor formula – 0–3 1.20 ±0.01 (1 %) (S14)
etsup ET sensitivity and/or SM fraction available for ET day−1 0–1 0.02 ±6× 10−5 (< 1 %) (S18)

Runoff

qt recession timescale for land runoff d 0.5 (0)–100 13 ±4 (31 %) (S20)

In order to keep computational demands low and to avoid
overfitting by a very small sample size, we perform cali-
bration for a subset of 1000 randomly chosen grid cells.
Within this iterative process, the model simulations are car-
ried out on daily time steps, while costs are calculated based
on monthly values. Further, each model run includes an ini-
tialization based on 10 random years that were selected a pri-
ori.

Cost function

To objectively describe the goodness of fit, we defined a
cost function based on model efficiency (Nash and Sutcliffe,
1970), but with explicit consideration of the uncertainty σi of
the observed data stream as follows:

Hydrol. Earth Syst. Sci., 22, 4061–4082, 2018 www.hydrol-earth-syst-sci.net/22/4061/2018/
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cost=

n∑
i=1

(xobs,i−xmod,i)
2

σi

n∑
i=1

(xobs,i−xobs)
2

σi

, (1)

where xobs,i is the observed data, xobs is the average of xobs,
and xmod,i is the modelled data of each space–time point i.
Similar to model efficiency, the criterion reflects the over-
all fit in terms of variances and biases, yet with an optimal
value of 0 and a range from 0 to ∞. Costs are calculated
for each variable separately, considering only grid cells and
time steps with available observations, which vary for the
different data streams. Additionally, to overcome the sensi-
tivity to outliers arising from data uncertainties or inconsis-
tencies, we adopted a 5th-percentile outlier removal criterion
(Trischenko, 2002), i.e. the data points with the highest 5 %
residuals xobs–xmod were excluded in the cost function.

The costs of each observed variable and its modelled coun-
terpart are then added equally to derive a single value of to-
tal cost (Eq. 2). Since a perfect simulation would yield a to-
tal cost of 0, calibration aims to find the global minimum of
costtotal.

costtotal = costTWS+ costSWE+ costET+ costQ (2)

As the uncertainty σ of observational data in Eq. (1) is
adapted to best reflect the strength of the individual data
stream, we preselected the strongest aspect of the data to
be included in the cost function. Owing to the larger uncer-
tainties of ETobs and Qobs on inter-annual scales, we only
employed the grid’s mean seasonal cycles, while the full
monthly time series of gridded TWSobs and SWEobs were
taken into account.

As ETobs and Qobs do not explicitly provide uncertainty
estimates, we assume an uncertainty of 10 % and minimum
of 0.1 mm, respectively. In order to define σ of TWSobs
we utilized the spatially and temporally varying uncertainty
information provided with the GRACE data. Additionally,
the monthly values of observed and modelled TWS datasets
were translated as anomalies to a common time-mean base-
line of their overlapping period 1 January 2002–31 Decem-
ber 2012 before calculating the cost for TWS.

For SWE, we applied an absolute uncertainty of 35 mm
based on reported differences to ground measurements (Liu
et al., 2014; Luojus et al., 2014). Since GlobSnow SWE satu-
rates above approx. 100 mm (Luojus et al., 2014), we do not
penalize model simulations when both SWEobs and SWEmod
are larger than 100 mm in order to prevent the propagation of
data biases to calibrated model parameters.

For maps of the temporal average uncertainties see
Sect. S2.

2.5 Evaluation of model performance

Once the parameters were optimized, we applied the model
for the entire study domain and evaluated its performance

regarding all grid cells (6050) in terms of Pearson correla-
tion coefficient r and root mean square error RMSE for each
variable with observational data. On the one hand, the over-
all performance at local scale was assessed by calculating r
and RMSE for the monthly time series of each grid individu-
ally. On the other hand, the model performance over the en-
tire study domain was evaluated by comparing the seasonal
and inter-annual dynamics of the regional average. There-
fore, we defined inter-annual variation (IAV) as the deviation
of the monthly values from the mean seasonal cycle (MSC).
As with the calibration, we focused on the common time pe-
riod 2002–2012 and considered only the grid cells and time
steps with available observations.

In order to benchmark our model against current state-
of-the-art hydrological models, we compared its simula-
tions with the multi-model ensemble of the global hy-
drological and land surface models of the eartH2Observe
dataset (Schellekens et al., 2017). This ensemble includes
HTESSEL-CaMa (Balsamo et al., 2009), JULES (Best et al.,
2011; Clark et al., 2011), LISFLOOD (van der Knijff et al.,
2010), ORCHIDEE (Krinner et al., 2005; Ngo-Duc et al.,
2007; d’Orgeval et al., 2008), SURFEX-TRIP (Alkama et
al., 2010; Decharme et al., 2013), W3RA (van Dijk and War-
ren, 2010; van Dijk et al., 2014), WaterGAP3 (Flörke et al.,
2013; Döll et al., 2009), PCR-GLOBWB (van Beek et al.,
2011; Wada et al., 2014), and SWBM (Orth et al., 2013). For
consistency, we processed the model estimates in the same
manner as our model simulations to directly compare mod-
elled SWE and TWS to observations from GlobSnow and
GRACE, respectively. While each model provides simulated
SWE, they vary in the representation of other storage com-
ponents. We calculated modelled TWS for each model by
summing up the available water storage components. Thus,
the variables contributing to modelled TWS vary between
the models, which impedes detailed comparison. Addition-
ally, we calculated the multi-model mean of SWE and TWS
simulations.

2.6 Analysis of TWS variations and composition

Finally, the contribution of snow and liquid water to seasonal
and inter-annual TWS variability was quantified across spa-
tial scales. For this, we ran the model with optimized pa-
rameters for the entire study domain from 2000 to 2014 and
translated simulated storages as anomalies to the time-mean
baseline. As in the model evaluation, the MSC and IAV of
SWEmod, W , and TWSmod anomalies were calculated at lo-
cal scale for each grid individually and as spatial average
over all grid cells. To assess storage variability, the variance
in the MSC and the IAV of each storage component was com-
puted. Assuming negligible covariance of snow and liquid
water (see Sect. S8), their relative contribution to TWS vari-
ance was calculated as the contribution ratio CR:
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CR=
var(W)

var(TWSmod)
−

var(SWEmod)

var(TWSmod)
. (3)

While CR= 0 indicates equal contribution of snow and liq-
uid water to TWS variability, positive (negative) values of CR
imply that variations of TWSmod mainly result from vari-
ations in liquid water (snowpack), with CR=+1 meaning
that all variation is explained by liquid water and CR=−1
suggests determination solely by snow.

From Eq. (3) and the assumption that var(W)+
var(SWE)= var(TWS), the percentage contribution of liq-
uid water storages to the variability of TWS can be inferred
as CW:

CW=
var(W)

var(TWSmod)
=

CR+ 1
2

. (4)

As this study intends to analyse the effects of storage com-
ponents on TWS at different spatial scales (local grid scale
and large (regional) spatial averages), the difference in spa-
tial heterogeneities of these components is considered. Some
storage components, e.g. soil moisture anomalies, have much
larger spatial variability than others. Due to this high small-
scale heterogeneity, the effect on larger regional scale might
be smaller than expected, as different local scale hetero-
geneities compensate for each other when the regional av-
erages are calculated (Jung et al., 2017). Thus, we assessed
the spatial coherence of simulated patterns of SWE and W
by calculating the proportion of total positive and total neg-
ative covariances among grid cells (Eqs. 4 and 5 in Jung et
al., 2017). If the sum of positive covariances outweighs the
sum of negative covariances, it implies some degree of spa-
tial coherence of the anomalies. Spatial coherence of anoma-
lies then causes a larger variance in the averaged anomalies
compared to the sum of the variances of individual grid cells.
This assessment of spatial coherence of SWE andW anoma-
lies allows for understanding different contributions of SWE
and W to TWS variability at local scale compared to the re-
gional scale.

3 Results and discussion

The following sections present and discuss the results ob-
tained with the calibrated model. First, we review the cali-
bration approach and the optimized parameter values. Then
the model is validated with respect to its overall perfor-
mance at grid scale, as well as the reproduction of average
seasonal (MSC) and inter-annual (IAV) dynamics. Subse-
quently, we assess the driving component of spatially inte-
grated TWS variations and the relative contributions of snow
and liquid water to TWS variability on local scale. Finally,
we summarize the results across spatio-temporal scales.

3.1 Model optimization

Optimization of the model identifies the parameter values
listed in Table 2 as being most suitable regarding all data
constraints simultaneously. The CMAES search algorithm
converged after 3272 function evaluations as no further im-
provement of coststotal could be achieved, which suggests a
reliable estimate of the global optimal parameter set. The in-
dividual cost terms obtained with default and optimized pa-
rameter values are contrasted in Table S1 in the Supplement.
Overall, this parameter set obtained for a subset of 1000 ran-
dom grids is reasonable with respect to reported “plausible”
parameter ranges, with none of them reaching their physi-
cally and/or technically defined upper and lower calibration
bounds.

In detail, snowfall is reduced by psf to 67 % of precip-
itation occurring at T < 0 ◦C. This reduction agrees with
Behrangi et al. (2016), who found that GPCP overestimated
snowfall over Eurasian high latitudes by about 20 % com-
pared to other precipitation products. Similar, overestimation
of precipitation undercatch correction in GPCP has been re-
ported by Swenson (2010). Taking into account the mismatch
in temporal and spatial domains, as well as the experimental
definitions, reducing GPCP snowfall in our study by 33 %
is roughly consistent with both studies. Therefore, psf al-
lows the reduction of inconsistencies between the precipi-
tation forcing and the water storages as given by GlobSnow
SWE and GRACE TWS.

Further, each grid is assumed to be completely covered by
snow if SWE≥ 80 mm (snc). On the one hand, the snowpack
can be reduced by sublimation, with sna = 0.44 indicating
relatively high sublimation resistance, compared to a default
of sna = 0.95 proposed by Miralles et al. (2011). The diver-
gence probably results from interaction with snowmelt, as
net radiation also contributes to melt with 0.9 mm MJ−1 (mr)
if T exceeds 0 ◦C. On the other hand, melt is mainly induced
by temperature, as the estimated degree-day factor (mt ) is
2.63 mm K−1, which is close to typical values of 3 mm K−1

(Müller Schmied et al., 2014; Stacke, 2011). These parameter
interactions underline an equifinality issue between modelled
snowmelt and sublimation due to missing data constraints,
resulting in larger parameter uncertainties for sna , mr, and
mt . However, for the objective of this study it is not primarily
relevant whether sublimation- or radiation-induced melt de-
creases the snowpack, as the total snow loss amount remains
relatively unchanged for different parameter combinations.

The maximum soil water holding capacity is set to 515 mm
after calibration, a comparatively high value that is likely
to include storages in surface water bodies such as lakes
and wetlands within our study domain. The optimized value
of sexp is 1.46, which suggests a non-linear relationship be-
tween soil moisture storage and runoff generation. For the
same amount of incoming water (rainfall and snowmelt), the
non-linear relationship produces a smaller runoff and larger
infiltration than a linear relationship (sexp = 1).
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Regarding evapotranspiration, the alpha coefficient (eta) in
the Priestley–Taylor formula is generally taken as 1.26 for
well-watered crops based on experimental observations
(Priestley and Taylor, 1972; Eichinger et al., 1996). Thus,
the optimized value of 1.20 for eta reflects a plausible value.
Further, etsup indicates that 2 % of the available soil moisture
can evaporate per day (including transpiration), which lies
within the range of site-specific ET sensitivities from 0.001
to 0.5 day−1 and is close to the median value (5 %) (Teuling
et al., 2006).

Finally, the calibrated recession timescale that delays land
runoff is 13 days (qt ). Compared to much smaller alpine
catchments for which Orth et al. (2013) reported qt of 2
days, the longer delay coefficients are reasonable at a spa-
tial resolution of 1◦× 1◦ grids, because the elevation gra-
dients are much smaller within a large spatial area. At first
glance, 13 days appear to be quite a short effective time pe-
riod, as the delay is supposed to comprise contributions from
much slower depleting reservoirs, such as lakes and deep
groundwater. However, implementing and calibrating a sim-
ple groundwater storage, which is recharged with some pro-
portion of land runoff and linearly depletes over time, led to
similar retardation times.

The uncertainty in the optimized parameter vector was es-
timated by quantifying each parameter’s standard error as the
square root of the product between the diagonal elements of
the parameters’ covariance matrix (calculated from the Ja-
cobian matrix) and the sum of residual squares according to
Omlin and Reichert (1999) and Draper and Smith (1981).
The resulting relative parameter uncertainty is particularly
instructive for comparing how well individual parameters
could be constrained.

Most parameters were well constrained (Table 2), sug-
gesting that our model–data fusion method, fed by multiple
observation streams, succeeded in reducing the initial the-
oretical parameter ranges (up to 500 %) to much narrower
ranges. Nonetheless, some parameters have a larger uncer-
tainty range than others (e.g. qt , snc, mt ), which may high-
light a limitation in suitable observations to constrain them,
as well as a lower sensitivity of the model results and the
cost function used. Further, given that the model only consid-
ers the spatial variability of climate, the uncertainty in global
parameters obtained from inversion may reflect the natural
variations in these parameters that arise from differences in
local land surface characteristics such as topography or land
cover.

We adopted the calibrated parameter values as global con-
stants for model simulations over the entire study domain.
Even though the globally uniform parameters may not pro-
vide perfect simulation for all grids over a large study do-
main, this approach represents a compromise between a pri-
ori parametrization of the model and its calibration at local
or regional (e.g. basin) scale. While local and regional model
calibration enables good adaption to geographic characteris-
tics, it easily leads to overfitting of the model and thus propa-

gates the constraints’ inherent errors and uncertainties in the
modelling result. As these uncertainties often vary in space,
globally uniform parameter values diminish overfitting un-
certainties. In addition, calibration for several independent
grids is computationally demanding and subsequently re-
quires a parameter regionalization approach (He et al., 2011).
Since such approaches are not commonly accepted (Sood and
Smakhtin, 2015; Bierkens et al., 2015), macro-scale models
mostly apply a priori parameters based on empirical values
or on expert knowledge, which may yet lead to suboptimal
simulations (Beck et al., 2016; Sood and Smakhtin, 2015).

3.2 Model performance

For model validation, we used the optimized parameter val-
ues to simulate hydrological fluxes and states of the 2002–
2012 period over the entire study domain and evaluated the
model results against the observation-based data of TWS,
SWE, ET, and Q.

In general, all observed patterns are reproduced very well,
taking into account the specific data weaknesses. We achieve
a “near-perfect” correlation of 0.99 and 0.94 for mean sea-
sonal variations of ET and Q, respectively. The median
RMSE of mean seasonal ET is 11 and 9.5 mm month−1

for Q, which represent 15 % resp. 17 % of the average ob-
served annual amplitude. At the inter-annual scale, though,
larger discrepancies exist, which at least partly arise from
larger uncertainties in ETobs and Qobs (Sect. S4). Thus, we
assume high confidence in modelled ET and Q fluxes and
subsequently focus on evaluation of the water storages TWS
and SWE.

3.2.1 Performance on local grid scale

Overall, the model performs well compared to the observa-
tions of monthly time series of SWE and TWS (Fig. 3). More
than half of the grid cells obtain correlation values higher
than 0.74 between SWEobs and SWEmod. In general, the me-
dian RMSE is 20 mm, which is smaller than the average
uncertainty of 35 mm in SWEobs. The correlation reduces
in lower latitudes where seasonal snow accumulation and
thus variability is small. Further, the correlation is also rela-
tively weaker in arctic North America and the Rocky Moun-
tains, while larger deviations between observed and modelled
snow quantities centre around mountainous and coastal re-
gions (e.g. Rocky Mountains, Kamchatka), and regions with
the largest seasonal snow accumulation (Labrador Peninsula,
North Siberian Lowland and northern West Siberian Plain).
There are several reasons for this relatively poorer perfor-
mance. First, the GlobSnow measurements do not cover
mountainous areas due to the sub-grid variability of snow
depth and high uncertainties in the microwave measurements
in complex alpine terrains (Takala et al., 2011). As the re-
sampling and the coarse resolution of each grid in this study
compound a distinct alpine or non-alpine classification, these
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Figure 3. Pearson correlation coefficient r (a, c) and root mean square error RMSE (b, d) between monthly values of modelled SWE and
GlobSnow SWE (a, b), as well as modelled TWS and GRACE TWS (c, d) for the period 2002–2012 and for each 1◦× 1◦ grid cell of the
study domain. Values of r are truncated to the range 0–1 (a, c), and values of RMSE to the range 0–100 mm (b, d).

uncertainties leak to the surrounding areas. Second, neither
the input forcing data nor our model include the sub-grid
scale heterogeneity of climate (e.g. precipitation and temper-
ature) and hydrological processes, which may be significant
in near-mountain or coastal regions. Additionally, the accu-
racy of observed large snow accumulation is limited as the
radar-retrieval methods tend to saturate at large SWEobs val-
ues, which then leads to large RMSE of the model simula-
tion.

Similar to SWE, more than half of the grid cells show
a strong correlation of 0.71 between TWSobs and TWSmod,
which reflects a realistic temporal variation in the model sim-
ulation. Compared to SWE, the RMSE of TWS is somewhat
higher, yet the median of 43 mm still reflects the range of
±22 mm average uncertainty in GRACE TWSobs of the study
domain (Wiese, 2015). However, when comparing GRACE

TWS with model simulations, several aspects have to be
considered. First, TWSobs as an integrated signal comprises
all water storages, not all of which are (sufficiently) rep-
resented in the model structure. Second, although GRACE
TWS passed through various pre-processing steps, the mod-
els that account for postglacial rebound or leakage between
neighbouring grid cells, for example, introduce their own un-
certainties and do not remove the effects completely. Further,
with a native resolution of 3◦, uncertainties remain for grids
that comprise large variability at sub-grid scale and depend
on the model used to estimate GRACE scaling factors (Wiese
et al., 2016a). Altogether this is reflected in higher RMSE
in arctic regions (e.g. surrounding the Hudson Bay), as well
as in heterogeneous coastal and mountainous regions. Addi-
tionally, our model shows a weaker performance in subarctic
and arctic wetlands, and in central North America and east-
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Figure 4. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 as well as inter-annual variability (IAV, difference between
monthly values and the MSC) for (a) SWE and (b) TWS. In (a), SWEmod consistent refers to modelled SWE considering only data points
with available SWEobs, while SWEmod all incorporates all time steps for all grids of the study domain. Correlation r is calculated only for
consistent data points. In (b) IAV, TWSobs monthly value shows the original IAV of individual TWSobs months, while TWSobs and TWSmod
are smoothed using a 3-month average moving window filter. Correlation r refers to the smoothed values. For the MSC in (b) no smoothing
is applied.

ern Eurasia. The latter are both relatively dry regions that are
rather dominated by inter-annual TWS variations (Humphrey
et al., 2016). Discrepancies between TWSobs and TWSmod
thus relate to a low signal-to-noise ratio in TWSobs due to
small seasonal TWS variations. However, the anthropogenic
influence for irrigational withdrawal is very large in these re-
gions, yet such processes are not considered in our model.
We also lack explicit surface water storages (including wet-
land dynamics), which may be the reason for poorer perfor-
mance, especially in North American wetland regions.

3.2.2 Performance of the spatially integrated
simulations

Since the aim of this study is to analyse the composition of
TWS across temporal scales, we additionally evaluated aver-
age (spatially integrated) MSC and IAV of SWE and TWS
(Fig. 4). While the mean seasonal variations of both observa-
tional data streams are relatively robust and have been used
for model evaluation before (Alkama et al., 2010; Döll et

al., 2014; Schellekens et al., 2017; Zhang et al., 2017), their
inter-annual variations are more uncertain and contain con-
siderable noise. This clearly reduces the information content
in the observational data, so that we evaluate the IAV in more
qualitative terms.

As with the comparison at grid scale, the spatially av-
eraged SWEmod compares well to SWEobs, with a corre-
lation of 0.95 suggesting a good reproduction of seasonal
snow accumulation and ablation processes (Fig. 4a). Owing
to the high uncertainty of SWEobs peaks due to signal sat-
uration, the higher amplitude of SWEmod seems reasonable.
Although inter-annual variations are not as well represented
as the MSC, general tendencies, e.g. increasing/decreasing
positive/negative anomalies, coincide.

Similar to SWE, the spatial average of TWS shows high
correlation of 0.91 for seasonal variations, with positive
anomalies from December to May–June and negative anoma-
lies during summer and autumn months (Fig. 4b). Even
though the modelled amplitude is slightly larger than the ob-
served one, it stays within the uncertainty range of TWSobs
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for most months, suggesting reliable simulations. However,
TWSmod precedes TWSobs on average by 1 month, reach-
ing the maximum in March instead of April, and the mini-
mum in August instead of September. A similar phase shift
of 1 month between GRACE TWS and modelled TWS has
been reported by several state-of-the-art global models (Döll
et al., 2014; Schellekens et al., 2017). It should be noted
that some areas such as eastern North America, Kamchatka,
Scandinavia, and western Europe do not show phase differ-
ences, while the lag in south-eastern Eurasia is even larger,
as already suggested by lower overall correlation (Fig. S5).
In general, the disagreement in timing is attributed to the
lack of sufficient water storages and the delay mechanism
within the model, so that the modelled system reacts too fast
(Schellekens et al., 2017; Döll et al., 2014; Schmidt et al.,
2008). Thus, we implemented model variants with an ex-
plicit groundwater storage to delay depletion of TWS, with
spatially varying soil properties to better represent hetero-
geneous infiltration and runoff rates, as well as a variant
that applied a more sophisticated approach to calculate snow
dynamics based on energy balance. Despite the efforts, we
achieved no improvement in terms of reducing the phase
shift. Therefore, the question arose as to whether it is not pri-
marily the model formulation that prevents correction of the
temporal delay, but rather the combination of forcing data
and observational constraints. To further preclude possible
errors due to such data inconsistencies, e.g. between GRACE
TWS and GlobSnow SWE, we excluded GlobSnow SWE
data from calibration. Although this could slightly improve
the agreement of TWS MSC, it led to unrealistic behaviour
of snow dynamics, and thus did not offer any advantages.
Besides, we found no major differences in the magnitude or
spatial distribution of the phase shift resulting from the pre-
cipitation forcing (GPCP vs. WFDEI) or compared to other
GRACE solutions (Sect. S6). Further, the lag in TWS sim-
ulation can occur due to several mechanisms and processes
that are not yet considered in the current model structure,
such as lateral flow and surface storages (wetland and lakes),
vegetation processes, glacier melt, and human influence with
dams and reservoirs. However, we do not observe a general
or systematic relationship with either elevation, land cover
type, soil properties, or the occurrence of lakes and wetlands.
There is a tendency that larger negative lags occur more fre-
quently in regions with sporadic permafrost, but the ranges of
permafrost fractions are large for both short and long lags in
TWS, suggesting a complex interaction between permafrost
extent and its effect on lag in seasonal TWS dynamics. Fi-
nally, potential biases in the timing of ET due to snow cover
and/or vegetation processes may also affect the timing of
the depletion of SM and TWS. Additionally, high uncertain-
ties of the precipitation forcing and GlobSnow SWE prod-
uct in (near-)mountain regions, as well as leakage errors in
the GRACE signal influence the accuracy of both TWSobs
and TWSmod. Although these shortcomings should be kept
in mind, we assumed that they do not significantly affect our

results regarding to the relative contributions of snow and
liquid water to TWS.

In terms of inter-annual variations, the variance in monthly
TWSobs values is highly underestimated by modelled TWS,
which on the one hand relates to noise within the GRACE
signal, but on the other hand may again reflect missing pro-
cess representation in the model. To reduce the noise, we
applied a 3-month moving-average filter on the monthly
time series. The smoothed time series then shows fairly
good agreement of inter-annual dynamics, with correlation
r = 0.68 (Fig. 4b, solid lines). Only the amplitude of the
large negative anomaly in 2003 is not captured by the model.
While the spatial pattern of this negative TWS anomaly can
be simulated, the forcing data do not show large anomalies
in 2003, so that the model fails to reproduce the magnitude
of observed TWS, especially in North America. Issues with
the precipitation forcing are further suggested by a negative
SWE anomaly of on average 5 mm (see Fig. 4a), indicated
in the GlobSnow data, that is not captured by the model, ei-
ther. The reason why this snow anomaly is not captured by
the forcing remains unclear at this point – it persists when
using the WFDEI forcing dataset. Besides, the agreement
between GRACE and modelled TWS IAV gets substantially
better when isolating inter-annual variations by removing the
trends in both TWS time series (increase in correlation r
from to 0.77). This suggests that the trend in GRACE TWS
is to some extent either subject to observational issues or rep-
resents a process that is not captured by the model.

3.2.3 Comparison with the eartH2Observe model
ensemble

Compared to the model ensemble of the eartH2Observe
dataset, we achieve an equally good or better performance for
the spatially integrated SWE and TWS on both MSC and IAV
scales (Figs. 5 and S6). Besides, the majority of the model
ensemble obtains similar spatial patterns of performance cri-
teria for SWE as well as for TWS (not shown).

The average observed MSC of SWE is captured with a cor-
relation in the range of 0.79 (PCR-GLOBWB) to 0.99 (OR-
CHIDEE), whereby only ORCHIDEE shows a better corre-
lation than our model (r = 0.95). However, modelled snow
accumulation exceeds that of SWEobs for the majority of the
models, which is also reflected in higher RMSE (Figs. S6–
S8). On IAV scales, the correlation is lower in general, yet
again we obtain a better fit (r = 0.39) than the model en-
semble (r = 0.12 – ORCHIDEE – to 0.28 – LISFLOOD).
However, it remains uncertain whether the discrepancies be-
tween SWEobs and SWEmod represent model deficiencies or
evolve from issues related to the GlobSnow SWE retrieval
(Schellekens et al., 2017).

Regarding average seasonal TWS variations, our model
performs as well as the model ensemble (r = 0.91), with
the range of the eartH2Observe ensemble spanning from
r = 0.83 (ORCHIDEE) to r = 1.00 (PCR-GLOBWB). The
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Figure 5. Pearson correlation for the spatially integrated SWE (a)
and TWS (b) achieved by this study compared to the model ensem-
ble of the eartH2Observe dataset across temporal scales. In each
box, the edges represent the 25 % and 75 % percentiles of the model
ensemble, while the solid black line marks the performance of the
ensemble mean.

amplitudes in the MSC of TWSmod (95 to 156 mm) are
comparable to the observed amplitude of 118 mm, except
for SWBM, whose amplitude is twice as large as that of
TWSobs. This discrepancy is reflected in relatively high
RMSE values for SWBM (Fig. S8). The model ensemble pre-
cedes observed seasonal TWS variations by 1 to 1.4 months,
similar to our estimates of TWSmod (−1.1 month). Only
PCR-GLOBWB, with a higher correlation than other mod-
els, shows a smaller average lag of less than 1 month
(−0.3 months). This minor difference results from balanc-
ing out the preceding and succeeding of TWSmod in different
regions over the study domain. Additionally, Schellekens et
al. (2017) found that PCR-GLOBWB shows unrealistic snow
accumulation over time in Europe and boreal North Amer-
ica. Except for PCR-GLOBWB, the majority of the models
obtain comparable spatial pattern of preceding TWS, with
small differences at regional scales. Even though the differ-
ence in the MSC is commonly attributed to the lack or inad-
equate size and number of water storages (Kim et al., 2009),
a relationship between model performance and model com-
plexity is not obvious. Relatively complex models, such as
HTESSEL, SURFEX, and JULES, show similar phase dif-
ferences to simpler models, such as SWBM and our model
(−1.0 and −1.1 months, respectively). Since Schellekens et
al. (2017) found the largest phase differences in cold regions,
they postulate the implementation of processes associated
with snow as an important factor for this phase lag. In this
context, constraining the model with snow observations as

done in our study should increase confidence in the repre-
sentation of snow processes. Nevertheless, we obtain a simi-
lar phase difference, which points to the importance of other
hydrological processes and storages even in snow-affected
regions.

Although our modelling framework assimilates informa-
tion from more data streams compared to the model sim-
ulations in the EartH2Observe ensemble, e.g. GRACE and
GlobSnow data, we only used a subset of 1000 random
grid cells to constrain the model parameters. Despite this,
our model performs better than the EartH2Observe ensem-
ble over the whole domain (6050 grids). This improvement
in model performance is also consistent among several mod-
elled variables and not limited to storage components only.
This suggests that remote sensing data, with larger spatial
coverage than site measurements, have large potential to im-
prove hydrological simulations over a large domain. In ad-
dition, remote sensing data also hold potential beyond their
use as an observational constraint and can provide informa-
tion on identifying and formulating functional relationships
across several spatial and temporal scales, which should be
addressed in future efforts.

All in all, we conclude that our simple model with a global
uniform parameter set achieves considerably good perfor-
mance regarding observed patterns, especially compared to
well-established, more complex models, and with respect to
its simplicity and given uncertainties of forcing and calibra-
tion data. Thus, we found the model results to be suitable to
analyse the composition of TWS across spatial and temporal
scales.

3.3 TWS variation and composition

3.3.1 Spatially integrated

To assess the average composition of seasonal and inter-
annual TWS variations, we spatially integrated mod-
elled TWS anomalies as well as modelled anomalies of
snow (SWE) and liquid water storages (W ) across all grids
of the study domain (Fig. 6).

Regarding the MSC, all water storages show a clear sea-
sonal pattern. The maximum TWSmod in March coincides
with the maximum in SWEmod. On the contrary, W re-
mains nearly constant throughout the winter, related to the
lack of evapotranspiration losses and missing infiltration
due to prevailing solid precipitation. Starting from March,
snowmelt decreases SWEmod, and thus TWSmod, progres-
sively. Thereby TWSmod declines with some delay, as posi-
tiveW anomalies in April and May suggest buffering of melt
water in the soil and on the surface before being transferred
to runoff or evapotranspirated. During the summer months,
snow is absent, while W decreases due to higher summer-
time evapotranspiration, and preceding runoff of temporar-
ily stored water. With W and SWEmod being at their mini-
mum in August–September, TWSmod reaches its minimum,
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Figure 6. Spatially averaged mean seasonal cycle (MSC) of the period 2000–2014 as well as inter-annual variability (IAV, difference between
monthly values and the MSC) for modelled TWS, SWE, and W anomalies to the time-mean of 2000–2014.

too, before starting to increase again in September–October.
This rise relates to dropping evapotranspiration rates in com-
bination with more precipitation input (increasing W ) and
beginning snow accumulation (increasing SWEmod). Despite
the interplay of SWEmod and W on seasonal variations of
the integrated TWSmod, the amplitude of W (62 mm) is
considerably lower than the one of SWEmod (92 mm) and
TWSmod (144 mm). Thus, the seasonal accumulation of snow
largely determines the magnitude of TWSmod. Additionally,
W anomalies at least partly result from snowmelt, whereas
liquid water does not influence the snowpack. Thus, we con-
clude that average seasonal TWS variations in northern mid-
to high latitudes are mainly driven by annual snow accumu-
lation and ablation processes. The CR (Eq. 3) based on the
spatially averaged MSC underlines this, as CR=−0.26 in-
dicates that variations in SWEmod explain 63 % of seasonal
TWSmod variability (CW= 37 %). This agrees with previous
findings of Güntner et al. (2007), who found that SWE con-
tributes to 68 % of seasonal TWS variations in cold regions
using the WaterGAP model.

On IAV scales, the pattern seems less homogeneous
(Fig. 6). In contrast to the MSC, CR= 0.25 suggests a larger
influence from liquid water anomalies (CW= 62.5 %) than
snow anomalies on inter-annual TWS variations. Thereby,
we found the main contributor to TWSmod anomalies be-
ing dependent on the phase of previous precipitation anoma-
lies, in that they define whether snowfall anomalies lead to
anomalies in the SWEmod, or whether rain anomalies directly
influence W . Additionally, precipitation input shows larger
inter-annual variability than evapotranspiration or runoff
losses, and thus dominates the change in water storages on
IAV scales (not shown). Large TWSmod anomalies, such as
in 2005, 2010, and 2012, follow anomalies in wintertime pre-
cipitation and go along with anomalies in SWEmod (Fig. 6).
On the contrary, summertime anomalies related toW are usu-
ally less pronounced in their magnitude (e.g. 2003, 2006).
We attribute this to the accumulating effects of snow stor-

age anomalies over the cold period, as they integrate all
anomalies of previous cold months while the impact of
evapotranspiration and runoff is reduced. Accordingly, the
largest TWSmod anomalies are obtained in early spring be-
fore snowmelt starts and when snow accumulation is high-
est. Nevertheless, since W is influenced by the quantity
of snowmelt, anomalies in SWEmod implicate subsequent
changes in W . Additionally, snowpack anomalies are elim-
inated each summer, while W anomalies dominate the sum-
mer. As a result, W anomalies in any case affect TWSmod
variability on IAV scales when analysing the spatial average
composition.

Besides, Güntner et al. (2007) demonstrated a shift from
short-term storages with high seasonality such as SWE on
MSC scales towards storages with longer delay times on
IAV scales. Although modelled W mainly represents soil
moisture, it implicitly includes surface water and groundwa-
ter storages. Thus, its contribution of CW= 62.5 % to inter-
annual TWS variations is roughly comparable to 55 % con-
tribution from soil moisture (27 %) and surface water (28 %)
in cold regions, found by Güntner et al. (2007). Despite this,
the relatively large influence of surface water bodies shown
by Güntner et al. (2007) suggests that the lack of explicit
surface water storages in this study may contribute to the re-
maining discrepancies with GRACE and the lower magni-
tude of modelled inter-annual TWS variability compared to
GRACE estimates.

3.3.2 Local grid scale

Based on CR (Eq. 3), Fig. 7 shows the relative contribu-
tion of SWEmod and W variances to total TWSmod variabil-
ity on MSC and IAV timescales for each grid. Thereby, blue
colours represent prevailing SWEmod variations as indicated
by CR< 0, while red colours show the dominance of varia-
tions in W (CR> 0).
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Accordingly, variations in the MSC of TWSmod are mainly
influenced by snow in northern regions, with the mean
CR=−0.30 indicating that on average 65 % of seasonal
TWSmod variability can be explained by SWEmod (CW=
35 %) (Fig. 7a). The contribution of the variation in liquid
water in general increases southwards and prevails seasonal
TWSmod variability south of approximately 50◦ latitude. An
exception is Europe, where the influence of W reaches up to
60◦ latitude, and where the transition to snow-dominated re-
gions is more gradual. Since the calculated variations in RW
are low, the majority of modelled W represents variability
in SM.

This obtained pattern confirms earlier studies that showed
the dominance of snow in northern latitudes in North Amer-
ica (Rangelova et al., 2007), and prevailing soil moisture dy-
namics further south, e.g. in the Mississippi basin (Ngo-Duc
et al., 2007; Güntner et al., 2007). Besides, the north extent
of dominating W reflects the temperature gradient in North
America and Eurasia. Comparison with average annual tem-
perature suggests that for T > 10 ◦C variability of W domi-
nates, while for T < 0 ◦C SWEmod dynamics prevail. This is
plausible, as temperature determines annual snow accumu-
lation, and the relative contribution of liquid water increases
in the absence of snow. Yet, it further highlights the depen-
dency on the temperature dataset used, especially in a model
that calculates snowfall and snowmelt based on temperature
thresholds as ours does.

Opposed to the MSC, the variability of W dominates
TWSmod variations on IAV scales in the entire study domain,
as is clearly indicated by average CR= 0.63 (Fig. 7b). Inter-
annual variations of SWEmod seem to be relevant only in re-
gions that receive the highest annual snow amounts, such as
the Canadian Arctic Archipelago, the northern west coast of
North America, north-eastern Siberia, and the northern West
Siberian Plain. Due to a prolonged cold period there, the time
span with rainfall and evapotranspiration is short, decreasing
the occurrence of potential variability in W . However, even
in these regions the influence of SWEmod is low compared to
the MSC. This reduced importance of snow on inter-annual
scales again agrees with the findings of Güntner et al. (2007).

Apart from that, and since we already showed a link
between average TWSmod IAV and previous precipitation
anomalies, and as precipitation represents the main model
forcing data, we investigated the relative contribution of rain-
fall and snowfall to inter-annual variability of total precip-
itation (Fig. 8). Similar to the composition of TWSmod on
local scale, rain anomalies prevail for most of the grid cells
(mean CR= 0.68). This is consistent when snowfall is not
scaled by psf and thus suggests that the greater contribution
of W to inter-annual variations of TWSmod on local scale
relates to highly variable (liquid) summertime precipitation
events. On the contrary, monthly snowfall seems less vari-
able between years, resulting in less pronounced variations
in SWEmod compared to W . Exceptions are regions of high
maximum SWEmod, which accordingly show a considerable

relative contribution of snow to the inter-annual TWSmod
variability.

3.3.3 Comparison of different scales

Figure 9 summarizes the above-presented contributions to
TWSmod variability across spatial and temporal scales. As
explained in the previous sections, we obtained two scale-
dependent differences in the relative contribution to TWSmod
variability: (1) in general between temporal scales, and
(2) for inter-annual variability between spatial scales.

Regarding (1), Fig. 9 emphasizes again that seasonal vari-
ations of TWSmod are mostly determined by seasonal snow
dynamics, while on inter-annual scales TWSmod variability
mainly originates from variations in liquid water. As previ-
ously stated, determination by SWEmod dynamics on MSC
scales relates to the pronounced magnitude of seasonal snow
variations in northern mid- to high latitudes. In comparison,
average monthly changes in W were found to be minor and
additionally influenced by snow ablation. Thereby, the spa-
tially integrated CR (black star) roughly agrees with the av-
erage of local contributions (dashed line).

Concerning IAV scales, we found that the determination of
TWSmod variability byW relates to larger inter-annual varia-
tions in liquid precipitation compared to snowfall. However,
considerable differences between spatial scales exist (Fig. 9).
Opposed to the MSC, the spatially integrated CR (black star)
for IAV is not within the interquartile range of local CR.
This indicates a relatively larger effect of SWEmod variations
when looking on the spatially integrated values compared to
local values. Liquid water storages are highly heterogeneous
in space, mainly due to heterogeneous rainfall anomalies. On
the contrary, snow variability is affected by fewer factors,
and mainly regulated by a range of temperature values that
control freezing and melting. Temperature anomalies in turn
show sizeable spatial coherence across large areas. To assess
the spatial coherence of W compared to SWEmod, we calcu-
lated the proportion of total positive and total negative co-
variances among grid cells (Fig. 10).

For inter-annual variations of SWEmod, the sum of pos-
itive covariances prevails (Fig. 10a), whereas positive and
negative values are more in balance for W (Fig. 10b). This
suggests that SWEmod anomalies are more spatially coher-
ent than anomalies of W . Thus, when spatially averaging,
the more homogeneous snow anomaly patterns gain impor-
tance. On the contrary, opposed anomalies of W compensate
for each other more strongly. This leads to a relatively larger
influence of SWEmod to the spatially integrated inter-annual
TWSmod variability compared to when analysing the local
grid scale. Since positive covariation clearly dominates for
temperature anomalies, the spatial coherence of SWEmod re-
lates to their homogeneous patterns (Fig. 10c). Similar toW ,
positive covariances only slightly outweigh year-to-year vari-
ations in rainfall (Fig. 10d). The same is true for snowfall
(not shown). Therefore, the spatial coherence of SWEmod
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Figure 7. Relative contribution based on CR (Eq. 3) of modelled snow (SWE) and liquid water (W ) storage anomalies to (a) mean seasonal
variations from 2000 to 2014 of modelled TWS anomalies, and (b) inter-annual variations of modelled TWS anomalies for each grid cell of
the study domain.

Figure 8. Relative contribution based on CR (Eq. 3) of modelled
snowfall and rainfall to total precipitation (P ) anomalies on inter-
annual (IAV) scales for each grid cell of the study domain.

anomalies is less pronounced than for temperature, as snow
is additionally influenced by snowfall anomalies. Regarding
W anomalies, this indicates that the spatial heterogeneity in
our model, which misses explicit information on soils, topog-
raphy, etc., mainly results from inhomogeneous patterns in
rainfall anomalies. Thereby, the slightly more balanced posi-
tive and negative covariations forW compared to rainfall can
be ascribed to the additional impact of primarily radiation-
driven evapotranspiration to SM.

In order to ensure that these results are not artificially
caused by the forcing data, we did the same analysis running
the model with rain and snowfall estimates of the WFDEI

Contribution to TWS variability
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Figure 9. Relative contribution of snow (SWE) and liquid wa-
ter (W ) to TWS variability on different spatial (local grid scale, spa-
tially integrated) and temporal (mean seasonal MSC, inter-annual
IAV) scales based on CR (Eq. 3). The box plots represent the distri-
bution of grid cell CR, with the dashed line marking the correspond-
ing average. The star represents the CR calculated for the spatially
integrated values.

product (Weedon et al., 2014). Since we observed the same
patterns, we assume our findings to be robust (Sect. S7.1).

3.4 Limitations of the approach

Although the model of this study reproduces observed hy-
drological patterns well and achieves comparable results to
state-of-the-art models, its low complexity and the applied

Hydrol. Earth Syst. Sci., 22, 4061–4082, 2018 www.hydrol-earth-syst-sci.net/22/4061/2018/



T. Trautmann et al.: Understanding terrestrial water storage variations in northern latitudes across scales 4077

SWE anomalies

34 %

66 %

W anomalies

44 %

56 %

Temperature
21 %

79 %

Rainfall

41 %

59 %

(a) (b)

(c) (d)

Figure 10. Proportion of total positive (grey) and negative (or-
ange) covariances among grid cells for inter-annual variations of
(a) snow (SWE), (b) liquid water storages (W ), (c) temperature,
and (d) rainfall.

calibration approach are associated with limitations in terms
of process understanding and predictive power.

First of all, the simple structure only allows inferences
on represented processes, which likely include effects of
fluxes and storages not considered explicitly. For example,
the model does not resolve individual liquid water storages
such as deep groundwater and surface water explicitly. As
discussed previously, our delayed land runoff comprises var-
ious (intermediate) storages and delay times, and thus can-
not be associated with one distinct storage component. Even
though soil moisture is distinguished from these slowly vary-
ing reservoirs, its quantity and pattern have not been directly
validated. Future research is required to increase confidence
by including remote-sensing-based data of soil moisture in
calibration and/or validation. However, these satellite data
still have limited value as the microwave signals can only
capture moisture in the upper 5 cm of soil and do not pro-
vide estimates under snow cover and dense vegetation (Döll
et al., 2015; Lettenmaier et al., 2015). Therefore, a multi-
layer soil scheme is needed to compare model outputs to
satellite-derived soil moisture estimates, as was successfully
demonstrated by Albergel et al. (2017) for example.

Further, the model does not include any human-induced
changes in water storages, which yet contribute to observed
TWS variability in many regions (Döll et al., 2015; Rodell et
al., 2015). Other simplified or ignored hydrological processes
include the coincident occurrence of rain and snowfall, liquid
water capacity of snow, interception, freeze–thaw dynamics
within the soil, capillary rise, and other surface-groundwater
interactions, the effect of vegetation or other surface prop-
erties, and lateral flow from one grid cell to another. In the
downstream areas of large basins especially, the latter repre-

sents a potential input that may significantly affect total TWS
(Kim et al., 2009) and thus may contribute to the discrepancy
between TWSobs and TWSmod in some regions. Besides, the
model does not account for spatial variability of topography
and land surface characteristics.

With regards to model parameters, we apply a global uni-
form parameter set and do not regionalize the parameters
according to spatially distributed physio-geographical char-
acteristics. In contrast, most macro-scale hydrological mod-
els include spatially distributed soil properties to define pa-
rameters related to infiltration, soil water holding capacity,
and percolation, as well as vegetation types to assess the
effects of different plant functional types on evapotranspi-
ration and canopy storage (Sood and Smakhtin, 2015). Our
model only implicitly considers the effects of vegetation, for
example on ET, but not its spatial variability, as the asso-
ciated impacts are included in the observational constraint.
Spatial variability of model parameters might affect the rel-
ative contributions of different storage components to TWS
variability at different spatial scales. However, the compar-
ison with eartH2Observe models, which generally involve
spatial heterogeneity in model parameters, suggests that the
main conclusions remain unchanged. Additionally, we want
to highlight that the spatial distribution of model parameters
depends on assumptions and some degree of simplification
as well and thus does not necessarily improve model perfor-
mance compared to a global uniform parameter set obtained
from multiple observational data. Further, as we encountered
issues with parameter equifinality, especially between mod-
elled snowmelt and sublimation, future efforts should include
a stronger utilization of runoff data in the calibration and
validation process. This would help to better constrain wa-
ter fluxes to the atmosphere and liquid water fluxes, which
can contribute to the runoff.

Finally, though the implemented cost function explicitly
accounts for the uncertainty of the calibration data and addi-
tional uncertainties of other input data, their processing and
characteristics remain partly unaddressed.

4 Conclusion

In this study, we assessed the relative contributions of snow-
pack versus soil and retained water variations to the vari-
ability of total terrestrial water storage (TWS) for northern
mid- to high latitudes. To do so, we constrained a parsi-
monious hydrological model with multi-criteria calibration
against multiple Earth observation data streams, including
TWS from GRACE satellites and snowpack estimates from
GlobSnow. The optimized model showed considerably good
agreement with observed patterns of hydrological fluxes and
states, and was found to perform comparably to or better
than simulations from state-of-the-art macro-scale hydrolog-
ical models. This underlines the potential of simple hydro-
logical models tied to observational data streams as powerful
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tools to diagnose and understand large-scale water cycle pat-
terns. Further, it highlights the benefits of considering mul-
tiple complementary data constraints to overcome their indi-
vidual shortcomings.

Consistent with previous studies, we found that seasonal
TWS variations are dominated by the development of snow-
packs during winter months in most places of the mid- to
high northern latitudes. In contrast to this seasonal pattern,
our study reveals that not snow but anomalies in liquid wa-
ter storages, mainly comprising soil moisture, drive inter-
annual TWS variations in almost the entire spatial domain.
This counter-intuitive pattern was found to relate to larger
rainfall anomalies compared to snowfall anomalies.

Apart from the timescale-dependent dominant controls
on TWS variations, we additionally observed different be-
haviour across spatial scales. In terms of seasonal variations,
the spatially integrated contribution reflects the average of
the spatial domain. However, and more interestingly, the rel-
ative contribution of snowpack variations to total TWS inter-
annual anomalies appears to be larger when spatially inte-
grated than at local scale. We found this pattern results from
stronger spatial coherence of snowpack anomalies compared
to anomalies in other storages, such that the latter cancel
out more strongly than the former when calculating an av-
erage across large spatial domains. The stronger spatial co-
herence of snowpack anomalies seems to be driven by the
nature of spatially coherent temperature anomalies that de-
termine snow accumulation and melt. These findings imply
that patterns from large-scale integrated signals should not
be associated with locally operating processes, since spatial
covariations of climatic variables can confound the picture.

Overall, our study underlines the benefits of GRACE TWS
as a model constraint, and moreover, stresses the importance
of temporal and spatial scale when assessing the determi-
nants of TWS variability. Clearly, insights obtained at one
scale cannot be transferred to another, as is often (uninten-
tionally) done. Hence, TWS variations in northern latitudes
seem to be not merely subject to snow variability, but rather
are driven by soil moisture on inter-annual scales – which
may be of considerable importance when assessing long-
term water availability in the context of climate changes.
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