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ABSTRACT: 

 

In the analysis and visualization of spatial information, quite often a data classification is applied. The choice of different methods, 

together with the choice of a different number of classes, the consideration of open classes and the treatment of outliers, can produce 

very different results. Hence, it is desirable to quantify the uncertainties that inevitably arise in this process. So far, almost only non-

spatial properties have been considered. In addition to an extension of this set of statistical measures, this article also aims to define 

those which are concerned with the preservation of spatial patterns (e.g., local extreme values) as well as with visual perception. An 

empirical study will investigate the behavior of all these measures, for example depending on the classification method used or the 

number of classes. Also, correlations between the uncertainty measures and between the measures and statistical properties of the 

input data are examined. Finally, is will be shown that the uncertainty measures can not only be used individually or combined for 

pure evaluation purposes, but also for a-posteriori improvement of classification methods. 

 

 

1. MOTIVATION 

In the analysis and visualization of spatial phenomena, data 

classification can be helpful in many regards, for example, to 

reduce the volume of data, to emphasize spatial differences or 

to facilitate the reading of values. A typical example of data 

classification arises in the course of the production of 

choropleth maps for the graphical representation of areal 

quantities. Various classification methods are available that 

group the original values according to equidistance, quantiles, 

natural breaks or other criteria. It is well known that the choice 

of different methods, together with the choice of a different 

number of classes, the consideration of open classes and the 

treatment of outliers, can produce very different results. This 

leads in the case of choropleth maps to very different 

visualizations and thus to different cognitive impressions and 

decisions. 

 

The overall aim of this paper is to quantify the uncertainties that 

inevitably arise in the generalization process of spatial data 

classification.  

 

Based on a brief literature review (chapter 2) existing but also 

supplementary measures are presented that cover the various 

tasks occurring in the analysis and visualization workflows 

(chapter 3). Firstly, an extended set of non-spatial measures will 

be presented. However, these statistical parameters do not 

satisfy all requirements. Therefore, additional measures are 

presented that assess the preservation of certain spatial 

characteristics (e.g., preservation of local extreme values). 

Furthermore, key figures are presented that describe the visual 

perception uncertainty. Most of these measures give not only a 

global rating for a specific classification (i.e., with a predefined 

method and number of classes), but also specific measures for 

each individual class. 

 

In chapter 4 an empirical investigation is performed in order to 

describe the behavior of the uncertainty measures depending on 

the number classes and used classification methods, the 

correlations between uncertainty measures as well as differences 

between uncertainty measures based on various input data 

characteristics. Chapter 5 demonstrates possible further usages 

of these measures, either in the context of a multi-criteria 

analysis, or as starting point for class-specific a-posteriori 

optimization of a given classification result. 

 

2. PREVIOUS WORK 

In the literature, the topic of data classification for cartographic 

purposes is comprehensively treated - here, reference is made to 

the textbook by Slocum et al. (2009) as well as the reviews by 

Cromley & Cromley (1996) or Coulsen (1987). 

 

A number of empirical studies are also concerned with the 

comparison of methods for addressing typical map-use tasks 

(e.g., Goldsberry & Battersby 2009, Brewer & Pickle 2002, 

Mersey, 1990). In addition, interactive tools have been 

developed to find the "optimal" configuration for a given 

application; for example, the use of linked views between the 

data histogram and the choropleth map (Andrienko et al., 

2001). While the methods implemented in common software 

work on a data-driven basis, relatively little was published on 

the neglect of the spatial context or the use of a task-oriented 

approach; Armstrong et al. (2003) give an overview. 

 

The description of the uncertainty of a data classification refers 

almost exclusively to non-spatial properties (e.g., Jenks & Cas-

pall, 1971; Armstrong et al., 2003; Andrienko et al., 2001). 

Examples of this (e.g., Tabular Accuracy Index or Goodness of 

Variance Fit) are picked up in section 3.1. Bregt & Wopereis 

(1990) investigate the visual assessment in comparison to vari-

ous complexity measures. 
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3. UNCERTAINTY MEASURES 

There are a number of proposals for statistical measures related 

to data classification in the literature. In most cases they 

describe global statistical behavior neglecting uncertainties 

related to spatial patterns or visual perception. In the following 

an extended set of measures will be presented that will consist 

of within-class as well as global descriptions of a classification. 

 

3.1 Non-spatial measures 

First, the within-class homogeneity can be described, i.e. the 

variation of values belonging to one specific class. The 

underlying idea is to keep the variance as low as possible so 

that all values with one class value are really as similar or 

identical as the association to one class value implicates. 

Examples for homogeneity measures are the 

 Tabular Accuracy Index (TAI), taking the absolute 

deviations from the class mean value into account (Jenks & 

Caspall, 1971); 

 Goodness of Variance Fit (GVF), considering the squared 

deviations from the class mean (Dent, 1999); 

 Entropy approach, applying the logarithmic function to the 

absolute deviation from the mean (Andrienko et al., 2001). 

 

For all measures the deviation from the class mean values can 

also be replaced with the median in order to get less influence 

of outliers. Our empirical testing (see chapter 4) showed 

significant correlations between these measures so that a 

reduction to one indicator appears reasonable. For the 

remainder of this paper we use the Goodness of Variance Fit 

according to Dent (1999) as class homogeneity measure. The 

GVFc for a specific class c and GVFg for the total data set are 

calculated as follows: 

 
where: 

 : i-th data value 

: mean value within class c 

: number of classes 

: number of values in class c 

: total number of values in total data set 

: standard deviation of values of total data set 

 

An increasing GVF value (with a maximum of +1) corresponds 

to increasing within-class homogeneity. 

 

Instead of considering the within-class homogeneity it is also 

possible to evaluate the between-class heterogeneity, i.e. the 

goal is to create well distinguishable classes. Sun et al. (2013) 

propose a probability-based separability measure for units (e.g., 

polygons) that are associated to different classes. In the 

following, a simpler approach will be pursued: It is based on the 

demand that each value should have a smaller difference to its 

current class (c) value compared to the difference to the two 

adjacent classes (c+1; c-1). The respective differences of a value 

x amount to 

 
 

where: 

: class value of current classification (average of upper and 

lower class limit value) 

: class value of subsequent class 

: class value of preceding class 

 

From this a comparison is made between the allocations to the 

current class and the closer adjacent class. If d is larger than 

zero the value is placed best in the current class. Finally, the 

ratio of values that are placed best in the current class to the 

total number of values can be computed for each class (NNc) 

and the entire data set (NNg) as follows: 

 
A large value of NN (with a maximum of +1) points to a desired 

large number of values that are categorized to the current class, 

which corresponds to a good between-class heterogeneity. By 

definition, the equidistance method always shows NN values of 

+1. 

 

In literature, less attention is paid to the deviation of the 

original values from the corresponding class value (i.e., the 

average of upper and lower class limits). Even if the within-

class homogeneity is very low it can happen that the values are 

very close to the one or other limit value so that the 

representation is rather weak. The within-class matching 

values MATc for a specific class c and MATg for the total data 

are introduced as follows: 

 
where: 

: class value (average of upper and lower class limit value) 

 

Again, a MAT value towards +1 corresponds to a good 

matching. 
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In many applications, special attention is paid to the design and 

expressiveness of border classes. One goal can be the isolation 

of global extreme values in order to make these uniquely 

visible in choropleth maps. Hence, the Global Extreme Value 

index (GEX), which is a global measure, looks for the number 

of elements in the first and last classes as follows: 

 
where: 

: number of data values in lowest class 

: number of data values in highest class 

 

A large GEX value corresponds to a small number of values in 

the border classes, with the maximum value of +1 that points to 

the exclusive appearance of one and only one value in both 

border classes. Vice versa, a quantile classification produces a 

(near) equal distribution of values among classes so that GEX 

will be (close to) zero. 

 

3.2 Spatial measures 

The above mentioned classification methods are data-driven, 

i.e., the intervals are determined solely on the basis of the 

present frequency distribution of the original values. The spatial 

context of the underlying data, which is relevant for many 

applications, is completely neglected when using such 

divisions. Accordingly, so far there are hardly any measures that 

describe the uncertainty of a data classification looking for the 

preservation of spatial properties. One exception is the 

Boundary Accuracy Index (BAI) that evaluates values that are 

separated by common class boundaries (Armstrong et al., 

2003). Hence, further spatial patterns of interest should be 

considered during the data classification stage. Within the 

project aChor (Schiewe & Chang, 2018) new classification 

methods are developed that also use measures describing the 

success rate for preserving specific spatial patterns: 

 Local extreme values are defined as polygons that show a 

larger (smaller) value compared to all neighboring 

polygons. Consequently, the data classification should not 

aggregate neighboring polygons into the same class. The 

Local extreme value preservation rate (LEX) calculates the 

ratio of preserved local extreme values after classification 

compared to the total number of local extreme values 

(Schiewe, 2017). 

 Hot or Cold spots are defined as polygons with high (low) 

values that are surrounded in a certain neighborhood with 

polygons also showing high (low) values. The hot / cold 

spot polygons are determined by standard methods such as 

the Getis Ord index (and derived z-values in conjunction 

with the application of a corresponding threshold value; 

Getis & Ord, 1992). From this a binary classification (and 

labeling) in hot / cold spots as well as other polygons is 

possible. Similar to the LEX measure, the Hot/Cold Spot 

preservation rate (HCS) is defined by the ratio of 

preserved Hot/Cold spots in comparison to all detected 

spots. 

 Edges are defined as polygon boundaries that show a 

significant value difference. Because the aforementioned 

BAI measure shows some disadvantages, the alternative 

Edge Preserving Index (EPI) has been developed 

(Schiewe, 2016). It compares the preservation (or even, 

enhancement) of neighboring values compared to resulting 

class values. 

 

3.3 Visual perception measures 

When it comes to visualization of classified data, visual 

perception is strongly influenced by dominant colors. This can 

be desired in the case of an actual imbalance of class 

occupation, or undesired if large regions are perceived 

more prominent than small regions and the task requires that 

regions should be perceived equally. Hence, the global visual 

balance over all classes should be quantified. Armstrong et al. 

(2003) propose a Gini coefficient to express this. Alternatively, 

for each class the area fraction is calculated (i.e., the total area 

of all class members divided by the total area of the data set) 

and compared to an equal area fraction (i.e., the total area 

divided by the number m of classes). For normalization 

purposes the sum of all class related differences is related to the 

worst case, i.e. the situation that only one class covers the entire 

area (i.e. the absolute difference amounts to 1-1/m) and all 

remaining classes are empty (i.e., (m-1)  1/m) – leading to the 

factor (1/(2-2/m)). With that, the Global Visual Balance (GVB) 

is calculated as follows: 

 
where: 

: total area of data set 

: total area of class 

 

GVB values towards +1 correspond to an equal area 

distribution within the visualized classification result. 

 

A typical problem with choropleth maps is the within-class 

visual imbalance that is caused by huge area differences within 

one class (“Russia vs Andorra effect”). For this purpose, only 

the largest and smallest areas within a class have to be 

considered. Since this effect is evident especially in border 

classes (represented by the most intense hues), a weighting 

towards these classes is performed in the course of determining 

a global measure. Here, a distinction can still be made between 

the use of a sequential color scheme (increasing the weight from 

lowest to highest class) and a bi-polar color scheme (increasing 

the weight from middle to border classes). In the following 

formulas, a sequential color scheme as well as an exponential 

increase is modeled for the Class Visual Balance measure for 

each single class (CVBc) and the overall data set (CVBg): 

 
 

where: 

,  : maximum and minimum value within class c 
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,  : maximum and minimum value within entire data 

set 

 

CVB values towards +1 correspond to low area differences 

within classes. 

4. EMPIRICAL INVESTIGATION OF MEASURES 

4.1 Methodology and Data 

Based on the aforementioned compilation of the different 

uncertainty measures an empirical investigation is performed in 

order to describe the behavior of measures depending on the 

 

 

Data set Rainfall Average Age Social Index 

Number of polygons (n) 438 439 847 

 

 

 

 

Statistical 

measures for 

selected 

attribute 

 

Histogram 
 

right axis: attribute value 

upper axis: frequency 

   
RMSE 34,9 1,7 2,9 

MAX-MIN 204,9 9,5 40,7 

RMSE / (MAX-MIN) 0,17 0,18 0,07 

IQR / (MAX-MIN) 0,20 0,25 0,06 

Spatial auto-

correlation 

Moran Index 

(p-value) 

0.81 

(p < 0.001) 

0.59 

(p < 0.001) 

0.05 

(p < 0.001) 

Local extreme 

values 

Absolute number 167 159 271 

Relative number (to n) 0,38 0,36 0,32 
Data sources: 

Rainfall: in Germany, per county July 2017, interpolated from: https://www.dwd.de/DE/leistungen/cdcftp/cdcftp.html?nn=16102 (Climate Data Center) 

Average age: in Germany, per county in 2011. https://www.destatis.de/DE/Methoden/Zensus_/Downloads/2F_BevoelkerungAlterGeschlecht.html 

Social Index: Social monitoring Hamburg 2016. http://suche.transparenz.hamburg.de/dataset/sozialmonitoring-integrierte-stadtteilentwicklung-bericht-2016-anhang 
 

Table 1. (Geo-)statistical properties of used data sets  

(RMSE: root mean square error; MAX: Maximum value; MIN: minimum value; IQR: interquartile range) 

 

 aChor Equidistance Quantiles Jenks 

6
 c
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1
2
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Figure. 1. Example choropleth maps for one and the same data set (“Rainfall”), using different classification methods (from left to 

right) and class numbers (from top to bottom) 
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number classes and used classification methods as well as the 

correlations between measures and differences between 

measures based on various input data characteristics. 

 

In addition to the typical classification methods equidistance, 

quantiles and natural breaks, also an own method designed for 

the preservation of local extreme values is used – as a 

representative for methods that considers spatial properties. 

This aChor method is described in detail in Schiewe (2017). 

For each method classifications are calculated for 4, 6, 8, 10 

and 12 classes, which cover the typical range for choropleth 

maps taking the visual perception of human users into account 

(Slocum et al., 2009). 

 

Three data sets with different (geo-)statistical properties are 

used for the analysis. Table 1 summarizes the respective 

characteristic values. For illustration purposes, figure 1 shows 

classifications for the ”Rainfall” data set using the four different 

methods and two selected class numbers.  

 

4.2 Results and Discussion 

Figure 2 presents a graphical summary of results – showing the 

various uncertainty measures for the data sets under 

investigation. 

 

If one looks at the relationship between uncertainty measures 

and the number of classes (m) the following conclusions can 

be drawn: 

 Within-class homogeneity (GVFg) increases with the 

increasing number of classes because the class intervals are 

getting smaller. This corresponds to the expectation - with 

the following theoretical extreme case: if m equals n 

(number of elements), then the variance within each class 

is zero and GVFg becomes +1. 

 Within-class matching shows the same effect: MATg 

increases with increasing m. 

 Between-class heterogeneity (NNg) increases with nc 

(theoretically: if m = c, then NNg = 1 – i.e., all values are 

in their “best” class); however, for the rather small class 

numbers under investigation (m << n) a strict trend cannot 

be observed. 

 Isolation of global extreme values (GEX) works perfectly 

if m = n. If m << n, a slightly monotonically increasing 

trend can be observed (with the exception of the quantiles 

method, see below). 

 Preservation of local extreme values (LEX) gets better 

with increasing m. For all methods a monotonically 

increasing trend can be observed. 

 Global visual imbalance (GVB) appears rather constant 

within each method, independently of the class numbers. 

 Within-class visual imbalance (CVBg) shows a 

monotonically increase. If m increases, also the probability 

decreases that large value differences appear within a class 

(again, with the extreme case of m = n: no value difference 

at all because only one value remains in each of the 

classes). 

 

All in all, most of the measures show improved properties with 

increasing number of classes (i.e., increasing measures towards 

+1). In practice, however, this contradicts to the requirement of 

a rather small number of classes that is needed to guarantee 

sufficient visual differentiability. 

Secondly, the behavior of each of the uncertainty measures 

depending on the data classification method is analyzed:  

 Within-class homogeneity (GVFg) shows rather similar 

trend behavior and values (generally, deviations smaller 

than 0.1) for all methods – with Jenks being always the 

best method and quantiles always the worst one. In the 

latter case this can be justified with the absence of an equal 

distribution of values of all data sets (see histograms in 

table 1).  

 Within-class matching (MATg) shows very similar 

behavior compared to GVFg.  

 Between-class heterogeneity (NNg) is, by definition, 

always perfect for equidistance method (i.e., NNg = 1). For 

the other methods large deviations can be observed for 

small class numbers (4 and 6), while for larger class 

numbers deviations are smaller than 0.2. Following 

equidistance, Jenks gives best values (NNg larger than 0.9). 

 Isolation of global extreme values (GEX) shows strong 

variations between classification methods: By definition, 

quantiles (with comparably strong occupation of border 

classes) shows weak GEX values close to zero. In two out 

of three examples, equidistance shows best results. 

 Preservation of local extreme values (LEX) shows 

monotonically increasing measures with increasing number 

of classes for all methods. By purpose, aChor always 

shows significantly best results (with differences up to 0.3 

to all other methods). Quantiles, Jenks and equidistance 

are always following in this order. 

 Global visual imbalance (GVB) appears best with 

quantiles, which is due to the fact that the data sets do not 

show huge area differences (no clear “Russia-Andorra” 

effect). Equidistance always delivers worst results. 

 Within-class visual imbalance (CVBg) is, as expected, 

always worst with the quantile classification because 

border classes have relatively strong occupation compared 

to other methods. Here, equidistance shows best results in 

all examples. 

 

Summarizing this set of tests, it can be concluded that there is 

no “perfect” classification method. Instead, a task-oriented 

selection is needed. With the data sets used here, non-spatial 

measures have been met well with equidistance, while for 

preserving spatial patterns (like local extreme values) specific 

algorithms (like aChor) should be chosen. With respect to 

visual perception, contradictory results can be observed: By 

definition, quantiles deliver best results for global and worst 

results for within-class balance. 

 

For practical purposes, it is desirable to reduce the huge set of 

uncertainty measures and to avoid dependencies between them, 

respectively. Hence, investigations are also conducted to 

evaluate the correlation between different uncertainty 

measures: 

 Within-class homogeneity (GVFg) and within-class 

matching (MATg) show correlation coefficients of (close to 

or exactly) +1. This is understandable because the mean 

value of class and the class value have a constant offset.  

 High correlations (larger than +0.9) can also be found 

between GVFg and LEX, MATg and LEX, GVFg and 

CVBg, MATg and CVBg. 

 On the other hand, the global visual balance shows 

variable (and mostly low) correlations with other 

measures. 
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Measure Rainfall Average Age Social Index 

GVFg 

 
  

MATg 

 

consider different value 

ranges of upper axes 

   
NNg 

 

 

   

GEX 

   
LEX 

   
GVB 

   
CVBg 

   

Classification methods:                                                                                            aChor  Equidistant  Quantile  Jenks 

 

Figure 2: Graphical summary of empirical investigation results: Uncertainty measures (from top to bottom) using different data sets 

(from left to right). Right axis of each diagram shows number of classes (ranging from 4 to 12, using an interval of 2), upper axis 

shows uncertainty measure (always with maximum value of +1, representing the “best” case) 

 

From this it can be concluded that general evaluations can 

reduce the set of non-spatial measures to one or two measures 

(e.g., GVFg and NN). However, if a more detailed – and class-

specific evaluation and post-processing of the classification is 

desired (see chapter 5), the whole set of parameters is still of 

interest. 

 

Also for practical purposes it is desirable to predict uncertainty 

properties directly from the input data set. For this reason the 

differences between uncertainty measures for the three data 

sets are calculated and brought into connection with  statistical 

parameters of input data (see table 1).  
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 Large differences (larger than |-0.5| on average) can be 

observed between data set “Social Index” and the other 

two for within-class matching (MATg). The significant 

lower value for “Social Index” can be justified with the 

smaller RMSE/span width ratio (0.07 against 0.17 or 0.18, 

resp.). This leads to smaller class intervals in the middle of 

the data set and broader classes towards to the boundaries. 

Due the large total number of polygons (n) in this data set 

these border classes are still well occupied and show very 

large internal variations that affect the overall measure. A 

similar effect (but with smaller differences in the order of 

0.1 to 0.3 on average) can be observed for within-class 

homogeneity (GVFg). 

 The aforementioned histogram appearance of “Social 

Index” (accumulation in the middle, strong reduction 

towards boundaries) also leads to a better preservation of 

global extreme values compared to the other two data sets. 

 Differences up to |-0.5| are detected for the local extreme 

value preservation (LEX) between “Rainfall” and the other 

two data sets. This reduced preservation rate is based on 

the large RMSE in this data set that leads to a stronger 

variation of values around local extreme value polygons 

and thus to a more difficult definition of class breaks that 

are able to separate all neighboring polygons. 

 

As these described examples show that there are significant and 

logical dependencies between data set parameters and 

uncertainty measures. A thorough analysis of input data 

statistics (as given in table 1) can also speed up the analysis 

process and help to some extent to find appropriate 

classification methods (see chapter 5). 

 

 

 

 

 

5. FURTHER USAGE OF UNCERTAINTY MEASURES 

5.1 Multi-criteria analysis 

So far, the various uncertainty measures have been treated 

independently. Apparently, the analysis and selection of 

classification parameters (especially, method and number of 

classes) is a multi-criteria process. Using the measures, a linear 

combination as target function with user-defined weights can be 

applied. If the weights are normalized (i.e., their sum is set to 

1), the overall measure still has a maximum (“best”) value of 

+1. Obviously, setting the weights needs pre-knowledge that is 

dependent on the application requirements. 

 

The problem of the reduction to an overall criterion is that the 

individual target values are strictly not interconvertible and the 

weighting factors are subjective. Therefore, evolutionary or, 

even more specific, genetic algorithms serve as alternative 

approaches. For example, Pareto optimization performs a 

separate optimization for all combinations of weighting factors. 

The idea is pursued that one criterion is only improved until 

another is worsened. The uncertainty measures presented here 

can also be introduced into such a Pareto optimization. 

 

5.2 Optimization of classified data sets 

The presented uncertainty measures can not only serve the a-

posteriori evaluation of the classifications, but also to improve 

them. A simple, but brute-force, method is to compute multiple 

classifications and select the best variant based on the derived 

uncertainty measures. 

 

Alternatively, a calculated variant can also be optimized by 

considering the class-specific uncertainty measures in an a-

posteriori manner. Figure 3 illustrates the idea: For a given 

variant, a significant drop in uncertainty (here: NNc) is observed 

for the right border class. The shift of the relevant class 

boundaries and redistribution of the values leads to an 

improvement of the class-specific and thus also of the global 

uncertainty measure. If not only one measure is to be taken into 

account the above-mentioned Pareto principle can again be 

used for the optimization. 

 

 

 Given solution Improved solution 

Histogram (blue) with class 

breaks (red) 

  
Class-specific uncertainty 

measure NNc (right axis: class 

number) 

  

Global measure NNg 0.86 0.95 

 

Fig. 3. Improvement of given solution (here: aChor, 6 classes) 

through shifting class breaks (two on the right hand side) and redistribution of values 
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6. SUMMARY AND FUTURE WORK 

This paper aimed to define an extended and task-oriented set of 

uncertainty measures to quantify generalization effects as part 

of a data classification process. Not only non-spatial statistical 

properties were considered, but also the preservation of spatial 

patterns as well as uncertainties in the course of visual 

perception. The presented set of measures is not complete - 

especially for the latter two aspects extensions and further 

empirical investigations are possible and necessary. 

 

A recommendation for a standardized procedure or selection of 

uncertainty measures based on the tests carried out here is not 

possible. It can be expected that due to the variable usages for 

the classified data, an adapted application-specific selection 

must take place. For this purpose, user-friendly instructions or 

interfaces are still missing. 

 

It was also pointed out that uncertainty measures can be used 

not only for pure evaluation purposes but also for the 

optimization of existing classification results. Here the class-

specific uncertainty measures are very helpful. Future work will 

address the design and implementation of appropriate 

evolutionary algorithms that address relevant cases (e.g., 

optimization of between-class heterogeneity). 
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