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Abstract: Large amounts of point data are being generated and depicted in web maps, in particular promoted by the 

availability of Volunteered Geographic Information (VGI).  This data volume causes usability problems for the visual 

presentation and exploration, especially by decreasing rendering performance and increasing geometric or semantic point 

clutter. Typically, generalization techniques are applied in order to overcome these clutter problems. Appropriate 

constraint-based approaches have been developed for static and single displays.  

Due to the increasing amount and relevance of multi-temporal point data, the aim of this contribution is to present a so 

far missing conceptual framework that consists of constraints related to change point analysis. These constraints describe 

the effects of the generalization on preservation and legibility of change information. Here, different types of change 

point analysis are differentiated, namely: existential changes, changes of semantic properties, and changes of spatial 

properties. For this purpose, difference frames between two given frames of the multi-temporal data set are used as a 

model of the mental representation of change information.  

The resulting constraints can be used to describe and to compare the suitability of various generalization operations for 

specific tasks. However, in a later stage they can also trigger the generalization processes as such. This could lead to a 

new way of thinking, since the optimization of generalization processes should work on difference frames rather than on 

single views. 
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1. Introduction 

More and more point data representing points of interest 

(POIs), other qualities (such as accident locations) or 

quantities (such as noise levels) is being generated. This is 

mainly due to the increasing volume and relevance of 

Volunteered Geographic Information (VGI). With a 

variety of services and software solutions, especially 

online map-based mashups with Application 

Programming Interfaces (APIs), both expert and non-

expert users can collect and  present data over the internet 

(Huang and Gartner, 2012). As VGI point data is acquired 

over longer periods of time or even in real time, multi-

temporal visualizations become more and more relevant. 

At this point it is of interest to visually detect and analyze 

changes in multi-temporal point displays.  

Especially VGI point data typically has an enormous 

volume as well as semantic and temporal heterogeneity. 

Both aspects can drastically reduce usability in visual 

presentation and exploration, leading to 

 a decline in rendering performance;  

 the effect of geometric point clutter (fig.1-left), 

i.e., a very dense or even overlapping display of 

markers or symbols resulting in unsatisfactory 

visual appearance and affecting recognition and 

exploration performance; 

 

Figure 1. Left: Geometric point clutter (McDonald’s stores in 
Hamburg. Right: Semantic point clutter (hotel prices in 
Hamburg); source: Google Maps) 

 

 the effect of limited overview and slow readabil-

ity due to too many different (or even non-com-

parable) values or categories (hereafter referred 

to as semantic point clutter, fig.1-right). 

Typically, generalization techniques are applied in order to 

overcome these clutter problems. While these processes 

improve legibility, they might also disturb relevant change 

information. In order to describe effects of the 

generalization on legibility and preservation of change 

information, constraints and related measures are 

introduced (Stoter et al., 2014). They can be used to assess 

the (possibly contradictory) effects of (different) 

generalization workflows with respect to a required 

change analysis task. 
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So far, constraints were only defined for static displays. In 

light of the aforementioned relevance of multi-temporal 

data, the aim of this contribution is to outline a conceptual 

framework consisting of constraints related to given types 

of change point analysis. These constraints are not just 

designed for description and comparison purposes, but 

also for triggering generalization processes as such in a 

later stage. 

The remainder of this paper is organized as follows: 

Section 2 describes related work on point generalization, 

especially the constraint-based approach. The general 

framework for visual change point detection and analysis 

is set out in section 3, while section 4 gives a detailed 

description of selected preservation and legibility 

constraints as a function of change types. Finally, section 

5 gives a brief discussion and outline of future work. 

 

2. Previous work 

Due to geometric or semantic point clutter frames, i.e. 

individual images of the entire animation sequence, have 

to undergo generalization processes. In cartography, 

different sets of fundamental generalization operations 

have been defined by various authors (e.g., McMaster and 

Shea, 1992; Hake et al., 2002; Slocum et al., 2009). From 

an information visualization perspective, Ellis and Dix 

(2007) proposed a taxonomy of techniques for the purpose 

of point clutter reduction. Korpi and Ahonen-Rainio 

(2013) presented a synthesis of cartographic and 

information visualization operations and demonstrated a 

significant overlap. With the focus on the problem of point 

clutter, the following generalization operations (or 

combinations of these) are of major importance: 

aggregation, simplification, selection, displacement, 

spatial distortion, data classification.  

These generalization operations form the building blocks 

for an overall workflow. Rather than looking at a holistic 

approach or isolated generalization operations only, this 

contribution focuses on optimizing generalization 

workflows designed for specific visual change detection 

and analysis tasks (such as detecting loss of objects or 

existence of hot spots). Modelling and optimizing these 

workflows is often done using a constraint-based 

approach. Beard (1999) classified constraints (i.e., 

requirements that shall be fulfilled) into aspects related to 

position, topology, shape, structural, functional, and 

legibility. For practical and evaluation purposes measures 

for these constraints have to be introduced. Stoter et al. 

(2014) and Zhang (2012) provided comprehensive reviews 

of measures. Mackaness and Ruas (2007) grouped these 

into internal vs. external as well as micro, meso vs. macro 

categories.  

Another grouping relates to the purpose of the underlying 

task: First, despite the abstraction, the generalized data still 

has to inherit the existing change information – leading to 

the need of preservation constraints. These are often 

described in terms of geometrical object-specific measures 

(e.g., change in line lengths before and after 

generalization). Second, change information must be 

readable by users (legibility constraints). Stigmar and 

Harrie (2011) developed analytical measures for 

topographical maps. Based on an empirical study, best 

correspondence between perceived legibility and 

calculated measures could be observed for the following 

criteria: number of vertices, object line length, local 

density, proximity indicator, and degree of overlap. 

Sadahiro et al. (1997) used local density and relative local 

density as measures for describing the perception of 

clusters. Rosenholtz et al. (2007) proposed feature 

congestion as measure for visual clutter in order to 

describe user perception of map complexity. It is obvious 

that not only there is a relationship between perception and 

preservation of geometrical, semantical or topological 

properties, but also a close connection to Gestalt theory 

(laws of proximity, similarity, closeness, common regions, 

synchronicity, etc.).  

Focusing on the visual interpretation of point patterns, 

Ellis and Dix (2007) presented a systematic analysis of 

cluster reduction techniques, resulting in the definition of 

eight high-level clutter reduction preservation constraints 

(e.g., avoiding overlap, keeping spatial information, or 

enabling localization). Korpi and Ahonen-Rainio (2013) 

developed their synthesized set of criteria and applied it to 

an example. Qian et al. (2006) introduced a general 

strategy of an automatic cartographic generalization chain 

that also considers the quality of point clusters. However, 

an objective comparison between methods or even an 

improvement due to changed parameter settings is not 

documented.  

Despite of these single developments, complex measures 

for evaluating synoptic (high-level) interpretation tasks 

based on generalized visualizations are still difficult to 

define (Stoter et al., 2014). Harrie and Weibel (2007) 

argued that “the main limitation of constraint based 

techniques is the limitations of the constraints 

themselves”, especially constraints for groups of objects. 

Looking at techniques for implementing constraint-based 

generalizations and optimizations, there is considerable 

work on optimizing single generalization methods (Sester, 

2000; Ware and Jones, 1998; Burghardt, 2000). For 

controlling complex processes, Harrie and Weibel (2007) 

argued that agent-based modelling is the most powerful 

modelling method in terms of applicability. Ruas and 

Duchéne (2007) described this technique in detail. Harrie 

and Weibel (2007) also noted that the success of this 

strategy relies on the complete and precise definition of 

constraints and the proper formalization of plans to guide 

the agent-based process.  

All in all, so far developing constraints and implementing 

constraint-based generalizations refer to single and static 

views. Consequently, the motivation for this paper is to 

extend the previous work to multi-temporal views in order 

to optimize visual change point analysis in generalized 

views. 

 

3. General framework considerations 

First, the task of multi-temporal change detection and 

analysis is reduced to a bi-temporal setting. Changes are 
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explored by comparing two subsequent frames (F1, F2). In 

the following, the difference frame (DF) is considered a 

good approximation for the mental representation of 

change information (figure 2, top row). At this point, we 

hypothesize that a multi-temporal change analysis can be 

understood as a series of bi-temporal comparisons. For 

example, change results over time can be stored as an 

evolution function (Bard, 2004). 

Due to geometric or semantic point clutter, these frames 

have to undergo generalization processes. As mentioned 

before, various operations (such as aggregation, 

simplification, selection, displacement, spatial distortion, 

data classification) and workflows (e.g., agent-based 

modeling of constraints) have already been proposed for 

this purpose. However, for developing the conceptual 

framework within this paper it is not crucial which specific 

operations and workflows are actually used. At this point, 

just the existence of generalized frames (GF1, GF2) – and 

thus the generalized difference frame (GDF) – is of interest 

(fig. 2, bottom row).  

The key question now is to what extent were specific 

change information preserved in the generalized difference 

frame (GDF) compared to the original difference frame 

(DF)?  

In order to evaluate the usability and to compare with other 

generalization procedures, several preservation constraints 

can be introduced (section 4.1). Beyond this, legibility 

constraints must to be used to assess readability of changes 

(section 4.2). 

The definition and selection of both types of constraints 

depend on the actual type of change analysis. In the 

following, the general typology of spatial changes 

described by Andrienko et al. (2003) will be used to 

structure related exploration constraints. This typology 

consists of the following change types: 

 Existential changes describe whether objects are 

kept unchanged, deleted or added between two 

given frames. It is assumed that neither semantic 

nor spatial properties of points change. 

 Changes of semantic properties describe the 

change in attribute values (being either classified 

or metric) between two given frames. It is as-

sumed that neither spatial properties nor the ex-

istence of points change. 

 Changes of spatial properties describe the change 

in position, elevation, size, shape, orientation, 

volume etc. between two given frames. It is as-

sumed that neither semantic properties nor the ex-

istence of points change. 

Obviously, a more detailed classification of changes could 

be applied (e.g., by also considering abrupt vs. gradual 

changes). For the purpose of this framework, however, the 

general categorization seems sufficient. 

 

4. Constraints 

As mentioned before, the following constraints, describing 

either preservation (Section 4.1) or legibility (4.2) of 

change information, rely on the model of a bi-temporal 

visualization, which can be extended to a multi-temporal 

model by storing the sequence of bi-temporal differences. 

 

4.1 Preservation constraints 

4.1.1 Existential changes  

Given two frames of two dates (F1, F2), displayed points 

may represent the presence of any qualitative or 

quantitative feature. If existential changes are of interest, 

the difference frame (DF) stores the three possible levels 

of description (fig. 3, top row): point unchanged between 

two dates (1/1), point deleted (1/0), or point added (0/1).  

Due to geometric point clutter, these frames need to 

undergo generalization (e.g. by aggregation). The 

generalized difference frame (GDF) is computed from the 

generalized views (i.e., GF1 - GF2). 

At this point it may happen that, for example, from F1 to 

GF1 an aggregation must be applied due to a large point 

density. Since some of the original points are deleted in F2, 

DF2 no longer requires aggregation. Of course, the 

difference frame GDF now has to show both change cases 

(fig. 3; points marked with dashed ellipse). This can lead 

Figure 2. Overall concept of bi-temporal change detection based on original data (top) and generalized data (bottom) 
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to new point clutter if there are points in the vicinity of 

different change classes. 

 

As mentioned earlier, the question now is to what extent 

were change patterns preserved in the generalized 

difference layer (GDF) compared to the original difference 

layer (DF)? In order to evaluate the fitness-for-use several 

measures can be introduced:  

 Preservation of global relative frequency of spe-

cific change levels: This measure that does not 

take space into account calculates the ratio of the 

relative number of specific change levels (i.e., 

1/0, 0/1, and 1/1) before and after generalization.  

 Example (refer to fig. 3): In the case of aggre-

gation, which is performed separately for each 

change level, this measure should amount to 1. In 

the example the relative number of deleted points 

(1/0) in DF amounts to 7/20 and 7/20 in GDF, 

thus the ratio is 1.0. If points disappear due to 

generalization (e.g., through simplification or se-

lection), this measure will become smaller or 

larger than 1. 

 Preservation of local density of specific change 

levels: This measure calculates the density of 

each change level before and after generalization. 

For this, one counts the number of points within 

a given cell of a certain tessellation (such as reg-

ular grid, Voronoi) in DF and GDF, and calcu-

lates the ratio of these numbers. Not only in the 

case of removal operations, but also in the case of 

aggregation, densities might change due to a shift 

of the marker cluster symbol into a another cell. 

 Example (refer to fig. 3): Taking the upper 

right cell (grey background) into account, local 

density of deleted points is increased from 3/6 in 

DF to 4/7 in GDF due to the placement of the 

cluster marker symbol. 

 Preservation of local clusters of specific change 

types: The comparison of clusters of change lev-

els between DF and GDF implies taking into ac-

count the position and shape of clusters. This is a 

fairly complex task that can be solved in principle 

(Grubesic et al., 2014). However, this holistic ap-

proach is rather time consuming, contradicting 

the ultimate purpose of rapid assessment and trig-

gering of generalization operations in multi-tem-

poral displays. Previous work on static displays 

also avoided the holistic approach and used other 

measures as substitutes (such as local density; 

Stigmar and Harrie, 2011). 

 

4.1.2 Changes of semantic properties 

Given two frames of two dates (F1, F2), displayed points 

represent attribute values given at categorical or cardinal 

scale. The difference frame (DF) stores either possible 

value differences (with many levels of description) or just 

the result of a simple comparison (with three levels: 

increase, decrease, constant). The latter case is treated like 

the aforementioned case of existential changes, which also 

shows three levels.  

In order to tackle geometric and/or semantic point clutter, 

generalized frames GF1 and GF2 and the respective 

difference frame GDF are created (fig. 4). Again, the key 

question is – now related to attribute value changes – to 

what extent were change patterns preserved in the 

generalized difference frame (GDF) compared to the 

original difference layer (DF)? 

Figure 3. Example of existential change detection based on bi-temporal scenes (top: original data, bottom: generalized data) 
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In the case of classified data the preservation measures for 

existential changes as outlined before can be applied; 

except that now more than three levels of description are 

observed (in the case of n classes, a maximum of n2-1 

levels is possible; the subtrahend ensures neglecting the 

change of “no value” to “no value”).  

For metric data (with a theoretical infinite number of 

levels) other measures need to be defined, for example: 

 Preservation of global central tendency of differ-

ences (i.e., preserving global mean or median dif-

ference values) 

 Example (refer to figure 4): Mean difference 

values remain unchanged between DF (1/6) and 

GDF (1/6), if one takes class difference values 

into account for GDF. 

 Preservation of global variation of differences 

(i.e., preserving standard deviation of difference 

values) 

 Example (refer to figure 4): Standard deviation 

of difference values is reduced from 1.17 (in DF) 

to 0.75 (in GDF) – a typical effect due to combin-

ing original values to classes. 

 Preservation of global extreme difference values 

(i.e., the largest maximum and minimum differ-

ences in the entire data set) 

 Example (refer to figure 4): The global maxi-

mum difference value in DF (+2; marked with an 

arrow) is not clearly detectable in GDF where two 

points shows the same maximum value (+1). 

 Preservation of local extreme difference values 

(i.e., differences that are surrounded by smaller or 

larger differences only in a specified neighbor-

hood). 

 Example (refer to figure 4): The local maxi-

mum difference value (i.e., a difference that is 

surrounded by smaller differences only) is lost af-

ter generalization (in this example global and lo-

cal maximum values are identical). 

 Preservation of local hot/cold spots of difference 

values (which can be determined, for example, 

with the Getis-Ord Index; Getis and Ord, 1992). 

Data classification is an important generalizing method to 

reduce semantic cluttering. Schiewe (2018) describes 

further constraints (such as preservation of within-class or 

between-class homogeneity) for this case. 

 

4.1.3 Changes of spatial properties 

Changes of spatial properties describe the change in 

position, elevation, size, shape, orientation, volume etc. 

between two given dates. In the following, the focus will 

be on positional changes only (i.e., the displacement of 

points).  

Given two frames of two dates (F1, F2), displayed points 

represent any values given at categorical or cardinal scale. 

The difference frame (DF) stores either displacement 

values on a metric scale or just a simple comparison (with 

two levels: displacement, no displacement). The latter case 

can be treated like the aforementioned case of existential 

changes.  

Again, generalized frames GF1 and GF2 and the respective 

difference frame GDF are created in order to tackle 

geometric and/or semantic point clutter. The key question 

is – now related to displacement values – to what extent 

were change patterns preserved in the generalized 

difference frame (GDF) compared to the original 

difference frame (DF)? 

Figure 4. Example of existential change detection based on bi-temporal scenes (top: original data, bottom: generalized data) 
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If displacement values are classified into distance classes, 

the aforementioned preservation measures for existential 

changes can be applied (see also 4.1.2). 

If metric displacement values are taken into account the 

constraint measures described for semantic changes can be 

simply be transferred as follows: 

 Preservation of global central tendency of dis-

placement (i.e., preserving global mean or me-

dian displacement) 

 Preservation of global variation of displacement 

(i.e., preserving standard deviation of displace-

ment) 

 Preservation of global extreme value of displace-

ment 

 Preservation of local extreme values of displace-

ment 

 Preservation of local hot/cold spots of displace-

ment 

 

4.2 Legibility constraints 

As stated in section 2, legibility measures have been 

defined by a couple of authors. These measures that refer 

to single and static layers and describe the degree of 

geometric point clutter (such as the degree of overlap of 

points; Stigmar and Harrie, 2011) can also be transferred 

to single frames of multi-temporal visualizations.  

In addition, aspects of cognitive overload originating from 

the sequential display of scenes should be considered. One 

option is to determine the relative number of changed 

points compared to the total number of points within each 

difference frame. Introducing also the different levels of 

descriptions, one can derive an entropy measure. However, 

this does not consider two contradicting aspects: On the 

one hand, it is difficult to find a very small number of 

changes in a layer consisting of many points (i.e., overload 

of non-changed points). On the other hand, it is also 

challenging to detect a large number changes during the 

short occurrence of a frame (i.e., overload of changed 

points). The latter problem should be even further 

differentiated as exploration becomes more difficult the 

more levels of change descriptions occur (e.g., detecting 

existential changes 1/0 and 0/1 between two frames is 

more challenging compared to detecting 1/0 changes 

only).  

Obviously, a differentiation and further description of 

overload constraints is necessary, including empirical user 

tests designed to describe the overload thresholds for these 

conflicting constraint measures as a function of the display 

time for each frame. 

 

5. Discussion and further work 

The aim of this paper was to outline a general framework 

for enhanced visual change point analysis in generalized 

multi-temporal displays. Since this framework has only a 

conceptual character so far, further studies must be carried 

out. 

There are two basic assumptions for this framework 

(section 3):  

 First, the difference frame (DF) is used as an 

approximation for the mental representation of 

change information.  

 Second, a multi-temporal change analysis can be 

treated as a series of bi-temporal comparisons.  

Of course, empirical studies have to confirm these 

hypotheses and adjust constraints accordingly.  

With regard to the central elements of the framework, the 

list of constraints and relates measures makes no claim to 

completeness yet. On the other hand it must be reduced to 

an operational minimum. In the case of preservation 

constraints, this will be done primarily by analytical 

testing of various data sets and applying correlation or 

principal component analysis. In terms of legibility 

constraints, empirical studies have to be carried out in 

order to derive the best match between perceived legibility 

and calculated measures. One important and interesting 

aspect relates to the cognitive overload constraints that 

require adaptive legibility constraints as a function of the 

number of frames a display time for each frame. 

As already mentioned, the constraints are not only 

intended for comparison purposes, but - in a later stage - 

also for triggering the generalization processes as such. 

This could lead to a different way of thinking: In order to 

Figure 5. Concept of simultaneously generalizing frames of bi-temporal data set 
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consider preservation and legibility in the difference 

frames, the optimization of generalization should work on 

the difference frame rather than on single frames (fig. 5). 

This again leads to the requirement of respective 

implementation and testing.  
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