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Abstract: In recent years, libraries have made great progress in digitising troves of historical maps with high-resolution
scanners. Providing user-friendly information access for cultural heritage through spatial search and webGIS requires
georeferencing of the hundreds of thousands of digitised maps.
Georeferencing is usually done manually by finding “ground control points”, locations in the digital map image, whose
identity is unambiguous and can easily be found in modern-day reference geodata/mapping data. To decide whether
two symbols from different maps describe the same object, their semantic and spatial relations need to be matched.
Automating this process is the only feasible way to georeference the immense quantities of maps in conceivable time.
However, automated solutions for spatial matching quickly fail when faced with incomplete data – which is the greatest
challenge when comparing maps of different ages or scales.
These problems can be overcome by computing map similarity in the image domain. Treating maps as a special case of
image processing allows efficient and robust matching and thus identification of geographical regions without the need to
explicitly model semantics. We propose a method to encode worldwide reference VGI mapping data as image features,
allowing the construction of an efficient lookup index. With this index, content-based image retrieval can be used for both
geolocating a given map for georeferencing with high accuracy. We demonstrate our approach on hundreds of map sheets
of different historical topographical survey map series, successfully georeferencing most of them within mere seconds.
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1. Introduction

Research in digital map processing has picked up the pace
in recent years (Chiang et al., 2014, 2020, Jiao et al., 2021),
mostly focusing on digitising content with vectorisation
and attribution. Previous research often assumes already
georeferenced maps (Iosifescu et al., 2016, Heitzler and
Hurni, 2019) or leaves the tedious manual georeferencing
task to crowdsourcing (Fleet et al., 2012, Tavakkol et al.,
2019).

Automatic georeferencing can close the gap to a fully au-
tomatic map-to-geodata pipeline. Aligning maps makes
comparison of map content across different series and de-
signs easier (Schlegel, 2019). Comparability of old and
present-day maps, in turn, leads to many new research pos-
sibilities and unleashes the full potential for automated spa-
tial analyses of historical data, e. g. for long-term monitor-
ing of coastlines (Fabris, 2021), finding potential archaeo-
logical sites (White, 2013) and many more. Furthermore,
georeferencing can significantly increase the accessibility
of the important cultural heritage that are historical maps
(Crom, 2016, Buckley, 2019).

Some work has been done on the constrained task of align-
ing two maps which are roughly covering the same area
(e. g. Howe et al., 2019, Duan et al., 2020). However, to
solve the general task of geolocating a map with little or
no prior information on location, maps have to be com-
pared against large volumes of comparable reference geo-
data, possibly across the globe. Luckily, large amounts of

reference data are available in the form of volunteered geo-
graphical information (VGI), for example OpenStreetMap
(OSM)1. The challenge is to find a way to efficiently search
through it to find the most relevant part. Here image re-
trieval, particularly content-based image retrieval (CBIR)
when metadata of maps is not sufficiently available, comes
into play.

CBIR is used to find images in a reference database that
are most similar to a given query image. In the context
of maps, this requires a spatial similarity function, which
are often solved with graph representations Li and Fon-
seca (2006). However, graph representations require com-
plex definitions (Janowicz et al., 2011). Solving simi-
larity graphs algorithmically is computationally expensive
and has not yet been proven to provide unambiguous re-
sults. Furthermore, getting from a map to semantic repre-
sentation requires full vectorisation (Szendrei et al., 2011,
Iosifescu et al., 2016) and attribution (Sun et al., 2020)
first, which are intense fields of study and still not com-
pletely solved. Developing a general method that works
for any and all maps is particularly challenging. A more
robust and easily scalable approach to map similarity is
needed.

1.1 Contributions

This work expands on our own method presented in Luft
and Schiewe (2021) by developing a more general defini-

1https://www.openstreetmap.org/
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tion for spatial similarity using robust image features (Sec-
tion 2.3). This overcomes the need for fine tuning of pa-
rameters to reach high accuracy and consequently allows
to transfer our method more easily to new map series. We
argue that exploiting the image domain instead of complex
semantic representations enables the development of effi-
cient and robust algorithms for calculating the similarity
of map content. This implementation of map similarity al-
lows exploitation of a reverse index for fast querying in
large reference databases (Section 2.5).

Assuming a mostly successful segmentation, retrieval of
similar maps provides a general solution for automated
georeferencing. In several experiments in Section 3, we
will address the following challenges for georeferencing
with our proposed CBIR approach:

• Erroneous symbols and noise introduced by segmen-
tation.

• Occlusion: Missing or extra symbols due to histori-
cal change or ill-fitting reference data resulting from
a different level of generalisation between query and
reference maps.

• Ill-aligned reference data, because of datum shift or
imprecise reference quadrangles.

• Maps have different scales.

1.2 Related Work

Howe et al. (2019) and Tavakkol et al. (2019) have proven
that toponyms allow geolocating a diverse range of maps.
However, it is challenging to reliably recognise toponyms
on old prints with unusual type. Furthermore, cluttered to-
pographic maps show many overlapping features, which
make optical character recognition unreliable (Luft, 2020).
Burt et al. (2019) and Heitzler et al. (2018) instead ex-
ploit the graticule visible on more modern topographic
maps, which allows very precise rectification and align-
ment. However, the graticule is not visible on all maps
and assigning graticule corners to geographic coordinates
relies on marginal information and prior knowledge about
the map.

Content-based georeferencing can overcome the chal-
lenges of both of these approaches (Luft and Schiewe,
2021). Using content requires a robust framework of spa-
tial similarity, especially when using only the geometry
of map symbols without further attribution (which would
need to be inferred from symbol classification or text un-
derstanding).

A proven method for matching image content is the use of
image features. Image features are frequently used to au-
tomatically extract tie-points for alignment of photogram-
metric images. More recently, there have been proposals
for cross-modal matching between different imaging sys-
tems (Ye and Shen, 2016, Zhuo et al., 2017, Li et al., 2020)
or across time-series with changes in illumination and land
cover (Liu et al., 2008).

In contrast to photogrammetry, not much research has gone
into matching topographic maps by image features. The

reason may be that image features are designed to work
on photos but can not immediately be applied to printed or
manuscript maps. Without preprocessing, the generalised
content and heterogeneous style of maps usually leads to
low repeatability of feature detection.

2. CBIR on maps

Generally speaking, CBIR is the task of finding images in
a huge database that are most similar to a given query im-
age, specifically similar in content. The main challenge
lies in finding a suitable definition of similarity that closes
the “semantic gap”, i. e. returns images that are not just
similar in abstract mathematical properties but also aligned
with the expectation of similarity of a human user.

The concept of CBIR can be applied to georeferencing of
a map as follows: To find the geographic area shown in a
map (the query map), we search through a comprehensive
set of already georeferenced maps to find those with the
most similar content (reference maps). The discovery of a
reference map with identical content allows to use its ge-
ographical information to geolocate the query map. Solv-
ing georeferencing with this approach requires us to solve
some tasks, our solution to which we will elaborate step-
by-step in the following paragraphs (refer to Figure 1 for
an overview):

• Obtaining georeferenced reference maps of possible
map locations (Section 2.2).

• Definition of a similarity function for map content
(Section 2.4).

• Since there can be a lot of reference maps, they need
to be queried efficiently (Section 2.5).

2.1 Prerequisites

In order to calculate similarity between the query map and
reference maps, we need to remove differences in carto-
graphic design and interfering information. We ensure this
by segmenting the query map to extract a single class of
symbols. Segmentation eliminates clutter and makes maps
comparable regardless of their design, but introduces noise
and other errors. The key is to segment object classes
which we can match reasonably well to the reference VGI
data. Objects with complex geometry are most suitable,
since they carry a lot of spatial information.

Segmentation and map symbol extraction is a challenging
task that deserves a dedicated study. For this paper we as-
sume a more or less reliable segmentation as a prerequisite.

2.2 Reference data

OSM is a valuable source of spatial information, because
its increasing global availability in consistent format and it
contains many different feature types in great detail. The
selection of object classes happens by filtering for so called
“tags”. Tags need to be selected to produce reference data
that is as close as possible to the symbols that have been
segmented from the query map.
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Figure 1. Overview of the CBIR process for georeferencing. To geolocate a given query map, first image features are
extracted. With those image features, the index is queried, which was previously constructed from a large number of
reference maps, created from OSM data at known quad locations. The index returns a set of reference maps, sorted by
similarity. The features are matched between the query map and the reference maps and subsequently refined by spatial
verification. The reference map with the most remaining matches is returned. Together with the known location of the
reference map, we thus obtain a location prediction for the query map.

OSM reference data are vector based, but query maps are
raster images of diverse style. The filtered OSM vec-
tor data are converted to binary raster images and subse-
quently processed analogously to the query maps. Refer-
ence images are created from quadrangles of all possible
map locations which need to be known in advance. Al-
ternatively, quadrangles can be automatically generated if
they are arranged in a regular grid with known spacing.

2.3 Image features

In modern CBIR, image content is described by the image
features that can be extracted from the image (Smeulders et
al., 2000). Image features have been intensely investigated
by the computer vision community. Image features provide
a solid methodological basis for description and matching
of image content with robust and efficient algorithms.

Image features are extracted at interest points in the image.
This leads to a reduction of information, focusing on the
most descriptive regions in the image. Matching a set of
a few hundred image descriptors is significantly more ef-
ficient and robust than comparing full high resolution im-
ages.

A major consideration for the choice of feature descriptors
is their ability to capture structure instead of texture. Struc-
ture is very important to identify geographical features.
Conversely, there is no texture at all in the segmented maps
and reference maps. Features should be extracted predom-
inantly at informative points, such as bends of a river as in
Figure 2. Furthermore, features should be scale-invariant,
because input images come in different resolutions. Scale-
invariant features are more likely to capture large-scale in-
terest points and are less susceptible to small irregularities
due to noise, artefacts of rasterisation or minuscule sym-
bols with little information.

Specifically, we extract KAZE descriptors (Alcantarilla et
al., 2012), since they showed the best indexing results in

Figure 2. KAZE interest points (coloured circles) detected
on a KDR100 reference map. It is apparent, that the KAZE
feature detector is able to detect structure-rich areas of the
depicted rivers. Data © OpenStreetMap contributors.

comparative experiments. Apparently, they are more re-
peatable in face of the high contrast and low texture in
segmented maps than e. g. the well-established SIFT or
SURF descriptors. Furthermore, KAZE descriptors have
a rotation-free variant, which reduces ambiguity on maps
where the direction of features is relevant and we can ex-
pect roughly north-up oriented maps. The downside of
KAZE descriptors is that they take about four times longer
to compute than SURF.

2.4 Similarity

If an image feature in the query image is very similar to an
image feature in a reference image (called a match), it is
likely to be a sensible tie-point. Thus, a reference image is
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similar to the query image, if a high number of tie points
could be found.

When we compare a set of features, uncertainty is intro-
duced by incorrect matches. Perhaps more limiting, the
spatial relationship between image features is not taken
into account. But for geographical objects, it is very rel-
evant in what orientation their parts are (e. g. whether a
river bends to the left or to the right after a divide).

Therefore, we apply a second step of spatial verifica-
tion: the descriptor matches for each image pair are fil-
tered by random sample consensus (RANSAC, Fischler
and Bolles, 1981), significantly increasing the confidence
of the matches. With a suitable choice of a transform
model, RANSAC is able to compensate for anticipated de-
formations (introduced e. g. through different datum, pro-
jection or map extent). For the topographic maps in this
study the similarity transform is sufficient to compensate
for differently cropped map margins and slight rotation.

Basing similarity on a discrete set of tie points (in contrast
to image-level metrics, such as the structural similarity-
index or histograms) makes it robust to missing map sym-
bols in either map (e. g. due to cartographic generalisation).
When there are few symbols on one map there is, of course,
a lower possible similarity score. It has to be noted that
similarity scores do not adhere to an absolute scale and
cannot be compared between image pairs. However, the
number of tie-points can be used to order the reference
maps by similarity to a single query image and find the
most similar.

2.5 Efficient lookup

An index of all reference maps has to be constructed
once to enable the efficient search for similar maps in two
stages: index query and spatial verification.

2.5.1 Index construction

1. Query VGI database for each of the expected map lo-
cations while filtering the vector data for relevant ob-
ject classes, using Overpass2.

2. Paint binary raster maps from vector data of each map
location.

3. Detect interest points and extract image descriptors in
the raster maps.

4. Populate an approximate nearest neighbours tree with
all descriptors, storing an identifier of the map they
were extracted from. We implemented the tree with
Annoy3.

2.5.2 Index query

1. From a given segmented query map, extract image
features in the same way as before.

2. Query the index to get the k nearest neighbours for
each descriptor.

2https://overpass-api.de/
3https://github.com/spotify/annoy

3. Each of the k descriptor belongs to a reference map.
To penalise bad matches, vote for each of the k refer-
ence maps with decreasing weight: nearest neighbour
with a single vote, second-nearest neighbour with a
half vote, etc. The votes for each reference map are
added for every descriptor in the query map.

4. Sort all reference maps by their number of votes.
5. Return the N most similar reference maps as location

hypotheses.

2.5.3 Spatial verification

1. The descriptors for each reference map that had been
used for building the index have been stored alongside
the index to save computation time. Get the descrip-
tors of the previously determined location hypotheses.

2. Brute-force match the descriptors of interest points in
the segmented query map to find all correspondences
in the descriptors for each reference map.

3. Use RANSAC to fit a transform model from the query
descriptors to the reference descriptors.

4. The reference map with the transform model that best
explains the matches and has the highest number of
inliers after RANSAC is returned as the location pre-
diction of the query map.

3. Evaluation

For all experiments, we use hydrology features (rivers,
lakes, coastlines) because their distinct colour makes them
easy to segment for most maps and they have very distinct
geometry (Wolter et al., 2017). Furthermore, hydrology
is expected to have little historical change and can be fil-
tered reasonably well with Overpass. Other features, such
as roads or railroad tracks, are thinkable as well and can be
used just as easily with our method, but they are harder to
tell apart from other symbols on the map and they are ex-
pected to have changed significantly since printing of the
investigated maps.

3.1 Baseline/proof-of-method

First, we demonstrate that the image domain is in fact suit-
able to calculate map content similarity by matching im-
age features. We can demonstrate the applicability of our
method and provide a baseline for the maximal reachable
accuracy by using the artificial black-and-white reference
map images used to build the index (with some padding
to simulate the map margins). This baseline experiment
shows, that the similarity function is able to find the cor-
rect maps if it is not impaired by erroneous segmentation
or historical changes in topography.

3.1.1 Data

The query maps for this experiment are the same as the
reference maps for building the index (see Section 2.5.1
above) and can thus be used to determine baseline accuracy
(see Section 3.1 below). An example of a query map can
be seen in Figure 3 on the left. The index is constructed
from 911 sheets and thus contains more sheets than the
657 maps to be queried.
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map series #maps mean (median) index rank maps w/ rank=0 (%) maps w/ rank<N (%) #correct (%)
KDR100 baseline 657 0.9 (0) 656 (99.8) 656 (99.8) 656 (99.8)
KDR100 degraded 657 23 (0) 377 (57.4) 677 (87.8) 529 (80.5)
KDR100 actual 657 37.4 (0) 399 (60.7) 569 (86.5) 539 (82.0)
KDR500 actual 27 4.7 (3) 9 (33.3) 27 (100) 15 (55.6)
USGS100 baseline 207 511.4 (0) 122 (59.5) 125 (61.0) 124 (60.5)
USGS100 actual 207 430.7 (52) 51 (24.6) 107 (51.7) 92 (43.6)

Table 1. Comparison of results for all experiments. The fifth column shows the maximum reachable accuracy of spatial
verification: for the KDR100 experiments only the N=30 most similar reference maps were verfied. For USGS100, N is
100. For KDR500 all sheets were verified.

Figure 3. OSM baseline image (left) and an artificially de-
graded image (right) for the same map (KDR100 sheet 29).
The occluded map still provided enough information to be
successfully georeferenced. Data © OpenStreetMap con-
tributors.

3.1.2 Result

When querying the index with the OSM maps themselves,
the correct reference map is returned as the most similar
map for almost all maps, both by the index as well as by
the subsequent spatial verification (compare Table 1). This
is expected and proves that the structure of the map sym-
bols and their representation as image features is not am-
biguous. If a map cannot be matched to itself, it probably
does not contain any discernible features and thus can not
be localised.

3.2 Robustness to occlusion
3.2.1 Data

This dataset aims to simulate historical changes and bad
segmentation quality with degraded OSM reference maps.
500 empty circles of varying diameter have been painted
randomly over baseline images of KDR100 quadrangles
resulting in 73% occlusion on average (compare Figure 3).
The experiment uses the same index as for the baseline.

3.2.2 Result

The resulting performance is still quite good: 80% of maps
could be located correctly (as can be seen in Table 1). Most
maps with reduced image content could be matched un-
ambiguously. This indicates, that our method is very ro-
bust to occlusion, which might occur because of historical
changes to topography or because of incomplete segmen-
tation.

3.3 Real-world application
3.3.1 Data

This experiment uses the actual map sheets of the sur-
vey map series Karte des Deutschen Reiches in scale

1 : 100 000 (KDR100). The maps were made at the turn
of the 20th century and use a trapezoid projection with the
Rauenberg datum. 657 sheets are aligned in regular grid.
Again, we use the same index as for the baseline. The map
are either one or three colour prints with hydrology in blue.
Because the colours are almost identical across the series,
we could use colour thresholding for segmentation. Using
a single colour range across the whole series, however, in-
troduces a lot of speckle noise and sometimes imprecise
outlines (compare Figure 4).

3.3.2 Result

When working with real maps, the main issue are errors
and noise introduced by segmentation which leads to un-
certainty during matching. For the KDR100 experiments,
we decided to only consider the 30 most similar reference
maps for spatial verification (dashed red line in Figure 5),
allowing a maximal accuracy of 86.45%. After spatial ver-
ification 82% of the 657 sheets were correctly predicted.

Respecting the datum shift, the projection introduces no
apparent deformations with respect to WGS84. The cover-
age of hydrology features in OSM is similar to the symbols
visible on the maps. Therefore, the maps can be matched to
the reference data with high certainty in most cases. The
results are quite similar to the experiment with degraded
OSM data, which suggests, that the method is mostly ro-
bust to historical changes and segmentation noise. Incor-
rect matches are probably owed to segmentation errors.

3.4 Different scales and projections

3.4.1 Data

Carl Vogel’s Karte des Deutschen Reiches consists of 27
sheets in scale 1 : 500 000 (KDR500) from the turn of the
20th century. It uses the Bonne projection with unknown
central meridian and standard parallel. The maps are multi-
colour prints, which we segmented by colour thresholding.
The index is constructed from 36 quadrangles in a regular
grid that have been reprojected to WGS84.

3.4.2 Result

The map projection is significantly different from the refer-
ence data. In WGS84, the maps look tilted and deformed.
In this small scale, the coastline becomes the most descrip-
tive symbol in a map. On the other hand, some inland
sheets show very few rivers because of strong generali-
sation. This generalisation makes it hard to match some
inland sheets to the reference data, which contains many
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Figure 4. Segmentation errors of an actual KDR100 map (sheet 258) compared to OSM reference. Left: the original
query map. Middle: segmentation of hydrology by colour thresholding. Right: the corresponding reference map from
OSM. The dominant symbols in this map provided the information to geolocate this map despite the noise and missing
symbols. Map © Staatsbibliothek zu Berlin, reference data © OpenStreetMap contributors.

more rivers, as we could not find OSM tags to filter them
more precisely. Subsequently those inland sheets were
not successfully located, resulting in the low accuracy of
55.6%, as seen in Table 1.

3.5 Different designs across the world

3.5.1 Data

A set of 197 quadrangles of historical topographic maps
across the United States in 1 : 100 000 scale from the years
1972–1980 in NAD23-projection (USGS100). Segmen-
tation is a bit more difficult than for the other maps be-
cause the USGS maps use more colours. Therefore, we
use a convolutional neural network for segmentation, as
has been proposed by Jiao et al. (2020). The index covers
the United States completely with 1772 reference quadran-
gles.

3.5.2 Result

The maps show many hydrology symbols which are not
mapped in OSM at all. Particularly maps washes in desert
areas and small creeks in mountain areas could not be
matched to the corresponding reference maps, which are
often almost empty. Areas with big rivers and coastlines,
on the other hand, are matched to OSM better. The re-
sult is an overall subpar performance of only 43.6% cor-
rect predictions. The comparison with the OSM baseline
for the USGS100 quadrangles (see Table 1) suggests that a
better source of reference data4 or different symbols alto-
gether (e. g. roads) are necessary to increase the accuracy
for USGS maps.

3.6 Runtime performance

On a single CPU core with 2.9 GHz and 24 GB of RAM,
constructing the index takes about 0.7 s per reference quad-
rangle excluding the download of reference data. Query-
ing the index takes approximately 6.7 s per uncompressed
query map, plus the variable time needed for spatial ver-
ification. Each iteration of spatial verification takes 0.3 s,

4such as the National Hydrography Database:
https://www.usgs.gov/core-science-systems/ngp/national-
hydrography/national-hydrography-dataset

Figure 5. Index rank distribution and effect on the maxi-
mal reachable accuracy in relation to the cutoff value for
KDR100 maps. Increasing the number of location hy-
potheses to verify increases computation time linearly, but
has diminishing returns for accuracy.

leading to approximately 9 s when verifying the 30 most
similar reference maps.

This clearly illustrates the importance of a sensible choice
for the number of location hypotheses to return from the
index. We want to save as many iterations of spatial verifi-
cation as possible, to save computation time. However, this
comes as a trade-off, since when the correct match is not
among the location hypotheses returned from the index, it
cannot be located correctly. Nonetheless, a very high num-
ber of hypotheses does not always turn out to be helpful,
since maps which rank low in the index often do not carry
enough information to be successfully predicted by spatial
verification either. Figure 5 illustrates, how the number of
location hypotheses to verify influences the maximum ac-
curacy of KDR100 predictions.

We have experimented with an early termination heuristic,
which aims to save some spatial verification steps for the
maps that have already been correctly predicted by the in-
dex alone. It works by investigating the index votes of the
index response. When the number of votes for the n most
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similar reference image is two times larger than for the n+1
most similar image, spatial verification stops after n steps.
For the KDR100, this heuristic enables 270 correct skips,
usually after the first reference image, thus saving almost
a third of the total computation time when processing the
complete series, at the cost of failed predictions for only
18 additional sheets.

4. Conclusion

4.1 Summary

We have shown that CBIR with sparse image features-
based similarity can successfully geolocate most sheets of
different topographic map series. With our method, large
volumes of maps can be georeferenced in a short time with
significantly reduced manual labour. The algorithm scales
very well and can be parallelised to be incorporated into
an interactive web application such as the one proposed by
Tavakkol et al. (2019).

Many maps are located with high confidence, but others
might not have been successfully located with increased
uncertainty (e. g. through noise). We can provide a mea-
sure of confidence with the number and distribution of
RANSAC inliers. This allows to reduce manual quality
control and error correction by only investigating the low
confidence predictions.

RANSAC not only outputs a score, but also a transform
model, which can be used for alignment of the geolocalised
maps. However, these transformations did not consistently
produce acceptable registration accuracy on their own and
should be supplemented with one of the proposed methods
of alignment in order to exploit more available spatial in-
formation (Howe et al., 2019, Duan et al., 2020, Luft and
Schiewe, 2021).

Comparing with previous studies, our numbers suggest a
worse performance than the 96% accuracy of Luft and
Schiewe (2021). However, we have substantially increased
the size of the test data set. Furthermore, the improved
method presented here significantly improves query time
and is better suited to apply to various input maps without
much parameter tuning.

Calculating the total accuracy of all three map series,
our method slightly outperforms the method proposed by
Tavakkol et al. (2019). They have found location predic-
tions for 68% of 500 very diverse maps of different type
and scale. However, the quality of their solutions, given
by error distance, is not particularly meaningful without
taking the scales of the respective maps into considera-
tion. Their work indicates that toponym-based geolocation
transfers easily to a variety of maps but is error-prone and
challenging to implement robustly.

4.2 Future work

The KDR500 reference maps were shifted and skewed
slightly because of reprojection. The experiment shows
that the method is to some extent robust to inexact ref-
erence locations in the index. Pushing the boundaries of

the index robustness to displacement, in the hopes of be-
ing able to do without the prior knowledge of quadrangle
locations altogether, is subject to further research.

Complex or unusual map projections make direct compari-
son to the reference OSM data difficult. Reprojection of ei-
ther the reference data or the input maps (compare our ex-
periments on KDR500) avoids any issues. However, repro-
jection requires prior knowledge of the used map projec-
tions. Sometimes the exact spatial reference system might
be unknown and in order to be able to deal with defor-
mations in the input maps, more complex transform mod-
els for RANSAC have to be evaluated. This also raises
the question of how robust image feature descriptors are
to projection deformations. They are usually designed to
be invariant to geometric deformations, like rotation and
scaling, but their performance under e. g. polynomial de-
formations has to be evaluated.

Segmentation is the crux for generalisability. The method
here works on an abstracted image and is universal, but
getting there by extracting the “right” symbols is differ-
ent for each map series and does not easily transfer with-
out manual parameter tuning. Deep learning segmentation
models which are able to transfer between different map
styles could be the solution. High performance with little
training data is paramount, because collecting and annotat-
ing large amounts of training data quickly gets out of pro-
portion to the expected time savings of an automated geo-
referencing system. We are currently working on a deep
learning segmentation model using synthetic training data,
which is the preferred solution when there is limited avail-
ability of training data, as is the case with historical maps.

Our research continues with the goal of improving accu-
racy, making our method more general by allowing the use
of multiple different symbols at once and increasing ease
of use by reducing metadata requirements.
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