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1. INTRODUCTION 
Cities, particularly those home of millions, are often viewed as unhealthy places. Poor air qual-
ity, noise pollution, and scarcity of public green space are among the first few things that come 
to mind when thinking about metropolises. Yet, does this picture apply to their entire territory? 
Are there no variations whatsoever in the characteristics of the urban environment in different 
neighbourhoods?  

Obviously, these are rhetorical questions. Cities are not homogenous. In fact, they can be 
extremely diverse. There are various factors sculpturing the urban environment such as topog-
raphy, proximity to water, street network, building structure, open public spaces, and so on. 
With this in view, the physical attributes of the urban environment usually vary significantly 
across neighbourhoods, thus resulting in unequal living conditions for the population. Someone 
living in an apartment located right next to an arterial road is going to have a different quality 
of life than someone living in a single-family house with private garden in a quiet residential 
area. This type of inequality is referred to as ‘environmental injustice’ and it is often the result 
of socio-economic inequality – while some have the luxury of choosing where in the city to live, 
others are left only with the affordable options. Usually, the latter are less attractive both in 
terms of housing and for reasons concerning the surrounding area.  

Over time, the continuous exposure to noise and poor air quality may trigger chronic illnesses 
such as high blood pressure or asthma in those living in the apartment on the arterial road. 
Those enjoying the peacefulness of their private garden, on the other hand, will generally cope 
better with stress and will thus have higher odds of living a longer life. While these are merely 
a couple of examples to illustrate how contrasting the influence of zip code can be on health, 
they do manage to convey the diversity of metropolises. 

Unfortunately, health-related dynamics like these usually remain hidden at the small urban 
scale. For reasons of data protection, the access to personal health records in Europe1 is 
strictly regulated. Health data is published exclusively in the form of aggregated population 
counts or proportions for certain spatial units – regions, municipalities, cities, etc. These gen-
erally encompass tens of thousands, if not even more, inhabitants. While this approach en-
sures the anonymity of individuals and their health characteristics, it also impedes the identifi-
cation of potential disease patterns at underlying spatial scales. Therefore, urban planning 
measures designed to facilitate disease prevention are not usually based on actual health data. 
Instead, the decision-making process relies on information sources such as geodata pointing 
to concentrations of multiple environmental risks, and regional health statistics. However, 
those cannot substitute disaggregated health data providing insight into the situation in the 
neighbourhoods across the city.  

If such kind of data were available, a citywide small-scale health monitoring could be put in 
place. The latter would make it easier to identify population groups prone to developing specific 
medical conditions due to the combination of personal risk factors and unfavourable aspects 
of their living environment. Such a citywide monitoring can act as an early-warning system. At 
the same time, it could reveal hotspots of chronically ill inhabitants exposed to environmental 

 
1 The dissertation is limited to the European and more specifically the German spatial and political context. 
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threats such as noise or air pollution. Thus, necessary planning measures can be taken in 
more timely fashion. Additionally, the monitoring can provide reasoning for designing custom-
ised health-care packages for certain population groups. Although such course of action is in 
the realm of public health, urban planning can contribute by integrating the largely missing 
spatial ingredient into the picture. 

While the idea of a citywide small-scale health monitoring sounds promising, one vital question 
remains unanswered – ‘How to get small-scale health data?’ Surveys are costly and time-
consuming. Collecting representative sample data for every neighbourhood within a city on an 
annual basis is hardly realistic. At the same time, the General Data Protection Regulation 
(GDPR) of the European Union (EU) from 2018 makes it difficult for health insurance funds to 
provide data aggregated in a way that could potentially compromise the anonymity of insur-
ants. Hence, obtaining data for areas encompassing only a couple of thousand inhabitants – 
as is generally the case with urban neighbourhoods – is practically impossible. With this in 
view, the acquisition of small-scale health data appears challenging, even more so for an entire 
city. Proposing a way to overcome this obstacle is where this dissertation aims.  
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2. GOAL, METHODS, AND OUTLINE 
2.1. Goal and Research Questions 

The goal of this dissertation is to explore a method for generating health data on a small urban 
scale – one corresponding to the perception of neighbourhoods. To that end, I used the city of 
Hamburg as case study. Taking into consideration its established levels of spatial division and 
available data sources, I investigated a potential strategy for developing a health-related model 
at the neighbourhood level.  

Thus, I aspire to contribute to the academic discussion of modelling health data on a small 
scale. With the generated findings, I offer an objective perspective on the advantages and 
limitations related to using such data for setting up health monitoring systems in cities in gen-
eral. To that end, I demonstrate how the modelled small-scale data can be used for the iden-
tification of spatial interactions between environmental and socio-economic factors on the one 
hand, and the prevalence of chronic disease on the other. Furthermore, I address the potential 
gains of small-scale health data availability in light of the COVID-19 pandemic. 

Against this background, the research questions are as follows: 

- How can health-related data be generated on a small urban scale? 
- How can spatial interactions between environmental and/or socioeconomic factors and 

the prevalence of chronic disease be made evident using the modelled data? 
- How can the generated small-scale health data facilitate the efforts of public health offi-

cials to combat the novel coronavirus? 

2.2. Methods and Outline 

Instead of analysing various available data modelling methods solely from theoretical point of 
view, I adopted a hands-on approach to demonstrate the steps comprising one particular 
method in greater detail. I applied spatial microsimulation, a well-established data modelling 
technique, to generate a so-called ‘synthetic population’ (see Chapter 2.3.2. ‘Spatial microsim-
ulation and population synthesis’) and thus simulate the distribution of various non-communi-
cable chronic illnesses at the neighbourhood level. 

This dissertation is divided into several chapters. Chapter 3. ‘Cities and Health – A Theoreti-
cal Overview’ provides scientific evidence of the relationships between social status, factors 
of the living environment, and individual health. The existing instruments for monitoring health 
and social status in Hamburg are also addressed. To conclude the theoretical part of the dis-
sertation, Chapter 4. ‘A Spatial Microsimulation Approach’ clarifies the difference between 
modelling, simulation, microsimulation, and spatial microsimulation. Explaining the basic re-
quirements for conducting a spatial microsimulation and describing the main existing ap-
proaches to population synthesis are the focus of this chapter. Chapter 5. ‘Modelling Health 
Data on a Small Urban Scale from the Perspective of Public Health Researchers’ offers 
a summary of the opinions of several local experts in the field of public health about the im-
portance of small-scale health data and the challenges related to its generation. The latter 
were gathered through interviews, which I carried out via Zoom for the purpose of this research. 
Chapter 6. ‘Modelling Health-Related Data in Hamburg’s Neighbourhoods’ demonstrates 
the entire process of generating synthetic population in detail – from choosing a suitable level 
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of spatial division, through selecting datasets and data pre-processing, to writing the actual 
population synthesis algorithm2. Chapter 7. ‘Model Validation’ is dedicated to the internal 
and external validation of the generated data. For the latter, two different external data sources 
are used – a sample survey conducted in six of Hamburg’s neighbourhoods, and aggregated 
data from three health insurance funds in Hamburg. Chapter 8. ‘A Contribution to Setting 
up Citywide Health Monitoring Systems’ demonstrates a couple of application possibilities 
for the modelled data. First, the model is employed to identify hotspots of hypertensive individ-
uals exposed to excessive levels of road and air noise. Second, the generated synthetic pop-
ulation is used to visualise where in the city live vulnerable individuals in terms of COVID-19. 
Chapter 9. ‘Summary and Discussion’ summarises the main findings and discusses the rel-
evance of the model for future research purposes. Chapter 10. ‘Conclusion and Outlook’ 
draws the final conclusions and provides an outlook on the required prerequisites for applying 
the examined approach in other cities. 

2.3. A Word on Terminology 

Within the scope of this dissertation, there are some specific terms I am going to use often that 
need clarification upfront.  

2.3.1. Small urban scale and levels of spatial division in Hamburg 

First of all, what is a small urban scale? Generally, every division in spatial units within the 
boundaries of a given city can be considered a small urban scale. To provide argumentation 
about the choice of spatial scale for the purposes of this dissertation, the next few paragraphs 
will shed more light onto the different levels of spatial division in Hamburg. 

Generally, bigger cities are divided into administrative units for various purposes, such as vot-
ing, urban governance, and planning policies. In Hamburg, there are at least six different levels 
of spatial division, all illustrated in Figure 1. The highest level of spatial division is represented 
by the Bezirke, units with their own parliament and executive branch, which correspond to the 
English term borough. Hamburg has seven boroughs: Altona, Bergedorf, Eimsbüttel, Harburg, 
Hamburg-Mitte, Hamburg-Nord, and Wandsbek. The next level of spatial division is generally 
composed by the so-called Stadtteile, however there is an intermediate tier, not for adminis-
trative, but for research purposes – the Stadtteilcluster. This tier is based on the Stadtteile, but 
those of them with smaller populations are grouped into clusters. The Cancer Registry and the 
Morbidity Atlas of Hamburg, which I am going to address further below, provide health-related 
data aggregated at this spatial scale to ensure compliance with data protection regulations. 
The Stadtteile roughly correspond to city quarters. Hamburg has a total of 104 Stadtteile, rang-
ing in population from 500 (Spadenland) to nearly 89.000 (Rahlstedt) inhabitants. Stadtteile, 
or city quarters, as I am going to refer to them henceforth, are administrative units, but without 
their own government. Densely populated city quarters are additionally divided in so-called 
Ortsteile. There are two further levels of spatial division – Statistische Gebiete and Baublöcke. 
Baublock is the German word for the term urban block – a spatial unit encompassed by streets 
on all sides. Statistische Gebiete, or statistical areas in English, were introduced following the 
Census in 1987 to obtain data for statistical purposes on a regular basis. They were shaped 

 
2 a set of subsequent commands applied to a string of data elements (e.g., vector, data frame, matrix, array) to 
transform them in a desired way. 
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with the aim to form homogeneous spatial units. It was therefore considered plausible for them 
to have an identical population size of around 2.000 inhabitants. The similarity of the building 
structure within the defined boundaries also played an important role (Loll 1991, p.92). Cur-
rently, the number of statistical areas in Hamburg is 941.  

Figure 1. Levels of spatial division in Hamburg (own representation, geodata source: Landesbetrieb 
Geoinformation und Vermessung (LGV) Hamburg 2021; Statistisches Amt für Hamburg und Schleswig-
Holstein 2017b) 

 
Against this background, statistical areas come closest to the understanding of neighbourhood, 
bearing in mind that the individual perception of one’s neighbourhood and its boundaries can 
vary significantly. How does one define a neighbourhood has long been discussed by geogra-
phers, epidemiologists, and other scholars whose research is based in the context of cities 
(Schnur 2008, p.22). To collect, analyse and compare urban data, one needs to spatially define 
the ‘data holder’. Often, this decision must be practical. Especially when the aim is to develop 
a citywide small-scale monitoring, administrative spatial units are the most plausible choice. 
With their average population size of approximately 2.000 inhabitants, I considered the statis-
tical areas the most suitable scale for conducting my analysis. Therefore, for the purposes of 
this dissertation, the terms small urban scale, neighbourhood scale, and neighbourhoods refer 
to Hamburg’s statistical areas. 

2.3.2. Spatial microsimulation and population synthesis 

Moving on to the methodological part, I want to focus on the term spatial microsimulation. The 
method is based on the combination of population datasets (so-called micro datasets) without 
specific geographic dimension, and geographic datasets containing aggregated data related 
to specific geographic units. According to Tanton and Edwards (2013), ‘the basic premise of 
microsimulation is that a more realistic picture of aggregate behaviour can be derived from 
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looking at individual behaviour and modelling the interaction between the individual units in the 
system under consideration’ (p.3). Generally, spatial microsimulation models can be applied 
for the following purposes: small area estimation, small area projection, and small area policy 
modelling (Tanton and Edwards 2013, p.5). Lovelace and Dumont (2016) describe spatial mi-
crosimulation as both a method to generate small-scale individual data, thus being ‘roughly 
synonymous with ‘population synthesis’’ and as an ‘approach to understanding multi-level phe-
nomena based on spatial microdata – simulated or real’ (p.7). 

Population synthesis represents the first step in setting up a spatial microsimulation model. It 
consists in generating a synthetic population by allocating individuals from sample surveys to 
spatial units. To that end, each individual is assigned a weight of representativity for each 
spatial unit and is then replicated there as many times as the integerised weight. The popula-
tion synthesis procedure is discussed in detail in Chapter 6.  

After this stage is completed, the generated population can be used to simulate changes in its 
composition based on modifying the parameters of certain variables. For instance, COVID-19 
mortality rates available for specific population groups (e.g., in terms of age, sex, and comor-
bidities) can be used to project which neighbourhoods will have the highest number of deaths 
depending on the known combinations of individual characteristics of their populations. The 
simulation part of spatial microsimulation modelling is, however, beyond the scope of this dis-
sertation.  

2.3.3. Citywide health monitoring systems 

Finally, I want to define the term citywide health monitoring system. A health monitoring system 
is designed to continuously observe health-related individual characteristics at a certain spatial 
scale (Robert Koch-Institute 2019). To that end, specific indicators are defined, and relevant 
data is collected for their estimation in predetermined time intervals – e.g., annually, biannually, 
etc. If a city wants to monitor variations in the prevalence of certain diseases across its territory, 
for instance, the corresponding indicators will be estimated at the city quarter, neighbourhood, 
or another level of spatial division suitable for analysis. A citywide health monitoring system 
would therefore encompass all the units within the chosen level of spatial division. This will 
allow comparing the situation in different parts of the city and potentially identifying existing 
spatial patterns of higher prevalence rates. 

With the basic terminology now clarified, the next chapter will focus on the multidimensional 
effects the urban environment can have on health and how those can vary across neighbour-
hoods. To that end, I am going to introduce some basic theoretical concepts about urban 
health, social inequality, and environmental justice. I will then provide an overview of several 
spatial determinants of health, including air and noise pollution, heat load, and public green 
spaces. Finally, I am going to present the existing instruments for monitoring health and social 
inequality at the small urban scale in Hamburg. 



 
11 Modelling Health Data on a Small Urban Scale Using Deterministic Iterative Proportional Fitting 

3. CITIES AND HEALTH - A THEORETICAL OVERVIEW 
3.1. Health-Related Inequalities within Cities 

Human health depends on numerous factors including age, gender, genetic predispositions, 
health behaviour, social and community networks, living and working conditions as well as the 
characteristics of one’s socioeconomic, cultural, and physical environment (Dahlgren and 
Whitehead 1991, p.11). Non-communicable diseases thus often result from the unfavourable 
combination of (some of) these factors. 

In this regard, to ‘ensure healthy lives and promote well-being for all at all ages’ was defined 
as one of the 17 Sustainable Development Goals within the 2030 Agenda for Sustainable De-
velopment (United Nations 2015, p.14). With more than half of the global population currently 
living in cities and demographic projections expecting this share to continue rising (United Na-
tions 2018), many more individuals will be directly affected by the diverse characteristics of the 
urban living environment. The role of cities is therefore going to be increasingly important for 
reaching this goal. 

Tiwari et al. (2015) define living environment as ‘an assembly of the natural and built environ-
ment which is offered to the inhabitants of the place who perform various kinds of social, cul-
tural, religious, economic, and political activities’ (p.153). Theoretical concepts about the influ-
ence of the living environment on the health situation in urban neighbourhoods thus assume 
an interplay between the socio-economic and ethnic composition of the population on the one 
hand, and the social and physical environment on the other (Westenhöfer et al. 2021, p.32). 
In this context, the social environment represents prevailing norms and values, social cohe-
sion, social capital, levels of security and violence. The physical environment, on the other 
hand, covers aspects such as environmental pollution, housing quality, healthcare infrastruc-
ture, access to recreational and leisure facilities, food access, and other, aesthetic aspects 
(ibid.). Both the social and the physical environment affect the subjective perception of one’s 
neighbourhood and thus influence individual health behaviour and well-being (Meijer 2013, 
p.31). Urban health thus ‘reflects the outcomes of the physical and the social environment that 
impact residents’ and communities’ well-being and quality of life, within an urban setting’ 
(Wuerzer 2014, p.6835).  

Research interest in urban health has been constantly rising over the past decades. Exploring 
the links between the physical characteristics of urban neighbourhoods, their social status, and 
the health of their inhabitants has become the focus of both urban planning and public health 
scholars (e.g. Yosifova and Pohlan 2021; Buchcik et al. 2021). During the COVID-19 pan-
demic, the topic of urban health has become even more prominent than usually. The current 
health crisis is increasingly recognised as an opportunity to re-evaluate the sustainability of 
existing spatial structures and uses and take measures to reduce exacerbating social inequal-
ities (Akademie für Raumentwicklung in der Leibniz-Gemeinschaft 2021). 

Social inequality usually has a clear spatial manifestation within cities as population groups of 
different socio-economic standing often live isolated from each other in different neighbour-
hoods (OECD 2018). This phenomenon is widely known as social segregation, and it puts low-
income households at risk of becoming ‘tied to neighbourhoods with characteristics that affect 
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their present and future well-being’ (OECD 2018, p.12). In essence, differences in living con-
ditions make some urban neighbourhoods more attractive than others, which leads to higher 
real-estate and rental prices in certain parts of cities. As a result, low-income households have 
a limited choice of residence location. Hence, social status has a strong determining effect on 
the kind of neighbourhood characteristics people are exposed to and can thus influence their 
health and well-being. 

Scientific evidence pointing to the variety of effects the urban living environment can have on 
individual health is mounting. Physical and social characteristics of urban neighbourhoods af-
fect people’s ability to practice health-promoting lifestyles. For example, the proximity of public 
green spaces can foster physical activity, whereas the perceived lack of security may impede 
this health-promoting effect. Poor access to healthy food in the vicinity of one’s place of resi-
dence makes it more difficult to maintain a nutritious diet and can thus eventually lead to obe-
sity, cardiovascular disease, and even death (Meijer 2013, pp.28–29). Continuous exposure 
to high levels of noise may cause cardiovascular problems such as coronary heart disease 
and myocardial infarction (Hahad et al. 2019, pp.246–247).  

Socially deprived neighbourhoods are generally associated with health-damaging features of 
the urban living environment: high levels of traffic volume, poorly maintained public green 
spaces, limited number of playgrounds and possibilities for recreation, etc. (Gold et al. 2012, 
p.17). Therefore, socially disadvantaged people ‘face a double burden: being socially margin-
alised and being subject to the inequities resulting from being located in poor social and phys-
ical environments’ (Frohlich 2013, p.49). 

Against this background, the WHO offers definitions for both inequality and equity in terms of 
health:  

‘“Inequality” reflects any differences and disparities in relation to environmental health ine-
quality. It signals differences in exposure to environmental health risks and related health 

outcomes’ 

(WHO Regional Office for Europe 2019, p.2). 

‘“Equity” reflects the political goal of achieving equal conditions and equal opportunities, re-
ferring to equity in health outcomes as well as (environmental and other) health risks and de-

terminants’ 

(ibid.). 

Both terms are closely related to the concept of environmental justice. The latter originated in 
the 1980s during protests in the United States of America (USA), which aimed to stop the 
allocation of polluting factories and waste sites exclusively in black neighbourhoods and indig-
enous people’s reservations (Stephens and Church 2017). A decade later, the environmental 
justice movement came to Europe, where the focus shifted from racial minorities to socially 
disadvantaged people. More specifically, environmental justice activists were concerned with 
the disproportionate burden carried by those with lowest incomes (ibid.).  

Noise and air pollution, heat load, public green spaces – being some of the most prominent 
health-related factors of the urban living environment – are usually unequally distributed across 
neighbourhoods. Often, there are concentrations of several unfavourable environmental risk 
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factors in deprived urban areas. Low-income households are thus generally more exposed to 
multiple pollutants in their immediate living environment. Compared to the general population, 
they are hence more susceptible to related unfavourable health effects (Sexton 2014). 

In the context of the ongoing COVID-19 pandemic, socially deprived people are, once again, 
more vulnerable than other individuals. Those with lower income often have essential service 
jobs, which cannot be done from home. This, coupled with typically crowded housing condi-
tions, increases their risk of virus exposure, and facilitates transmission (Upshaw et al. 2021). 
Work-related mobility, insufficient financial resources for taking protective measures, and diffi-
cult access to healthcare services are risk factors, which affect mainly socially deprived popu-
lation groups (Dragano and Conte 2020). In this regard, a recent cohort study from Scotland 
found that patients from deprived areas ‘had higher frequency of critical care admission and a 
higher adjusted 30-day mortality’ (Lone et al. 2021, p.1). Against this background, to achieve 
the Sustainable Development Goal of ensuring healthy lives for all, it is essential to combat 
social and environmental inequality across urban neighbourhoods.  

With the main theoretical concepts regarding health-related inequalities within cities now intro-
duced, the following paragraphs will focus on several spatial determinants of health. The mul-
tidimensional health effects that can be triggered by noise and air pollution, heat load, and 
public green spaces will be separately discussed. Those represent merely a subset of envi-
ronmental aspects and thus do not attempt to exhaust all imaginable health-related effects of 
the urban living environment. Rather than that, the aim is to illustrate how health is influenced 
by factors that are unevenly distributed within the spatial realm of cities. 

3.2. Spatial Determinants of Health 

3.2.1. Noise pollution 

According to the WHO, environmental noise is ‘an important public health issue, featuring 
among the top environmental risks to health [and being] a growing concern among both the 
general public and policy-makers in Europe’ (World Health Organization Regional Office for 
Europe 2018, p.xiii). Continuous exposure to high levels of noise can have adverse effects on 
individual health and well-being. It can cause annoyance and thus trigger stress reactions in 
the body. As a result, cortisol levels could be constantly elevated, thus increasing the risk of 
developing cardiovascular illnesses, immunosuppression, and gastric ulcers (Kohlhuber and 
Bolte 2012, p.12). Additionally, noise pollution can cause cognitive impairment and sleep dis-
turbance (Kohlhuber et al. 2012, p.88; Moshammer et al. 2002, p.246). Over time, this can 
have serious mental health implications. 

Scientific evidence suggests that the ‘health of those of lower socio-economic status can be 
disproportionately affected by noise’ (European Environmental Agency 2018, p.24). Several 
studies carried out in Germany, Switzerland, and the Netherlands have established a link be-
tween the exposure to road traffic noise and low socio-economic status (e.g. Kohlhuber et al. 
2006; Hoffmann et al. 2003; Laussmann et al. 2013; Braun-Fahrländer 2004; Kruize and 
Bouwman 2004). Findings from the United Kingdom (UK) show that the access to tranquil open 
public space in deprived neighbourhoods is more limited compared to affluent urban areas 
(Battaner-Moro et al. 2010). Nevertheless, the results depend highly on the indicator used to 
describe social deprivation. The European Environmental Agency (EEA) therefore considers 
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socio-economic status alone insufficient for predicting noise exposure ‘even if, in many places, 
people of lower socio-economic status live in areas with higher levels of noise’ (European 
Environmental Agency 2018, p.25). Still, this does not contradict the uneven distribution of 
noise within cities and the disproportionate burden carried by those living in the most severely 
affected neighbourhoods. If these neighbourhoods happen to be socially deprived as well, the 
adverse effects on health are amplified. 

3.2.2. Air pollution 

Within the EU, more than 1.000 premature deaths on average are attributed to air pollution 
each day. For comparison, this is more than 10 times the victims of road accidents (European 
Court of Auditors 2018, p.8). Fine particles (PM2,5), followed by nitrogen dioxide (NO2), and 
ozone (O3) have by far the largest contribution: ‘PM2,5 concentrations in 2014 were responsible 
for about 428.000 premature deaths originating from long-term exposure in Europe […]. The 
estimated impacts on the population […] of exposure to NO2 and O3 concentrations in 2014 
were around 78.000 and 14.400 premature deaths per year, respectively’ (European 
Environmental Agency 2017, p.9). These numbers encompass 41 European countries and are 
thus not limited to the EU. 

Against this background, ‘air pollution is the single largest environmental health risk in Europe 
[increasing] the incidence of a wide range of diseases, mainly respiratory and cardiovascular 
diseases’ (European Environmental Agency 2018, p.19). Furthermore, there is mounting sci-
entific evidence for a link between air pollution and type 2 diabetes in adults, obesity, systemic 
inflammation, Alzheimer’s disease, and dementia (ibid.). Adverse health effects are evident 
not only in the long term (e.g. over years) but also as a result of short term exposure to airborne 
particles (e.g. over hours or days) (World Health Organization Regional Office for Europe 2013, 
p.5). 

People with lower socio-economic status are usually more severely affected by air pollution 
than other population groups. This is often attributed to their overall worse health status, re-
sulting from poor diet, unhealthy lifestyle, lack of adequate healthcare, and stress (Khreis et 
al. 2017). Still, the European Environmental Agency (2018) report ‘Unequal exposure and un-
equal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe’ 
introduces abundant evidence pointing to higher overall concentrations of air pollution in de-
prived areas (p.22). It is therefore unlikely that any adverse effects on health are merely the 
result of the overall poor health of the inhabitants. For instance, half of London’s most deprived 
neighbourhoods are exposed to levels of NO2 exceeding EU’s maximum allowed values. In 
contrast, only 2% of the affluent neighbourhoods exhibit similar NO2-concentrations (Aether 
2017). Similar observations were registered for PM10 and NO2 in Dortmund (Shrestha et al. 
2016), Ostrava (Šlachtová et al. 2016), Wales (Brunt et al. 2017), Lille and Marseille (Padilla 
et al. 2016), Wallonia (Lejeune et al. 2016), and the Netherlands (Fecht et al. 2015). 

Studies from Bristol and Rotterdam, however, point to similar levels of PM and NO2 both in 
deprived and affluent areas. In Rome, the association between social status and exposure to 
air pollution is even reverse, due to the preference of people with higher social status to live in 
the city centre where traffic volume is higher (European Environmental Agency 2018, p.22).  
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All in all, scientific evidence suggests that there is a link between social status and exposure 
to air pollution, although there are some discrepancies in the observed trend in different Euro-
pean cities. In any case, concentrations of air pollutants differ across neighbourhoods, which 
implies varying effects on the health of their inhabitants. 

3.2.3. Heat load 

Excessive heat load can lead to heat stress and thus trigger symptoms such as fatigue, cog-
nitive impairment, and blood circulation problems. In urban areas, the situation is especially 
problematic because cooling down during the night is more difficult due to higher building den-
sity. As a result, physical regeneration while sleeping is hindered, which additionally exacer-
bates the adverse health effects caused by heat load. Prolonged heatwaves thus often lead to 
circulatory collapses, heart attacks or even heat strokes ending in death (Katzschner and 
Bruse 2012, pp.102–103). 

Certain population groups are at higher risk of heat-related mortality. The most prominent risk 
factors include old age (e.g. Paavola 2017; Urban et al. 2017), comorbidities such as electro-
lyte imbalances, cardiovascular, and respiratory diseases (Wolf et al. 2015), as well as socio-
economic status (e.g. Arbuthnott and Hajat 2017; Fernandez Milan and Creutzig 2015). Living 
alone has also been identified as a factor increasing vulnerability during heatwaves (e.g. 
Seebaß 2017; McGeehin and Mirabelli 2001). 

In Europe, there is a tendency for the more vulnerable population groups to live in dense, urban 
environments, thus being exposed to higher temperatures. Often, city centres are character-
ised by larger proportions of ‘elderly, people in poor health, and those living alone’ (European 
Environmental Agency 2018, p.28). Evidence from the UK points to concentrations of poorer 
communities within urban heat islands (UHI) (Wolf and McGregor 2013). Nevertheless, people 
of higher socio-economic standing often choose to live in the more densely built city centres, 
thus being exposed to excessive heat load as well. Therefore, socio-economic standing alone 
cannot be used as predictor for exposure to heatwaves. Vulnerability towards heat load de-
pends on several individual characteristics, which is why data aggregated at the district or city 
quarter level entails the risk of blurring the picture by assuming homogeneity. 

3.2.4. Public green spaces 

Contrary to noise, air pollution, and heat load, public green spaces can have health-promoting 
effects. White et al. (2013) found that ‘controlling for individual and regional covariates, […] on 
average, individuals have both lower mental distress and higher well-being when living in urban 
areas with more green space’ (p.920). 

Public green spaces have both passive and active effects independent of the actual use by the 
inhabitants. Passive effects manifest in three main ways: contributing to a better urban climate, 
improving air quality, and limiting the perception of traffic noise. Actively obtained gain from 
frequent use of the available green space includes improved physical and mental health as 
well as increased social interactions within the local community. The latter diminishes the risk 
of social isolation and is particularly important for those living alone (Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety 2015, pp.45–47).  
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However, public green spaces are not evenly distributed within cities. Densely built neighbour-
hoods offer less green space per person compared to other, more loosely built-up areas. Fur-
thermore, in Germany, public green space in socially deprived neighbourhoods is around one 
quarter less than the city average (38 vs. 50 square metres per person) (Federal Ministry for 
the Environment, Nature Conservation and Nuclear Safety 2015, p.13). Wüstemann et al. 
(2017) investigated the access to urban green on household and individual level and identified 
strong disparities in green space provision across major German cities by applying the Gini 
coefficient: ‘statistical analysis of the socio-economic background of households and individu-
als shows differences in urban green provision related to income, age, education and children 
in household’ (p.124). Against this background, the health-promoting effects of public green 
spaces appear to be more easily accessible for those living in affluent urban neighbourhoods. 

The previous paragraphs introduced scientific evidence for the unequal distribution of both 
health-damaging and health-promoting factors of the urban living environment. Some of those 
factors, particularly noise and air pollution, often manifest in a highly localised manner. Their 
effects may hence be concealed if health-related trends are observed solely at higher spatial 
scales, such as city quarters. An approach like this would not allow identifying concentrations 
of vulnerable population groups in terms of specific environmental risks such as heatwaves 
either. Aggregated health data provides only the basic contours of the main picture, thereby 
keeping individual risk factor combinations hidden.  

With this in view, the next section will shed light on current instruments for monitoring social 
inequality and health in the city of Hamburg. 

3.3. Monitoring Social Inequality and Health in Hamburg 

3.3.1. Hamburg’s Social Monitoring 

In 2010, in reaction to the growing inequality in living conditions across the city, Hamburg’s 
State Ministry of Urban Development and Environment introduced a so-called Sozialmonitoring 
(engl.: Social Monitoring). Through a combined observation of seven central indicators, it offers 
an overview of the socio-demographic and socio-economic situation at the level of the statisti-
cal areas (Pohlan et al. 2010, p.10). The respective indicators are: 

- Share of inhabitants with migration background of the population under 18 years, 
- Share of the population under 18 years with single parents, 
- Share of recipients of basic welfare benefits (SGB3 II) of total population, 
- Share of unemployed aged between 15 and 65 years, 
- Share of the population under 15 years unfit for work (SGB II-recipients),  
- Share of recipients of minimum welfare benefits in old age (SGB XII) of population 

aged 65 years and over, 
- Share of school leavers without a school-leaving qualification or with a basic certificate 

or middle school certificate of all school leavers (three-year sum). (Pohlan and Strote 
2017, p.2429) 

 
3 Sozialgesetzbuch (engl.: Social code) 
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After a z-standardisation4, the indicators are summed up to compute a so-called Statussumme 
(engl.: status sum). The status sum is then used for the classification of the statistical areas 
into four different Statusindexklassen (engl.: status index classes) based on the standard de-
viation (Std Dev): high (< -1.00 Std Dev), average (-1.00 ≤ Std Dev ≤ 1.00), low (1.00 < Std 
Dev ≤ 1.50 SD), and very low (> 1.5 Std Dev) (Pohlan et al. 2010, p.46).  

Simply put, those statistical areas where the share of inhabitants with migration background, 
the share of unemployed, the share of welfare benefits recipients, etc. is significantly below 
the city average are classified as areas with high social status. Those statistical areas, where 
the corresponding proportions of population are close to the city average, are classified as 
areas with average social status. The remaining statistical areas, where the share of socially 
deprived people, as described by the seven central indicators, is considerably larger than the 
average for Hamburg, are categorised as having either low, or very low status. It is important 
to note that income is not taken into consideration by the Social Monitoring.  

Based on the defined status index, both the current social status and the development direction 
of each statistical area, compared to the city average, are tracked each year. Thus, Hamburg’s 
Social Monitoring is intended to act as early-warning system for social deprivation. Additionally, 
it functions as an instrument for identifying areas with cumulated problems, which may thus be 
in urgent need for action (Pohlan et al. 2010, p.3). 

3.3.2. Hamburg’s Morbidity Atlas 

Three years later, in 2013, Hamburg’s Morbidity Atlas was published. Commissioned by the 
State Ministry of Health and Consumer Protection, its goal was to examine differences in the 
healthcare demand of the population with statutory health insurance across the 104 city quar-
ters. More specifically, the following aspects were explored: number of patients treated for 
certain illnesses, scope of healthcare provided by registered doctors, frequency of hospital 
admissions, and differences in disease burden in relation to social deprivation (measured in 
terms of unemployment and average income). 

The Morbidity Atlas is based on accounting data about all statutory health insurance (SHI) 
accredited physician services, provided to people with statutory health insurance, who visited 
a registered doctor at least once in 2011. Hence, there is no data available about those with 
private health insurance or those with statutory health insurance, who did not visit a doctor in 
2011.  

Table 1 provides an overview of the examined medical conditions. In general, the Morbidity 
Atlas delivers information about the proportion of individuals5 suffering from each of the listed 
illnesses. The available data is aggregated at the level of the city quarters and city quarter 
clusters and divided into four age categories: 0-17 years, 18-64 years, 65-79 years, and 80+ 
years (Erhart et al. 2013, p.3). 

  

 
4 Defined as: (observed value – mean) / standard deviation 
5 Defined as: share of population with statutory health insurance who visited the doctor at least once in 2011 
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Table 1. Medical conditions examined in the Morbidity Atlas (with ICD-10 Codes) (Source: Erhart et al. 
2013, p.4) 

Common illnesses ICD-10 Codes 

Diabetes E10% - E14%; H36.0 

Hypertension I10%; I12%; I15%; I67.4 

Heart failure I11%; I13%; I26%, I27%; I42%; I43%; I50%; I51.0 - I51.7; 
I09.2; I31.0 - I31.1; R57.0; T46.0 

Depression  F32%; F33%; F34.1 

Dementia F00% - F02%; F03%; F04%; F05.1; F06.5 - F06.9; G30%; 
G31% 

Specific Diagnoses ICD-10 Codes 

Pregnancy in females aged 15-44  
O00-O08%; O09% - O16%; O20% - O26%; O28% - O31%; 
O34% - O36%; O43.0 - O43.1; O44%; O46% - O47%; O48%; 
Z32%; Z33%; Z34%; Z35%; Z36% 

Early diagnosis of cervical carcinoma Z12.4 

Asthma in children aged < 15 years  J45%; J46% 

Acute bronchitis in children aged < 15 years  J20%; J21%; J22% 

Glaucoma H40%-H42% 

Prostate carcinoma C61% 

Conductive or dissociative hearing loss H90% 

Epilepsy G40% 

% stands for the inclusion of all subordinated end-numbers of the ICD-10 codes 

The city quarters differ significantly in terms of population size. To ensure that the number of 
people with statutory health insurance used for the computation of disease prevalence is suf-
ficient, 53 city quarters were thus merged into 16 city quarter clusters for the purposes of the 
Morbidity Atlas. The necessary prerequisites for consolidation were for the city quarters to be 
adjacent and to exhibit similar social structure. Insel Neuwerk and HafenCity were excluded. 
Thus, altogether, the Morbidity Atlas encompasses 67 city quarters and city quarter clusters 
(Erhart et al. 2013, pp.5–6).  

3.3.3. Hamburg’s Health Reporting System 

Unlike the Morbidity Atlas, which was conducted once and has not been updated since, the 
so-called Gesundheitsberichterstattung (engl.: Health Reporting System) has long tradition in 
Germany starting in the early 1990s. In Hamburg, there are Base Health Reports, Reports 
related to specific life phases, and Special Health Reports dedicated to single health-related 
topics. Some of the central indicators in the Base Health Reports include: 

- Fertility rate, 
- Mortality, 
- Premature mortality,  
- Preventable deaths, 
- Hospital admissions, 
- Infant mortality, 
- Cot death, 
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- Cancer mortality, 
- Suicide mortality, 
- Cardiovascular disease mortality, 
- Respiratory disease mortality, 
- Mortality due to injuring or poisoning. (Sozialbehörde 2021) 

The last two Base Health Reports are from the years 2009 and 2018 and thus have an approx-
imately 10-year-long gap of updating. The presented results include temporal and, wherever 
possible, spatial comparisons (Saier 2020, p.7). As in the Morbidity Atlas, the spatial scale of 
analysis in Hamburg’s Base Health Reports is limited to the city quarters and city quarter clus-
ters. 

During the COVID-19 pandemic, a necessity for small-scale data to successfully navigate de-
mand, deficits, and improvement efforts has become evident (Akademie für Raumentwicklung 
in der Leibniz-Gemeinschaft 2021, p.10). The pandemic brought to light the problem of insuf-
ficient digital data availability, required for an evidence-based, integrated decision-making. 
Only few of Germany’s cities are equipped with Health Reporting Systems providing sufficient 
level of spatial detail. Digitalisation of data collection and data processing in the public health 
sector lags behind. Integrating data from different departments at the same spatial scale is 
limited. With this in view, there is currently an urgent necessity for the spatial integration of 
different data sources to facilitate timely site planning for testing and medical service centres. 
Besides methodological competence, data and technology availability is required (Akademie 
für Raumentwicklung in der Leibniz-Gemeinschaft 2021, p.7). In this regard, data equipment 
standards must be agreed upon and measures for their compliance must be applied (ibid., 
p.10). Woock and Busch (2021) argue that only a timely, setting-based approach to health 
promotion can contribute to increasing the overall resilience of the public health sector.  

Against this background, the next chapter will provide theoretical information about the pro-
posed spatial microsimulation approach to generating individual health data at the small scale. 

  



 
20 Cities and Health - A Theoretical Overview 

 



 
21 Modelling Health Data on a Small Urban Scale Using Deterministic Iterative Proportional Fitting 

4. A SPATIAL MICROSIMULATION APPROACH 
4.1. Introducing Spatial Microsimulation 

This section describes the basic notion of spatial microsimulation and explains how the ap-
proach relates to more familiar concepts such as modelling, simulation, and microsimulation. 
Its advantages, fields of application, and basic implementation requirements are also covered. 

4.1.1. Modelling, simulation, and microsimulation 

The concepts of modelling, simulation, and microsimulation are central for understanding how 
spatial microsimulation works. Gilbert (2000) argues that modelling comes first because ‘there 
is some ‘real world’ phenomenon in which the researcher is interested’, a so-called target, and 
‘the objective is to create a model of this target which is simpler to study than the target itself’ 
(p.3). The model therefore serves as a mean for drawing conclusions about the target because 
‘the two are sufficiently similar’ (ibid.). 

Simulation, on the other hand, represents a necessary addition to the model, it builds upon it. 
Since ‘the target is always a dynamic entity, changing over time and reacting to its environment 
[…], the model must also be dynamic […] Simulation means ‘running’ the model forward 
through (simulated) time and watching what happens’ (Gilbert 2000, p.4).  

Contrary to simulating change by assuming homogeneity of all units included in the model, 
microsimulation consists in ‘simulating the passage of a large number of ‘base’ units (usually 
individuals, households or firms) through time, while applying transfer functions […] to each 
unit […] independently of the others and there [being] no direct interaction between the units’ 
(Gilbert 2000, p.7). The key notion of microsimulation is therefore simulating how certain 
events affect individual units rather than groups of units aggregated based on some specific 
rule (e.g., place of residence). 

Microsimulation was first introduced as concept by Guy Henderson Orcutt – an American econ-
omist, academic, and researcher – in the 1950s. Around that time, he became convinced that 
‘data aggregated to the national accounts level simply could not provide sufficient information 
for discovering the elusive secrets of the economy with enough reliability to be useful for policy 
guidance’ (Watts 1991, p.173). For this reason, Orcutt aspired to develop models capturing 
the complex behaviour of multiple microeconomic units. He believed that the implications of 
policies depend on how their impact is ‘distributed among non-homogeneous groups’ (ibid.). 
He therefore considered aggregated population data an unreliable foundation for estimating 
the effects of a certain policy and strived for a more sophisticated approach that would account 
for the heterogeneity of individuals and households. 

Orcutt’s idea to estimate policy effects by modelling their impact on separate individuals rather 
than entire population groups came to fruition thanks to a couple of important developments 
happening at the time. First, university researchers had gotten an easier access to electronic 
digital computers, which had become powerful enough to process challenging computation 
amounts. As a result, the cost of manipulating and analysing large data files was reduced 
substantially. The other vital novelty was that the Survey Research Centre at the University of 
Michigan had begun to collect large data files containing household-related information that 
were made available to researchers. Orcutt thus recognised the opportunity ‘of using large 
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samples of microunits to estimate behavioral relations and the use of the same or similar sam-
ples to represent entire populations in simulations – both aspects making heavy use of the new 
computing machinery’ (Watts 1991, p.174). 

Orcutt first described his concept in the late 1950s and initialised its implementation with the 
help of several doctoral students – Martin Greenberger, John Korbel, and Alice Rivlin (Orcutt 
1957). This first microsimulation model relied on a sample of 10.358 persons and simulated 
demographic processes (births, deaths, marriages, divorces, and ageing), labour supply, and 
education demand. The results of this work, which was referred to as microanalytic modelling 
at the time, are described in Orcutt et al. (1961) (Watts 1991, p.174). 

Since the pioneering work of Guy Orcutt, microsimulation has been applied in various fields 
including social sciences, taxation, and health. The first health-related microsimulation model 
was developed just 15 years after Orcutt put his ideas into words. Nevertheless, the number 
of publications about using a microsimulation approach in the field of health research started 
to grow exponentially only after the millennium (Figure 2). 

Figure 2. Number of publications related to the application of microsimulation in health research by 
decade (Source: Schofield et al. 2017, p.103) 

 

In the early days of microsimulation, health researchers mostly adopted the approach to study 
topics related to family planning and the rate on conception (e.g. Mustafa 1973), fertility and 
breastfeeding (e.g. Roy 1984; Kono et al. 1983; Santow 1978). Other popular fields of health 
research that made use of this novel approach during the period 1975-1990 include cancer 
screening (e.g. Parkin 1985), health-insurance provision for employees (e.g. Chernick et al. 
1987), health policy impact on individual behaviour (e.g. Yett et al. 1975), and transmission of 
vector-borne diseases (e.g. Plaisier et al. 1990). Most of those early microsimulation models 
were static rather than dynamic6. (Schofield et al. 2017, p.100). 

In the 1990s, the use of microsimulation in health research increased significantly, although 
most of the models were designed for other purposes. Criticism about those models ‘not having 
the benefits of unit record health data and the capacity for distributional analysis that distin-
guished tax-benefit microsimulation models’ was very popular at the time (ibid., p.118). Using 
health survey data as base population proved to be the solution to overcoming this limitation. 

 
6 The difference between static and dynamic microsimulation models is explained in Chapter 4.2. ‘Choosing a 
Spatial Microsimulation Method’. 
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Nowadays, the use of health surveys for the purpose of generating synthetic population has 
become the norm in microsimulation modelling ‘with some models even being based on the 
collection of new primary data specific to the application, where appropriate survey data is not 
available’ (Schofield et al. 2017, p.118). 

Applications of microsimulation methods for health research purposes have been constantly 
evolving over the years. Today, microsimulation models are being developed for ‘the newest 
frontiers of medicine, such as genomic testing and personalised medicine’ (ibid.). Health re-
searchers all over the world have been using microsimulation methods, whereby the most 
publications between 1972 and 2017 are from the USA, Australia, Canada, the UK, and the 
Netherlands (Figure 3).   

Figure 3. Number of publications on the use of microsimulation for health research purposes 1972-2017, 
PubMed database (Source: Schofield et al. 2017, p.106) 

 

The range of health-related topics, where microsimulation has found application is vast. Some 
examples include health expenditure and health policy (e.g. Lay-Yee and Cotterell 2015; 
Majstorovic et al. 2015), mortality (e.g. Carter et al. 2017), ageing and caregivers (e.g. 
Schneider and Kleindienst 2016; Singh et al. 2014), chronic illnesses such as cancer (e.g. 
Evans et al. 2013; Popadiuk et al. 2016) and diabetes (e.g. Willis et al. 2013; Clarke et al. 
2004), transmission of disease (e.g. Cassels et al. 2008), cost-effectiveness of health inter-
ventions (e.g. Weycker et al. 2007), and spatial models (e.g. Rahman 2017; Campbell and 
Ballas 2016; Edwards and Clarke 2009). (Schofield et al. 2017, pp.108–112).  

It is precisely the use of microsimulation methods for building spatial models that is going to 
be the focus of the next paragraphs. They will introduce the concept of spatial microsimulation 
– together with its advantages and various fields of application. 
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4.1.2. Spatial microsimulation: advantages and fields of application 

Unlike traditional microsimulation, spatial microsimulation models contain geographical refer-
ence for each micro unit and thus enable estimating ‘the characteristics of individuals within 
geographic zones about which only aggregate statistics are available’ (Lovelace and Ballas 
2013, p.1). In this regard, Lovelace and Dumont (2016) define spatial microsimulation as the 
generation, the analysis, and the modelling of individual data allocated to geographic areas 
(p.7). The approach is based on the combination of population datasets (so-called micro da-
tasets) without specific geographic dimension and geographic datasets containing aggregated 
data related to specific geographic areas. Therefore, micro datasets generated using a spatial 
microsimulation approach, typically refer to a certain geographic area. The latter may vary 
considerably in size and population count – it can be anything from an urban block to an entire 
region. Whatever the case may be, its physical boundaries are usually pre-defined for census 
purposes because aggregated place-specific data is required for setting up the model 
(Campbell and Ballas 2013, p.264).  

A central advantage of adopting a spatial microsimulation approach over a traditional small 
area estimation approach is the generation of synthetic micro data for each spatial unit. While 
‘small area estimation methods produce a point estimate, spatial microsimulation can produce 
cross tabulations’ (Tanton 2014, p.5). This offers much more opportunities for in-depth analy-
sis. If, for instance, the model aims to illustrate the spatial distribution of obesity, differences in 
terms of age, sex, income, education level, etc. – depending on the available variables – can 
be examined as well.  

An additional major benefit of spatial microsimulation models is that the generated synthetic 
population can subsequently be updated using fertility and mortality rates (Ballas et al. 2007). 
Thus, demographic changes and their effect on the studied subject (e.g., heart failure) can also 
be explored at the spatial level chosen for analysis. 

Another reason why spatial microsimulation models are so increasingly popular is that they 
allow transferring certain variables of interest (so-called target variables) from the micro da-
taset (e.g., national representative survey about health) to the synthetic population dataset. 
These target variables are not available in the geographic dataset. In other words, individuals 
from a survey sample can be allocated to the geographic areas at the desired spatial scale 
along with specific information from the survey (e.g., about suffering from a certain chronic 
disease). There are certain requirements for this procedure which I am going to address in 
more detail in Chapter 6.3. ‘Selection of Constraint and Target Variables’.  

The main reason why researchers are keen on implementing spatial microsimulation, however, 
is that the generated models can provide a solid base for decision-making and thus be suc-
cessfully utilised by governments. Tanton and Edwards (2013) argue that the biggest strength 
of spatial microsimulation is its ability to model specific policies and test their potential effect 
at the small scale. Thus, decision makers can select geographic areas for intervention based 
on where the model predicts the strongest impact of the outlined measures. 

With this in view, O’Donoghue et al. (2014) argue that despite speculations about microsimu-
lation models being ‘black box models, applicable only with caution where other methods are 
not available’, researchers are increasingly recognising spatial microsimulation as an important 
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instrument for analysis due to the rising awareness about the ‘geographical impact of govern-
ment policies, public and private investment and social networks’ (p.28). In this regard, Love-
lace and Ballas (2013) point out that spatial microsimulation models ‘cannot replace the ‘gold 
standard’ of real, small area microdata (Rees et al. 2002, p.4), [however] the method’s practical 
usefulness (see Tomintz et al. 2008) and testability (Edwards and Clarke 2009) are beyond 
doubt’ (p.2). 

Against this background, spatial microsimulation has gained a lot of popularity over the past 
two decades and is currently being applied in various research fields including economic policy 
analysis (Campbell and Ballas 2013), welfare, poverty, and inequality (e.g. Tanton 2011; Chin 
et al. 2005; Harding et al. 2004; Ballas 2004), social policy (e.g. Ballas and Clarke 2001; Ballas 
et al. 2007), public policies related to education (e.g. Kavroudakis et al. 2012) and crime (e.g. 
Kongmuang et al. 2006), agriculture (e.g. Hynes et al. 2009; Ballas et al. 2006), regional de-
velopment (e.g. van Wissen 2000), land use and spatial planning (e.g. Strauch et al. 2004), 
crisis planning and management (e.g. Chen et al. 2006), transport planning (e.g. Hollander 
and Liu 2008), influence assessment of demographics on heat consumption (e.g. Muñoz and 
Peters 2014) and last, but not least – health (e.g. An 2020; Campbell and Ballas 2016; Kosar 
and Tomintz 2014; Edwards and Clarke 2013).  

Health was, in fact, one of the initial focal points of spatial microsimulation models. In the mid-
1980s, Clarke et al. (1985) developed the so-called ‘HIPS’ model (Health Information and Plan-
ning System) to facilitate the decision-making process of district health authorities in England 
and Wales. In its essence, the model represented a synthetic population with attributed demo-
graphic data instead of aggregated data for each district. Since then, the model has been 
updated annually (Tanton and Edwards 2013, p.4). 

The decision to adopt a spatial microsimulation approach for health research purposes is usu-
ally motivated by (one of) several factors. First, disease data is often not available at the de-
sired spatial scale. Using data aggregated at a larger scale can serve as alternative but is likely 
to provide a picture that lacks detail and assumes homogeneity of the observed population. 
Existing disease patterns at underlying spatial levels may thus remain hidden. Using sample 
surveys instead of spatially aggregated health data poses another risk. While they give great 
insight into the lives of the interviewed individuals, the public health perspective on entire pop-
ulation groups is limited. Against this background, spatial microsimulation offers a solution to 
providing more heterogeneity by generating synthetic populations for each geographic unit at 
a desired spatial scale. Furthermore, it is a cost-effective and time-saving alternative to con-
ducting sample surveys (Edwards and Clarke 2013, pp.69–70).  

4.1.3. Requirements for setting up a spatial microsimulation model 

While this sounds promising, the quality of data needed to construct a spatial microsimulation 
model is decisive for its accuracy. As already pointed out, at least two data sources are nec-
essary to set up this kind of model. One of the datasets must provide the micro data, i.e., 
individual data from a representative sample survey including wide range of information about 
the studied topic (e.g., health). The other dataset typically consists of data aggregated at a 
specific geographic scale (e.g., regions, districts, neighbourhoods, blocks, etc.) and can usu-
ally be obtained from local bureaus of statistics, or national census. The variables shared be-
tween the geographic and the micro dataset are used as so-called constraints or benchmarks. 
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They are essential because the modelled data has to be constrained to fit the known aggre-
gates for each spatial unit (Cassells et al. 2013, pp.9–10). 

It is of utmost importance for the variables used as constraints from the micro dataset and the 
geographic dataset to be defined in the same way, that is, the characteristic attributes must be 
classified identically. If, for instance, age is used as constraint, the corresponding variable must 
either be metric, or otherwise the age intervals must be the same in both datasets. If one of 
the variables is metric, and the other one is ordinal, the problem can be easily solved by con-
verting the metric variable into an ordinal one. Yet, if both variables are ordinal, but the age 
intervals are classified in a way that does not allow for a meaningful conversion, age cannot 
be used as constraint variable. 

Furthermore, it must be ensured that the semantic content of the chosen constraint variables 
is the same. A variable concerning unemployment, for instance, may not provide the exact 
same information in two different datasets, as unemployment can differ in terms of duration, 
receipt of unemployment benefits, etc. Additionally, it may be important to clarify if the variable 
refers to self-perceived unemployment or registration in the local employment agency. This 
should serve as an example how the information provided by a variable referring to the same 
matter may vary in different datasets. 

Last, but not least, to transfer selected target variables from the micro dataset into the synthetic 
population dataset, there should be a statistically significant correlation between the constraint 
variable(s) and each of the selected target variables. Moreover, the constraint variables should 
be able to explain (at least some part of) the variance of the target variable(s). Therefore, 
specific statistical tests must be carried out before deciding which variables from the micro 
dataset can the transferred to the synthetic population datasets along with the individuals.  

Once these requirements are met, a synthetic population can be generated by applying spatial 
microsimulation. In this context, there are several available methods to choose from depending 
on the available data, the topic of interest, and its specific characteristics. 

4.2. Choosing a Spatial Microsimulation Method 

4.2.1. Static vs. dynamic methods 

Spatial microsimulation methods are generally divided into two main categories – static and 
dynamic (Figure 4). Static methods do not account for changes in population over time. In-
stead, policy changes are modelled considering the current state of population. Therefore, 
static spatial microsimulation models are suitable for next day analyses, that is, if the change 
in policy is to be applied today, what would the outcome be tomorrow. In contrast, dynamic 
methods additionally consider demographic factors, such as births, deaths, and migration. The 
changes which are to result from a certain new policy are thus modelled for a best guess 
population for a specific time in the future (Tanton and Edwards 2013, pp.3–4). Dynamic mod-
els can therefore be regarded as an extension of static models. While they do take additional 
factors into account, the methodology for their generation is basically the same – it revolves 
around estimating the probability for each individual (or household) to be living in each area. 

Both approaches have strengths and weaknesses. Static methods lack flexibility and provide 
limited time perspective. Dynamic methods offer insight into future population development 
patterns and are thus the more suitable choice when analysing long-term policy implications. 
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Nevertheless, dynamic methods rely on a demographic forecast, which may or may not prove 
to be fully correct. Therefore, depending on the available input data, static methods may prove 
to be more reliable.  

Figure 4. Methods of spatial microsimulation (Source: Tanton 2014, p.7) 

 

Static spatial microsimulation methods are further subcategorised in terms of data generation 
technique. In essence, there is the choice between synthetic reconstruction and reweighting. 

4.2.2. Synthetic Reconstruction 

Synthetic reconstruction operates by producing a list of individuals or households whose char-
acteristics, when aggregated, match the already known aggregates at the spatial scale chosen 
for setting up the model. Usually, this process is carried out variable by variable so that indi-
vidual ‘characteristics are matched sequentially, rather than all at once’ (Tanton 2014, p.7). 
For example, the first variable to account for in the observed population can be age. Synthetic 
individuals are then going to be allocated to the areas considering solely the known age interval 
counts. The generated synthetic population will thus perfectly fit the observed population in 
terms of age. Next, the list with individuals will be adjusted to take another variable into account 
– e.g., gender, or income. This procedure continues until all variables are considered and an 
optimal composition of the synthetic population is achieved. 

Synthetic Reconstruction using IPF 

Tanton (2014) argues that while there are several methods used for synthetic reconstruction, 
the most widely accepted one is Iterative Proportional Fitting (IPF). It generates a synthetic 
population dataset by using census tables and iteratively estimating the probability distributions 
for each variable attribute in each area. The method should not be mistaken for the IPF used 
for deterministic reweighting because ‘the reweighting IPF method starts with a record unit 
dataset, whereas the synthetic IPF method does not’ (Tanton 2014, p.8). A more detailed de-
scription of the IPF synthetic reconstruction method is offered by Birkin and Clarke (1988). 
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Not requiring a record unit dataset (also referred to as micro dataset) is exactly the advantage 
synthetic reconstruction offers compared to other spatial microsimulation methods. There can 
be instances when this kind of data is unavailable due to confidentiality restrictions or for other, 
unspecified, reasons. For example, studying indigenous disadvantage in Australia proved a 
challenging task because ‘a record unit file was not available due to the scarcity of the Indige-
nous population in Australia, and concerns from the ABS [Australian Bureau of Statistics] about 
confidentialising the file’ (Vidyattama et al. 2013). The solution to this problem was to generate 
a synthetic unit record using a synthetic reconstruction method and then build a deterministic 
generalised regression spatial microsimulation model (Tanton 2014, p.8). 

4.2.3. Reweighting 

Whereas synthetic reconstruction methods do not rely on available micro data, reweighting 
methods generally make use of datasets containing individuals, or households7. These are 
often the product of representative surveys and can usually be obtained from local bureaus of 
statistics, research institutes, or some other data owners who have carried out a survey for a 
specific project-related purpose.  

In essence, there are two types of approaches to reweighting a micro dataset: selecting indi-
viduals from the micro dataset to fill each area or adjusting the original weights on the micro 
dataset (ibid., p.9). The first type is referred to as probabilistic, and the second – as determin-
istic reweighting. Probabilistic algorithms produce different results each time they are run, be-
cause somewhere along the line they rely on random sampling. Basically, the algorithm runs 
until the optimal population composition is achieved so that it fits the observed aggregated 
counts defined by the constraint variables. This is also true for deterministic reweighting, but 
in the case of probabilistic algorithms, individuals are included in the simulated population, 
then taken out, then included again, and so on, until the algorithm stops when it achieves the 
perfect fit. Deterministic algorithms, on the other hand, are based on a predefined set of rules 
and thus provide the same set of individuals each time they are run (ibid., p.8). 

The following paragraphs provide detailed information about the different types of reweighting 
algorithms and discuss their advantages and limitations. 

Probabilistic Combinatorial Optimisation Method 

Probabilistic combinatorial optimisation is the most common method among probabilistic re-
weighting algorithms. It takes at least two types of datasets as input data – a representative 
survey containing micro data, and small-area aggregates from a local bureau of statistics, or 
other, similar source.  

The synthetic small-area population generated by probabilistic combinatorial optimisation is 
comprised by individuals, who are randomly selected from the sample survey. The selection 
process continues until the fit with the observed aggregates is optimal, that is, until it cannot 
be further improved. After each sampling step, the algorithm performs a quality check by cal-
culating the total absolute difference between the estimated and the observed frequencies for 
each constraint category and for each area (Table 2). For the estimation of the goodness-of-

 
7 Individuals and households are the most common ‘units’ in micro datasets. From here, for a more concise writing, 
I am going to omit households and refer to individuals only. 
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fit, other metrics can be used as well (e.g., relative error, root mean squared error, mean av-
erage percentage error, etc.).  

Table 2. Example of assessing the fit of the synthetic micro data for zone XY (own representation) 

Age intervals Observed  
frequencies 

Estimated  
frequencies Absolute difference 

18-44 18 20 2 

45-64 12 10 2 

65+ 5 5 0 

Total Absolute Difference 4 

To improve the fit, the algorithm starts swapping individuals. This does not necessarily mean 
that it substitutes one individual with another. Rather than that, the algorithm may choose to 
remove an individual completely or, on the contrary, to sample it more than once. Eventually, 
the total absolute difference must be as close to zero as possible. To that end, the algorithm 
may adopt a ‘hill-climbing’ approach, when a swap is only accepted if it leads to improving the 
overall fit between the observed and the modelled frequencies. There are also other possible 
approaches to optimising the fit, which are more effective and thus more commonly used. Wil-
liamson (2013) argues that ‘nearly all users of combinatorial optimisation prefer to adopt either 
a ‘simulated annealing’ or ‘genetic’ algorithm, in which swaps which adversely affect the fit 
might be accepted in order to avoid getting trapped with a suboptimal selection of households’ 
(p.25).  

In any of these cases, however, the main limitation of probabilistic combinatorial optimisation 
consists in the computational intensity associated with the production of synthetic micro data. 
The ‘computing overhead […] can run into CPU [central processing unit] days or weeks if whole 
country coverage is required’ (ibid., p.46). One of the reasons for this is the degree to which 
different combinations of households or individuals are tested in order to achieve a better fit 
(O’Donoghue et al. 2014, p.47). 

Deterministic Iterative Proportional Fitting Method 

Deterministic reweighting methods also rely on at least two types of datasets as input – a 
geographic dataset and a micro dataset. There are generally two main approaches to deter-
ministic reweighting – IPF and generalised regression. The next few paragraphs will cover the 
application of IPF, ‘the most widely used and mature deterministic method to allocate individ-
uals to zones’ (Lovelace and Dumont 2016, p.70).  

In essence, IPF operates in the following way: first, a weight matrix with the dimension of ‘I x 
Z’ is created, where I refers to the number of individuals in the micro dataset and Z to the 
number of geographic zones. Each weight is initially assigned to 1. Then, the IPF algorithm 
starts running, proceeding zone by zone, updating the initial weight of representativity of each 
individual (row) for each given zone (column), based on the predefined constraint variables 
(Figure 5). The algorithm updates the matrix iteratively, for each constraint variable category. 
For instance, it first updates the matrix to account for age and thus adjusts the weight of each 
individual for zone 1, then for zone 2, etc. This continues until the weights of all individuals are 
updated for all zones to fit the population distribution in the given zones regarding age. The 
process is then repeated as many times as the number or remaining constraint categories. 
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These can relate to different types of gender, income groups, 
levels of education, etc. The adjustment of the weights is car-
ried out by multiplying each weight by a specific coefficient. In 
the case of age, for example, this coefficient equals the divi-
sion of the total number of observed individuals belonging to 
a certain age category (e.g., 18-44 years) by the equivalent 
cell aggregated version of the micro data, that is, the sum of 
all people in the micro dataset belonging to the same age cat-
egory. Usually, the coefficient will be different for each age 
category, or in other words, for each characteristic attribute of 
the given constraint. This iterative updating of the weights is 
why the method is referred to as iterative proportional fitting. 

As opposed to probabilistic combinatorial optimisation, deter-
ministic reweighting with IPF delivers the same results every 
time. This, combined with its robustness, reliability, speed, 
and simplicity are the major advantages of the method. The 
main flaw of this approach is that the initial form of the gener-
ated micro data is that of fractional weights. To carry out fur-
ther analyses, researchers must therefore apply a method of 
integerisation so that they can deal with whole individuals ra-

ther than abstract fractions (Lovelace et al. 2014, p.287). The combined use of the processes 
integerisation and expansion, which will be addressed in further detail in Chapter 6, allows for 
converting the generated weight matrix into a population dataset – the same output format 
produced directly by probabilistic combinatorial optimisation (Lovelace and Dumont 2016, 
p.67). 

Deterministic Generalised Regression Method 

Deterministic reweighting using generalised regression is similar to the previously introduced 
IPF method as it also adjusts the weights of individuals from a micro dataset based on available 
small area constraints. Nevertheless, the procedure used for computing the weights is differ-
ent. The first step necessary for applying the generalised regression method is to take the 
weights available in the micro dataset and, for each area, to divide them by the respective 
population counts. Thus, a ‘reasonable starting weight required for the generalised regression 
procedure’ is provided (Tanton 2014, p.13). 

The new set of weights is calculated using a regression model based on the constraints avail-
able for the geographic areas. Since the ‘weights are limited to being positive weights only, 
[…] the procedure may iterate a number of times if positive weights aren’t achieved for every 
record in the first run’ (ibid.). Each of the initial weights from the survey is continually adjusted 
and the procedure stops only if either reasonable results are achieved, or a predefined maxi-
mum number of iterations is reached.  

A key advantage of generalised regression methods is that ‘projections are very easy to create, 
either by inflating the weights; or inflating the benchmarks [another popular term for the con-
straint variables] and reweighting to new benchmarks’ (ibid.). One potential limitation of the 

Figure 5. Iterative updating 
process of the weight matrix 
(Source: Lovelace and 
Dumont 2016, p.74) 
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method can be a slight decreasing of the model accuracy when adding more constraint varia-
bles. This can go hand in hand with an increasing number of areas failing a certain accuracy 
criterion (Tanton and Vidyattama 2010). 

Each of the introduced spatial microsimulation methods has certain advantages over the oth-
ers. The choice of one specific approach depends mostly on the available data sources, the 
computing power at hand, the desired level of complexity, and the preferred format of the gen-
erated data. In my case, micro data was available, which is why I did not have to use synthetic 
reconstruction – a more complex, and time-consuming approach than the reweighting meth-
ods. Choosing between probabilistic and deterministic reweighting methods, I opted for the 
latter because I preferred not having a random component in the reweighting algorithm. Thus, 
the generated dataset remains consistent no matter how many times the algorithm is run. Fi-
nally, I favoured the IPF approach over the generalised regression model for adjusting the 
weights. I considered the slight loss of accuracy caused by the integerisation of the generated 
fractional weights to be the more acceptable alternative than being limited in adding more con-
straint variables, which is a possible downside of using a generalised regression model.  

All steps necessary for implementing the IPF approach to generating a synthetic population 
for the purposes of this dissertation are described in detail in Chapter 6. ‘Modelling Health-
Related Data in Hamburg’s Neighbourhoods’. Before diving deep into the methodology, the 
next chapter is going to introduce the perspective of several public health researchers, based 
in Germany, on modelling health data at the urban neighbourhood level. The importance of 
small-scale health data, the reliability of health models, and their potential for identifying 
hotspots of vulnerable population groups, also in terms of the ongoing COVID-19 pandemic, 
will be the main topics brought to attention in the following pages. 
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5. MODELLING HEALTH DATA ON A SMALL URBAN SCALE FROM 
THE PERSPECTIVE OF PUBLIC HEALTH RESEARCHERS 

Hamburg has already gathered considerable experience in monitoring social deprivation and 
health as it became clear in Chapter 3.3. ‘Monitoring Social Inequality and Health in Hamburg’. 
Nevertheless, while social status is tracked annually at the scale of the statistical areas, ex-
ploring health-related patterns at the urban neighbourhood level lags behind because of una-
vailable data. Against this background, I carried out several interviews with researchers in the 
field of public health in Germany, to find out whether they consider modelling health data an 
approach worth adopting. 

Prof Dr Heiko Becher, Director of the Institute for Medical Biometry and Epidemiology at the 
University Medical Centre Hamburg-Eppendorf (UKE Hamburg) stated that the existence of 
considerable disparities across Hamburg’s city quarters in terms of social structure is well 
known. According to him, it is therefore not new information that there is a disproportionate 
health burden carried by certain population groups resulting from social inequality. Neverthe-
less, Becher considered it a meaningful endeavour to use the already available data and adopt 
a methodological approach allowing to reveal existing disparities in more detail. Thus, the spe-
cific factors contributing to the aggravation of social inequality can be outlined. Since the latter 
is central to the Health Reporting System, Becher emphasized the importance to capture data 
in the most detailed way possible. Still, he expressed uncertainty whether a small-scale health 
monitoring would, in fact, contribute to reducing existing inequalities. 

Dr rer. biol. hum. habil. Enno Swart from the Institute of Social Medicine and Health Systems 
Research (ISMHSR) at Otto-von-Guericke University Magdeburg, generally expressed his 
support about the further exploration of the suggested spatial microsimulation approach. He 
pointed out that one can surely assign certain socio-economic characteristics to Hamburg’s 
city quarters and then look for correlations with the prevalence of certain diseases available at 
this spatial scale. Nevertheless, he emphasised the risk of ecological fallacy because it is not 
clear and it cannot be explained how such a correlation will manifest in an isolated case, e.g., 
at the individual level. Therefore, he deems the spatial scale of the city quarters suitable for 
hypothesis development, and maybe for detecting some abnormalities but not for analysing 
any cause-effect relationships:  

‘In the realm of spatial statistics, or in the social epidemiology realm, one is aware that it is 
especially the individual factors that influence health: social status, health behaviour, individual 
risk factors, and at the same time factors of the environment, such as availability and accessi-
bility of health services, public green spaces, noise, etc. By observing the scale of the city 
quarters, all these factors are measured by the same yardstick. This can be avoided only if 
one is able to obtain and use individual data and integrate it into multivariate and hierarchical 
models to establish how individual factors affecting health interact with small-scale environ-
mental determinants.’ (own translation from German, approved by the interviewee)8 

Swart stated that it would be ideal if there was individual data at the level of the statistical 
areas, but for the time being this is not the case: ‘This gap can possibly be filled by using health 

 
8 Hereinafter applicable to all interview statements in italics (see Appendix for the approval confirmations) 
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insurance data but at the scale of the statistical areas one is quickly faced with data protection 
problems because the number of cases is too small’.  

This, in his opinion, is a problem, which the suggested modelling approach may be able to 
address. He thus advocated testing it out using the already available data for Hamburg. Swart 
suggested carrying out external validation of the model with health insurance data obtained in 
the course of the research project ‘Healthy Neighbourhoods’9:  

‘Provided that the modelled data proves to be reliable we can maybe even spare ourselves 
future efforts to obtain micro data. Currently, obtaining data from health insurance funds is a 
complex and challenging process, which usually takes a lot of time.’  

Swart believes it is possible to establish a common health research data centre in the not so 
far future and thus commit health insurance funds to deliver data for research purposes on a 
regular basis. Step by step, the data pool can be expanded. However, it is still unclear how 
fine-grained the data from health insurance funds is across regions:  

‘At the moment, the thinking is rather in the direction of delivering data at the federal state or 
at the Landkreise (engl.: rural district, county) level. Therefore, the progress would not be as 
big as it would be if there is health data aggregated at the level of the statistical areas, but it is 
generally possible to ask health insurance funds to deliver their data at the zip code level, for 
instance. Provided that the data is temporally rather than just spatially aggregated, that is, 
morbidity numbers are averaged over a period of three years, for instance, data protection 
issues could be overcome.’ 

According to Swart, the suggested spatial microsimulation model can prove to be a suitable 
alternative to obtaining this kind of real individual health data, because it would still take time 
until the health insurance funds are convinced to deliver data at a smaller spatial scale:  

‘Provided that the public health impact of such models or small-scale visualisations becomes 
evident, health insurance funds as well as other data providers may be motivated to deliver 
data to health research data centres because they would see that this is not only additional 
effort for them, but they may, indeed, win something out of it too’. 

Swart sees the potential use of small-scale health data mainly for the purposes of structural 
prevention:  

‘Generally, we know that a large proportion of cancer or diabetes cases are behaviourally in-
duced, that is, there are individual behaviourally induced causes – poor diet, or unbalanced 
diet, too little physical activity, smoking, excessive alcohol consumption. It is therefore clear 
what can be done to counteract these factors at the individual level – raising people’s aware-
ness, providing them with guidance, offering individual consultations about weight reduction or 
quitting smoking. Nonetheless, there are certain limits as some population groups cannot be 
as easily reached, although they may be the ones who especially need such services. Regard-
less of the reason – be it education, or a language barrier, when dealing with migrants, for 

 
9 Research project cooperation between the University of Applied Sciences (HAW Hamburg), University Medical 
Center Hamburg-Eppendorf (UKE Hamburg), HafenCity University (HCU Hamburg) and Otto-von-Guericke-Univer-
sity Magdeburg (2017-2021). As a research associate at the HCU Hamburg, I participated in the project from its 
start in July 2017. More information can be found on the project’s website: http://www.gesundequartiere.de/ 
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instance, if we turn our attention from the individual constellation to the living environment, and 
ensure the living environment offers sufficient supply of public green space so that people can 
engage in sporting activity, where they feel safe to walk and bike, then we may be able to reach 
population groups, which are generally more difficult to reach with classic behavioural preven-
tion measures. Thus, it may be possible to change something. If we think about noise – there 
are people with small income, who cannot afford renting the nice apartment in the more peace-
ful residential neighbourhoods, but are, instead, forced to rent a more affordable flat on a busy 
arterial road. In such cases, noise abatement measures may lead to improving people’s health 
without them having to change their individual behaviour. In such instances, the small-scale 
perspective can be valuable. One should look at what is really happening – if, based on a 
socio-spatial monitoring at the small scale, there are, indeed, disease-related hotspots. Let us 
assume that we know there is a cardiovascular disease hotspot, and we know that cardiovas-
cular disease is associated with noise, therefore we see a highly exposed population in area 
XY, and we are doing something against it. If this really brings something, that is unknown, but 
it is at least worth trying because there are plenty of opportunities to address existing issues, 
and structural prevention is overall believed to be quite promising.’ 

In terms of utilising a small-scale health model for a more efficient distribution of structural 
prevention measures and thus possibly saving available resources, Swart is rather sceptical:  

‘There are different actors depending on who is responsible for behavioural and structural pre-
vention. Behavioural prevention generally shall be carried out by health insurance funds or by 
general practitioners, in other words, actors in the realm of public health. Structural prevention, 
on the other hand, can be addressed by actors promoting various policies – educational sys-
tems – e.g., schools offering healthy meals, or enough facilities for physical training; transport 
planning measures aimed at providing secure and bike-friendly ways to school; urban planning 
in terms of noise pollution, etc. Still, the problem with structural prevention is that results are 
not usually visible in the short-term. This, of course, is a problem, especially in terms of politics, 
because politicians, who are thinking from one election to the next, cannot score high enough 
with such policies as the positive results rarely manifest during their term. Therefore, saving in 
the realm of prevention is always difficult – it is necessary to invest first in order to spare re-
sources in other areas in the mid- to long-term.’  

From his position of ‘an observer rather than an expert’ in terms of the COVID-19 pandemic, 
Swart considers the spatial scale of decision-making being bigger than that of the statistical 
areas:  

‘There may be a difference in the risk of infections, if looking south or north of the Elbe River, 
or if looking at the level of the city quarters, but I do not think one has to go so much further 
down for COVID-19 as for other things. I would say that for the usual chronic illnesses, which, 
for the most part, are behaviourally and environmentally induced, it can be interesting to look 
at the level of the statistical areas, that is, at the immediate residential environment, but for 
COVID-19, I would intuitively say that the scale of the city quarters must be sufficient.’ 

Prof Dr Susanne Busch from the Department of Nursing and Management at the University 
of Applied Sciences (HAW Hamburg) considers modelled data a suitable alternative to real 
health data at the small scale, but only as an intermediate step rather than a permanent solu-
tion:  
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‘I think it is brilliant to model this data, but one has to look at the results with humility. I find it 
absolutely important to try it out and then look at the whole thing with expert knowledge, ideally 
within expert panels with experts of various backgrounds, even if it leads to tearing it all apart, 
even if it means discussing it very critically. And if something of the initial big thinking is left at 
the end, that would be terrific progress, absolutely helpful. Each advancement of knowledge 
that we can have, albeit small, is relevant and precisely the notion that “we should take social 
inequality into account in the realm of expanded social policies” obliges us to use every small 
additional information we may be able to get. In any case, I would try to present this approach 
as what it really is – an attempt to achieve a better small-scale management of health-promot-
ing and healthcare services, to provide argumentation depending on certain factors, to confess 
that there is a multitude of limitations, and yet the approach still offers a certain knowledge 
gain. I would, indeed, highlight this knowledge gain, albeit in a humble manner, but underline 
that the knowledge gain is there and that we do need such gains because otherwise we would 
not attain socially equal, or better living conditions. And we need them even more so now, 
because COVID-19 is going to create an even wider social gap than before.’ 

Against this background, Busch considers modelling individual health-related data more mean-
ingful at the level of the statistical areas than the city quarters because the latter are too het-
erogeneous. In this context, she suggests that there is a necessity to review the statistical 
areas and the current social indicators from the Social Monitoring. Like Swart, she recom-
mends using data from health insurance funds for the external validation of the model:  

‘For me, that would be the most elegant solution – to validate the model from the researcher 
perspective, in an exemplary manner, complying with the existing data protection guidelines.’ 

In terms of using the data obtained from three health insurance funds in Hamburg for the pur-
poses of the research project ‘Healthy Neighbourhoods’, Busch pointed out that there is a 
certain data bias one should be aware of:  

‘We tried to validate the representativity of the data we obtained from the health insurance 
funds and we most probably have an imbalance, which, however, cannot be identified directly 
from studying the data. The thing is that the different health insurance funds have a certain 
population composition, which is not always diverse, and in that sense, it is not necessarily 
representative of Hamburg’s entire population. This is a certain limitation of this kind of data 
that we constantly have to deal with, and I would simply address this issue as a limitation, 
which has to be taken as a given.’ 

PD Dr rer. nat. Jobst Augustin from the Centre for Psychosocial Medicine, and Institute of 
Health Care Research in Dermatology and Nursing (IVDP10) at UKE Hamburg, generally en-
couraged testing out the proposed modelling approach:  

‘I have some experience with data disaggregation, and I know this is a complex matter. It goes 
hand in hand with a certain loss of accuracy, which is the main difficulty. Still, I deem it inter-
esting and necessary to try it out.’  

 
10 German: Institut für Versorgungsforschung in der Dermatologie und bei Pflegeberufen 
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Having worked with different types of health data, both spatially aggregated, and individual 
data from sample surveys, Augustin has experienced their advantages and limitations:  

‘Each dataset has strengths and weaknesses, or characteristics, regardless of whether it con-
tains individual or aggregated data, for instance. The use depends strongly on the research 
question. If you are using individual data, you have a significantly smaller sample, which is not 
the case when working with aggregated data. However, you can address a whole other range 
of research questions using individual data instead of aggregated data. Therefore, one cannot 
generally say which type of data is better, that is simply very much dependent on the specific 
context.’ 

While Augustin generally advocated the use of aggregated health data at the city quarters level 
for answering various research questions, he named some instances, where this scale of ag-
gregation would not be sufficient:  

‘The city quarters scale is most probably sufficient for visualising the spatial distribution of the 
prevalence of certain chronic diseases in Hamburg. If, however, the aim was to check for a 
correlation between asthma, or chronic obstructive pulmonary disease (COPD), and air pollu-
tion, for instance, the city quarters level would not suffice. Air pollutants are highly dynamic, 
both in spatial and in temporal terms, and the information available at the city quarters level is 
simply not detailed enough to address all possible factors affecting their fluctuations. It is, of 
course, possible to take the air pollution constellation at this scale, or at a 1x1-kilometre scale, 
but this would lead to unreliable results in this context. There are approaches making this 
possible, but they would raise a fair deal of justified criticism. To test for correlations between 
disease prevalence and social status, however, you would have to go down one spatial scale 
below as the city quarters are quite heterogeneous.’ 

In the context of the proposed spatial microsimulation model as a mean to generate such small-
scale disease prevalence data, Augustin emphasized the validation of the model being the 
main necessity:  

‘Modelled data can certainly be used as starting point for further in-depth analyses. However, 
statements, such as the model being able to represent the population’s health status, should 
be avoided. Instead, the generated data must be critically observed and used only for gener-
ating hypotheses. In my opinion, it is not suitable for more than that. While the necessity to test 
modelling approaches is there, it is imperative to validate the generated data before making 
statements about its quality. Testing for correlations between the modelled disease prevalence 
and different spatial factors, such as noise pollution, is of course, interesting, that, for instance, 
is something everyone wants to know. Nevertheless, one should be careful how good the data 
is for carrying out such tests. The noise data available for Hamburg is modelled, another model 
is generating the disease data, and if the two models are not good enough, the validity of the 
results will be lost.’ 

Augustin also pointed out the existing bias in the data from health insurance funds. He thus 
considered it greatly beneficial that there is available data for external validation of the pro-
posed model from several health insurance funds:  
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‘There is a health insurance bias as certain health insurance funds tend to insure certain pop-
ulation groups. The AOK has another population composition than the TK, for instance. There-
fore, it is a good thing you are going to use data from three different health insurance funds to 
validate your model.’ 

Augustin was rather reserved about using modelled small-scale disease data to identify clus-
ters of vulnerable population groups within the city in the context of the COVID-19 pandemic: 

‘It is more or less evident where vulnerable population groups live based on various, already 
available statistics. Local resident registration offices have information about how old everyone 
is, by address. As for vulnerability in terms of comorbidities, I believe the public health author-
ities are already aware of spatial distributions, based on data from the Morbidity Atlas, etc. 
Therefore, if you can validate your modelled data, this may be a gain, but it is already evident 
where the problematic hotspots are, and where special attention must be paid. This is why I 
do not think there is necessarily a demand for this, then again, I am not directly involved in the 
public health system, I may be wrong.’  

In summary, all the interviewed public health researchers agreed that testing out the proposed 
spatial microsimulation approach to generate small-scale health data is a meaningful endeav-
our. One of the main reasons, emphasised by everyone, was the heterogeneity of Hamburg’s 
city quarters. The latter hinders the identification of factors of the living environment, which 
may be influencing the health of inhabitants at the smaller, neighbourhood scale. This, in turn, 
impedes developing the full potential of structural prevention.  

All interviewees expressed the need to observe critically the generated results. External vali-
dation of the model, e.g., with health insurance data, was highly recommended. At the same 
time, the bias of the latter was brought to attention as an existing limitation to be considered. 
Still, further exploration of the suggested modelling approach was encouraged from all. 

The next chapter is going to introduce the selected spatial microsimulation approach and pre-
sent the necessary steps for setting up a small-scale health model for the city of Hamburg. 
Data selection, choice of constraint and target variables, writing a population synthesis algo-
rithm, and eventually compiling a synthetic population dataset are the main topics that are 
going to be covered in detail. The choice of software is also going to be addressed. 
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6. MODELLING HEALTH-RELATED DATA IN HAMBURG’S 
NEIGHBOURHOODS 
6.1. Two-tier Modelling Strategy 

To create a synthetic population with health-related attributes for each of Hamburg’s neigh-
bourhoods, I adopted a two-tier modelling strategy, which integrates data sources available at 
the level of the city quarters and the statistical areas. Aggregated health data is available only 
at the scale of the city quarters and the city quarter clusters. Going down to the level of the 
statistical areas, health data no longer exists due to data protection regulations. With this in 
view, I decided to divide the task of setting up a small-scale health model into two stages. I 
began with constraining the synthetic population at the first tier of the city quarters using the 
available aggregated health data. Thus, the counts of the individuals modelled at the city quar-
ter level are guaranteed to match the observed counts from the available datasets regarding 
specific medical conditions. Knowing the exact count of people suffering from diabetes, for 
instance, will ensure that there are exactly as many diabetics – no more, and no less – in the 
synthetic population generated for each city quarter (cluster). The same goes for all other ill-
nesses available in aggregated form, including hypertension, heart failure, cancer, and depres-
sion. The available socio-demographic data referring to age and gender is integrated in the 
constraining process as well. Thus, the first modelling tier enables generating reliable individ-
ual counts regarding different kinds of combinations at the scale of the city quarters and city 
quarter clusters, such as number of males older than 65 years and suffering from diabetes and 
hypertension, or number of females aged between 18 and 45 years without any comorbidities, 
and so on. Starting from there, the synthetic population which is already constrained according 
to health data available at the scale of the city quarters, is constrained again – this time based 
on aggregated socio-demographic data available for the underlying statistical areas.  

With the general reasoning behind the choice of a two-tier modelling strategy explained, the 
next paragraphs are going to address all necessary steps for generating a synthetic population 
with health-related attributes. These steps are illustrated in their respective order in Figure 6. 

Figure 6. Steps for generating synthetic population (own representation) 

 

Step 1:
Input Data 
Selection

•Data Selection — at least one geographic and one micro dataset
•Selection of constraint and target variables

Step 2:
Weights

Generation

•Data pre-processing — variable transformation, e.g., metric to ordinal, etc.
• Iterative Proportional Fitting — generating a weight matrix

Step 3:
Weights

Conversion

•Integerisation — converting the fractional weights into integers
•Expansion — replicating the individuals according to the integerised weights
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6.2. Data Selection 

Four different datasets were used for the two-tier population synthesis. To constrain the syn-
thetic population, I used a geographic dataset containing aggregated socio-demographic data 
available at the level of the statistical areas11, two further geographic datasets containing ag-
gregated health-related data available at the level of the city quarters and city quarter clusters, 
and one micro dataset with individual health data from a national representative health survey.  

6.2.1. The socio-demographic geographic dataset 

The Bureau of Statistics for Hamburg and Schleswig-Holstein provides data about various so-
cio-demographic characteristics, aggregated at different levels of spatial division including the 
city quarters and the statistical areas. The list of available variables is long and includes, 
among other things, number of males and females, number of people belonging to different 
age groups, number of employed people, number of recipients of unemployment benefits, 
number of single households, etc. I used socio-demographic data aggregated at the level of 
the statistical areas to constrain the synthetic population to the observed population counts 
regarding age, gender, employment, and living situation. Since I started working at this disser-
tation in 2018, I used the most current dataset at the time, which was referenced to the date 
31.12.2017 (Statistisches Amt für Hamburg und Schleswig-Holstein 2018). 

6.2.2. The health-related geographic datasets 

Next to the available socio-demographic data, I used two sources of aggregated health data 
at the level of the city quarter (clusters) to constrain the modelled population at the first tier. 
One of them was the Morbidity Atlas published in 2013, which, among other things, contains 
data about the prevalence of hypertension, diabetes, heart failure, and depression divided into 
age and gender categories (Erhart et al. 2013). 

The other source was Hamburg’s Cancer Registry, which provided me with aggregate counts 
of the individuals who were diagnosed with any type of cancer between 2008 and 2018 at the 
city quarter clusters level (Hamburg Cancer Registry 2020). 

6.2.3. The micro dataset 

The micro dataset, which contains individual health data, originated from the national repre-
sentative health survey ‘Gesundheit in Deutschland aktuell’ (engl.: ‘Current health situation in 
Germany’) carried out by Robert Koch-Institute (RKI) between March 2012 and March 2013. 
For brevity, it is often referred to as ‘GEDA 2012’. It contains data about over 200 health-related 
variables for approximately 26.000 people living in Germany. All respondents, who participated 
in the survey, were older than 18 years and were interviewed over the phone. The question-
naire encompasses the following topics: 

• Subjectively perceived health, 
• Chronic (and other) illnesses, 
• Accidents and injuries, 
• Psychological health, 

 
11 The population counts of the city quarters equal the cumulated population counts of the statistical areas within 
their boundaries, which is why I only needed data aggregated at the smaller scale of the statistical areas. 
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• Illness consequences and disability, 
• Health behaviour and prevention measures such as vaccination, diet, and physical ac-

tivity, 
• Health-related risk factors, such as alcohol consumption and smoking, 
• Use of healthcare services, 
• Health-related support and burdens, 
• Socio-demographic characteristics such as education, occupational status, and migra-

tion background. (Robert Koch-Institute, Department of Epidemiology and Health Mon-
itoring 2014) 

6.3. Selection of Constraint and Target Variables 

Having selected the input datasets, the next step towards generating the synthetic population 
was to define the so-called constraint and target variables.  

In essence, the purpose of the constraint variables is to constrain the model. With this in view, 
these are variables shared between the geographic datasets and the micro dataset. Some 
typical examples of constraint variables when modelling individuals include age, gender, in-
come, and education. Ultimately, they serve to determine how representative each individual 
is for each spatial unit. Assuming that in neighbourhood X, there are more males than females, 
more adults in working age than elderly or infants and more high-school graduates than uni-
versity graduates or people without degree, an adult man with a high-school degree would be 
highly representative for this neighbourhood. The population synthesis algorithm is therefore 
going to replicate such individuals in this particular neighbourhood more times than any other 
individual who has a different set of characteristics.  

Target variables, on the other hand, are the variables of interest, which are not available in the 
geographic dataset. Simply put, the target variables are the reason for generating a synthetic 
population in the first place. For the purposes of this dissertation, the targets12 will be variables 
regarding different types of chronic disease, health behaviour, and the like.  

Coming back to the constraint variables, they generally fit into two categories: optimising and 
elective constraints. To include a certain variable as optimising constraint, it must exhibit a 
statistically significant relationship with one or more of the targets. Furthermore, it should ex-
plain the variance of the targets at least to some extent because the generated synthetic pop-
ulation will only be as good as the underlying associations. Elective constraints, on the other 
hand, are useful for examining the studied targets for specific population groups. Gender and 
age, for instance, can serve for defining such groups. Edwards and Clarke (2013) argue that 
while such variables may not necessarily explain the targets, it still makes sense to include 
them in the model as elective constraints. 

After examining the micro dataset and identifying possible targets, I singled out the variables 
shared between the micro dataset and the geographic datasets. At the same time, I ensured 
that if a variable transformation is necessary for the characteristic attributes to match, the way 
the variables are coded is going to allow it.  

 
12 For the sake of brevity, target and constraint variables will sometimes be referred to as targets and constraints. 
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While good constraint data is necessary to generate a synthetic population well aligned to the 
observed population counts, there are no specific recommendations how many constraint var-
iables to use. In fact, Lovelace and Dumont (2016) argue that the number of characteristic 
attributes is more important. Fewer constraints with more than just two categories can con-
strain a model better than a larger number of dichotomous constraints. However, this decision 
is often not at all there to make because of scarce data. In my case, the only available non-
dichotomous constraint variable was age13. 

Before deciding which variables to model as targets, I checked to what extent the initially iden-
tified constraints shared between the micro dataset and the geographic datasets manage to 
explain their variance. If the constraints have little prediction power, the synthetic population, 
together with its health-related attributes, is not going to provide a reliable representation of 
the actual health situation. 

Prior to carrying out the required statistical tests, I had to decide whether to filter the micro data 
based on the population size of the respondents’ place of residence to get a more representa-
tive sample for a big city like Hamburg. Since the number of survey participants suffering from 
different types of chronic illnesses was relatively small, I opted for using the entire sample. I 
thus ensured that there are enough cases to generate valid results.  

Next, I applied a predefined weight variable available in the micro dataset, as recommended 
in the GEDA 2012 documentation: 

‘Regression analyses should be carried out with weighted cases in order to take into account 
the sample design and response behaviour. […] Unweighted analyses can lead to clearer 
statements, i.e., higher significance than weighted regression analyses. […] Nevertheless, the 
results of an unweighted analysis cannot be considered representative for Germany’ (own 
translation from German. Robert Koch-Institute 2015, p.12). 

The main factors for adjusting the weights are sample design and the related selection proba-
bility of respondents. Respondents with lower selection probability represent more people in 
the total population than respondents with higher selection probability. People’s willingness to 
participate in the survey is another factor influencing the weights. Participation willingness is 
generally measured as the proportion of a certain population group in the survey sample di-
vided by the respective proportion in the total observed population. 

A note on the statistical tests 

For the final selection of constraints and targets, I carried out several logistic regression tests. 
Thus, I was able to establish to what extent the constraint variables can predict the targets. 
The decisive factor for the selection of a suitable statistical test was the type of the target and 
constraint variables – continuous or categorical. In the micro dataset, most of the variables 
regarding different medical conditions are dichotomous, as they provide information whether 
the respondent has (had) any of them (or not). The constraints in the micro dataset are also 
either dichotomous (gender, being currently employed, living alone) or categorical (age, di-
vided into several age intervals). I therefore chose to rely on binomial logistic regression.  

 
13 The entire compilation of constraint variables is presented in Table 22. 
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To interpret the results provided by a binomial logistic regression, several metrics must be 
considered. Pearson’s Chi-Square coefficient estimates the goodness-of-fit of the regression 
model. With Sig. = 0,000 it can be concluded that the model is good enough for testing the 
relationship between the dependent and the independent variables. Pseudo R2 shows what 
share of the variance of the dependent (i.e., target) variable is explained by the independent 
variable(s) (the potential constraints). The statistical software I used – IBM’s SPSS, provides 
three alternative Pseudo R2 values: Cox & Snell, McFadden, and Nagelkerke. 

In general, Cox & Snell and McFadden compare the ways in which the modelled values of the 
dependent variable are distributed with and without taking the explanatory variable(s) into ac-
count. The values generated for Pseudo R2 using these approaches are between 0 and 1 like 
classic R2 values. However, neither Cox & Snell nor McFadden values could ever reach 1, 
regardless of how good the regression model is. Nagelkerke, on the other hand, corrects the 
Cox & Snell values so that the estimated Pseudo R2 value could theoretically reach 1. There-
fore, Nagelkerke values are typically higher than Cox & Snell and McFadden (Brosius 2011, 
pp.616–617). With this in view, I decided to consider only the corrected version of Pseudo R2 
– Nagelkerke – for the purposes of this dissertation. 

The following sections are going to provide brief theoretical information about each of the var-
iables identified as potential targets within the micro dataset. Additionally, the results from the 
conducted statistical tests are going to be presented. These will serve as basis for deciding 
whether to include the examined variables as targets in the spatial microsimulation model. 

6.3.1. Hypertension 

Every heartbeat pumps blood into the blood vessels for the blood to reach all parts of the body. 
The so-called blood pressure arises from blood pushing against the walls of the arteries when 
being pumped from the heart. High blood pressure, referred to as hypertension, is a condition 
characterised by constantly raised pressure in the blood vessels. As a result, the heart must 
continuously work harder to pump the blood. Since hypertension rarely causes symptoms, it 
can remain unnoticed for a long period of time (World Health Organization 2013, p.20). None-
theless, it causes significant repercussions for human health and is thus referred to as a ‘silent 
killer’. Left uncontrolled, that is, without changes in the lifestyle and/or medication intake, ‘hy-
pertension can lead to a heart attack, an enlargement of the heart and eventually heart failure’ 
(ibid., p.17). Another possibly fatal consequence of hypertension can be stroke caused by 
blood leakage in the brain. This can happen because of the development of weak spots in the 
blood vessels due to the continuous high pressure. Kidney failure, blindness, rupture of blood 
vessels, and cognitive impairment can also manifest as results of untreated hypertension 
(ibid.). Against this background, hypertension is considered a key determinant for the most 
common causes of death in adults (Robert Koch-Institute 2014, p.123). Globally, a total of 9 
million deaths are attributed to it each year (World Health Organization 2013, p.5). 

According to recent statistics, 1.13 billion people suffer from high blood pressure: approxi-
mately one in four men and one in five women (World Health Organization 2019). In a survey 
conducted by RKI, nearly one in three adults living in Germany reported physician-diagnosed 
hypertension (Neuhauser et al. 2017, p.53).  
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Hypertension is most often triggered by a combination of factors, such as genetic predisposi-
tion, age, gender, nutrition, elevated salt consumption, alcohol consumption, lack of physical 
activity, stress, etc. (Robert Koch-Institute 2014, p.123). Factors of the living environment such 
as ‘higher levels of noise and air pollution have been related to higher blood pressure levels’ 
as well (Schulz et al. 2018, p.8). The World Health Organization (2013) distinguishes social 
determinants and drivers such as urbanisation, ageing, and income to have an impact on sev-
eral behavioural risk factors, which foster the development of hypertension, obesity, diabetes, 
and other, metabolic risk factors (Figure 7). Depending on the individual case, either kidney 
disease or cardiovascular disease (such as heart attacks, strokes, and heart failure) may de-
velop over the course of time.  

Figure 7. Main factors contributing to hypertension and its complications (Source: World Health Organ-
ization 2013, p.18) 

 
Nevertheless, early diagnosis of hypertension can limit the damage on heart and blood vessels 
and thus lower the incidence of more serious chronic illnesses if lifestyle changes occur: ‘Doing 
so is far less costly and far safer for patients, than interventions like cardiac bypass surgery 
and dialysis that may be needed when hypertension is missed and goes untreated’ (World 
Health Organization 2013, p.5). 

Empirical evidence points to a strong connection between hypertension and age – while the 
12-month prevalence of physician-diagnosed high blood pressure among 18- to 44-year-olds 
is only 5% for females and 10% for males, is rises to over 30% after the age of 45. In compar-
ison, more than half of both females and males older than 65 years, report to have been diag-
nosed with hypertension (Robert Koch-Institute 2014, p.123). 

Within the scope of the study GEDA 2012, currently having hypertension is defined by the 
affirmative answer to the question ‘Have you ever been diagnosed with hypertension by a 
physician?’ and any other of the further two questions ‘Did you have hypertension in the past 
12 months as well?’ and ‘Are you currently on medication for treating hypertension?’. No actual 
measurements of the respondents’ blood pressure levels were carried out during the survey 
(ibid.).  
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Against this background, there are some limitations of the available micro data to be consid-
ered. First, only clinically diagnosed hypertension is taken into account. Since early stages of 
this condition usually do not cause symptoms, many cases may have remained unreported. 
Therefore, it is possible that the actual prevalence of hypertension is underrepresented in this 
dataset. Furthermore, there is a common trend in Germany, and many other countries as well, 
that more cases of hypertension in men remain unreported than in women (Robert Koch-
Institute 2014, p.123). 

Keeping these considerations in mind, I proceeded with carrying out statistical tests to ascer-
tain the effects of the available constraint variables on the likelihood that the individuals in the 
micro dataset have hypertension. If the constraints manage to explain (at least some part of) 
the variance of hypertension, it can be included as target variable and its prevalence can thus 
be modelled at the level of the statistical areas. 

All statistical tests were carried out in SPSS. First, I created a new variable to account only for 
current hypertension cases, that is, people who replied affirmatively to having had high blood 
pressure over the past 12 months and/or being on medication for its treatment. My goal was 
to test to what extent are the constraint variables at hand – age, gender, employment, and 
living situation – able to explain the variance of hypertension. All of these constraints, except 
for age, are dichotomous: gender is coded in ‘males’ and ‘females’; employment in ‘yes’ and 
‘no’; and living situation in ‘single household’ and ‘non-single household’. Age is coded into 
thirteen 5-year-intervals, ranging from 18-24 years to 80+ years. I thus proceeded with a bino-
mial logistic regression. 

Without considering the independent variables, the logistic regression model was able to cor-
rectly classify 73,6% of the cases for the newly defined variable ‘currently having hypertension’ 
by assigning all cases to the category ‘no’. With nine standardised residuals (> ±2,5 Std Dev), 
the model was statistically significant, ᵪ2(4) = 3946,372, p < 0.0005 and explained 27,1% 
(Nagelkerke R2) of the variance in hypertension. After considering the four independent varia-
bles, it managed to classify 75,6% of the cases correctly. Sensitivity14 was 39,0%, specificity15 
was 88,7%, positive predictive value16 was 55,4% and negative predictive value17 was 80,2%. 
All predictor variables except for living situation were statistically significant (Table 3). 

Table 3. Logistic regression predicting the likelihood of hypertension (own representation, Source: Rob-
ert Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,312 ,007 1755,082 1 ,000 1,366 

Gender -,210 ,038 30,988 1 ,000 ,811 
Employment status -,153 ,046 11,043 1 ,001 ,858 
Living situation ,036 ,045 ,638 1 ,425 1,037 
Constant -2,964 ,097 930,293 1 ,000 ,052 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

 
14 Share of correctly assigned ‘yes’-cases out of all cases. 
15 Share correctly assigned ‘no’-cases out of all cases. 
16 Share of correctly assigned ‘yes’-cases out of all predicted ‘yes’-cases. 
17 Share of correctly assigned ‘no’-cases out of all predicted ‘no’-cases. 
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Since the results suggested that age has the highest predictive power, I carried out the test 
again, this time only using age as independent variable. It turned out that it accounts for ex-
plaining 26,8% (Nagelkerke R2) of the variance and classifying correctly all the 75,6% of the 
cases. Against this background, the other independent variables barely play a role for predict-
ing the likelihood of hypertension. Nevertheless, they can be included as elective constraints. 

The results showed that people aged over 80 years are 39 times more likely to suffer from 
hypertension than people under 25 years. For those older than 65 years the odds of having 
high blood pressure are 5,5 times higher than for younger adults. This is a clear statement. I 
controlled for obesity and overweight defined by a Body Mass Index (BMI) ≥ 30 and ≥ 25, 
respectively. BMI was measured using self-reported weight in kilograms and height in centi-
metres. I found that overweight under 25-year-olds have 26 times smaller odds of having hy-
pertension compared to overweight people older than 80 years. For people, who are not over-
weight, the odds are 41 times smaller. Obese people younger than 25 years are 13 times less 
likely to suffer from hypertension compared to obese over 80-year-olds. In contrast, for non-
obese individuals, the same likelihood is 46 times smaller. If we take 65 years as age delimiter 
instead, the odds of having hypertension for adults younger than 65 are 4 times smaller when 
being overweight and 10 times smaller if this is not the case. If obese, these odds are 3 times 
smaller, compared to 7 times smaller for non-obese individuals. 

With this in view, both overweight and obesity suggest an increase in the chances of having 
high blood pressure for younger adults. Still, the results do not suggest that the effect age has 
on the likelihood of hypertension is dependent on weight – on the contrary, getting older still 
increases those odds regardless of BMI. 

All things considered, the independent variable age manages to explain more than a quarter 
of the variance of having hypertension and it helps increase the proportion of correctly classi-
fied cases. I therefore decided to include hypertension as a target variable in the spatial mi-
crosimulation model. 

6.3.2. Heart failure 

Approximately one in every five adults develops heart failure in the course of their life. Heart 
failure, also known as cardiac insufficiency, is a chronic medical condition caused by dysfunc-
tion of the heart muscle. It manifests either as weakening of the muscle so that the heart cannot 
keep up with pumping blood at the pace necessary for maintaining regular body functions, or 
as increased stiffness of the muscle preventing the heart from relaxing while filled with blood. 
In any case, typical symptoms of heart failure include shortness of breath, fatigue, swelling of 
the legs, and inability to engage in physical exercise (Horwich and Fonarow 2017, p.116). 

Like in the case of hypertension, heart failure is generally caused by a combination of risk 
factors, such as older age, family history of heart disease, overweight or obesity, unhealthy 
diet, lack of physical exercise, smoking, and binge drinking. Hypertension, type 2 diabetes, 
and cholesterol build-up in the arteries are other major risk factors (ibid.). 

Not only does heart failure significantly decrease life quality, but it is also a growing economic 
problem, with high prevalence rates worldwide. Europe and the USA, for instance, spend up 
to 2% of their annual healthcare budget for its treatment. Globally, the economic burden of 
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heart failure is estimated at 108 billion USD per year. Europe accounts for nearly 7% of the 
total global costs (Lesyuk et al. 2018, pp.1–2). 

Some of the factors contributing to the development of heart failure, such as maintaining bal-
anced diet and regular physical activity, can be supported by the living environment. Therefore, 
a small-scale distribution of its prevalence may point to areas where interventions promoting 
healthy eating habits and daily exercise would have biggest impact.  

To include heart failure as target variable in the spatial microsimulation model, I tested how 
much of its variance can be explained by the four constraints: age, gender, employment, and 
living situation. Since heart failure is generally an irreversible chronic condition, I chose the 
variable ‘heart failure (12-month prevalence)’ instead of creating a new one to account only for 
current cases like I did for hypertension. A cross tabulation with the dichotomous variable ‘heart 
failure in the past 12 months’ confirmed that there were no discrepancies – all respondents, 
who had answered the question regarding 12-month prevalence affirmatively, confirmed they 
had the disease in the past 12 months as well. The illness was therefore not back in the past, 
but it was a medical condition they currently had to deal with. 

I carried out a binomial logistic regression and inserted the dichotomous variable ’heart failure 
(12-month prevalence)’ as dependent variable and age, gender, employment status, and living 
situation as independent variables. Since most of the respondents answered negatively to 
having heart failure, the model classified 96,6% of all cases correctly by assigning them to the 
category ‘no’, without considering any of the independent variables. 

Of n=19.162 individuals included in the analysis, the model generated n=155 standardised 
residuals with a value of > ±2,5 Std Dev. Nevertheless, it was statistically significant: ᵪ2(4) = 
902,487, p < 0.0005 and explained 17,9% (Nagelkerke R2) of the variance in the dependent 
variable. The percentage of correctly classified cases, however, remained unchanged after the 
input of the independent variables. 

Even though all independent variables, except for living situation, were statistically significant 
(Table 4), they did not contribute much to explaining the variance of heart failure. Therefore, 
using them for constraining the model is not going to contribute to a non-random allocation of 
the positive cases.  

Table 4. Logistic regression predicting the likelihood of heart failure (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,282 ,019 216,174 1 ,000 1,326 

Gender -,269 ,086 9,867 1 ,002 ,764 
Employment status -1,001 ,134 55,633 1 ,000 ,367 
Living situation ,128 ,093 1,921 1 ,166 1,137 
Constant -5,019 ,246 417,484 1 ,000 ,007 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Still, I preferred to include heart failure as a target variable and then use external data to vali-
date the modelled distribution at the level of the statistical areas, instead of leaving it out alto-
gether. 
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6.3.3. Diabetes mellitus 

Diabetes mellitus is a relatively common metabolic disorder marked by elevated blood sugar 
levels. There are generally two types of diabetes – type 1 is characterised by an autoimmune 
destruction of insulin-producing cells and mainly affects children and adolescence, whereas 
type 2 usually develops in adults and occurs either because of insufficient insulin secretion or 
due to impairment of insulin action. There is also a so-called gestational diabetes, which initially 
occurs during pregnancy and generally reverses back (Robert Koch-Institute 2011, p.1). It 
does, however, ‘carry a lifetime risk of progression to type 2 diabetes of up to 60%’ (Noctor 
and Dunne 2015, p.234). 

Lack of physical exercise, unbalanced diet and obesity are the major modifiable risk factors for 
developing type 2 diabetes. The growing prevalence of sedentary lifestyle combined with un-
healthy eating habits and rising life expectancy due to medical progress are the reasons for 
the increasing incidence of diabetes worldwide (Robert Koch-Institute 2014, p.65). Although 
early diagnosis and available disease treatment contribute to the longer lifespan of diabetics, 
there are still long-term complications, which considerably lower their life quality. These include 
partial disability, coronary heart disease, heart and kidney failure, blindness, and amputation 
of the lower limbs (Robert Koch-Institute 2011, p.1). 

Against this background, ‘diabetes is one of Germany’s most expensive chronic diseases’ 
(ibid., p.4). According to estimations of the Federal Statistical Office, direct costs of caring for 
diabetes patients in Germany amount to 2,5% of health expenditure for all other diseases 
(ibid.). Jacobs et al. (2017) found that ‘one in 10 Euros of healthcare expenses is spent on 
people with type 2 diabetes in Germany’ (p.855). With this in view, diabetes prevention should 
clearly be prioritised to reduce healthcare expenditure. 

Findings from the empirical evidence gathered in the study GEDA 2012 do not suggest a sig-
nificant connection between diabetes and gender – 7,5% of all females and 7,9% of all males 
reported to have been diagnosed with the disease. The 12-month-prevalence of diabetes un-
der the age of 45 is below 2% for both men and women. It rises to 6,5% for females and 9,4% 
for males in the age group 45-65 years – this being the only age interval where gender signif-
icantly correlates with diabetes. After the age of 65, diabetes prevalence increases again for 
both genders: 17,4% of the interviewed females and 18,6% of the males answered affirma-
tively to having diabetes (Robert Koch-Institute 2014, p.65). 

To gather the data these findings are based on, respondents were asked three diabetes-re-
lated questions: ‘Have you ever been diagnosed with diabetes by a physician?’, ‘Was it during 
pregnancy?’, and ‘Did you have diabetes in the past 12 months?’. In the micro dataset, there 
are four variables – one for each of these questions and one regarding 12-month-prevalence 
of diabetes, which is created based on having been diagnosed with diabetes and having had 
symptoms over the last year. All of those, who answered affirmatively to the first question 
reported having the disease in the past 12 months as well. Therefore, all respondents, who 
had been diagnosed with diabetes, are counted as positive cases for the estimation of the 12-
month-prevalence. The GEDA 2012 study relied on self-reported cases – that is, no additional 
laboratory tests were carried out to validate them. Furthermore, the gathered data does not 
allow for a differentiation between type 1 and type 2 diabetes. These are the main limitations 
of the available micro data to be considered. 
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I carried out a binomial logistic regression taking ’12-month-prevalence of diabetes’ as depend-
ent variable and age, gender, employment, and living situation as explanatory variables. Out 
of n=19.280 cases, included in the test, the model generated 166 standardised residuals with 
a value of > ±2,5 Std Dev. Without considering the independent variables, it managed to cor-
rectly classify 92,3% of the cases by assigning all of them to the category ‘no’. While the model 
– χ 2(4) = 1374,344, p < 0.0005 – as well as the included independent variables were statistically 
significant (Table 5), they were only able to explain 16,4% (Nagelkerke R2) of the variance of 
diabetes. Moreover, the four variables did not contribute to a better prediction of the cases.  

Table 5. Logistic regression predicting the likelihood of diabetes (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,235 ,012 397,697 1 ,000 1,265 

Gender -,367 ,059 39,017 1 ,000 ,693 
Employment status -,634 ,079 64,712 1 ,000 ,530 
Living situation ,240 ,065 13,661 1 ,000 1,271 
Constant -3,612 ,153 553,791 1 ,000 ,027 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Against this background, the same conclusion as for heart failure applies here – the selected 
constraints do not contribute sufficiently to explaining the variance of diabetes. Hence, if dia-
betes is included as target variable, the cases with positive outcomes are going to be distrib-
uted to the statistical areas randomly. Still, I decided to include diabetes as target variable in 
the spatial microsimulation model and rely on external validation to establish to what extent it 
manages to depict reality. 

6.3.4. Cancer 

Schlander et al. (2018) argue that cancer ‘is the second leading cause of mortality in Germany 
[…] and accounts for almost one fifth of the total burden of disease […], as measured by means 
of disability-adjusted life years’ (p.332). According to official statistics, cancer-related 
healthcare expenditures amounted to nearly 20 billion EUR in 2015 (ibid.). 

For the purposes of the study GEDA 2012, respondents were asked if they have ever been 
diagnosed with cancer by a physician. To test the predictive power of the four predefined con-
straints for having an oncological disease, I used the corresponding dichotomous variable to 
carry out a binomial logistic regression. Without considering the independent variables, 92,7% 
of the cases were classified correctly by assigning all of them to the category ‘no’. The model 
generated 175 standardised residuals with a value of > ±2,5 Std Dev. It was statistically signif-
icant – ᵪ2(4) = 1042,025, p < 0.0005 and explained 13% (Nagelkerke R2) of the variance in the 
dependent variable. However, the explanatory variables did not contribute to increasing the 
proportion of correctly predicted cases.  

Since there are different morbidity risk factors depending on the type of cancer, it is hardly 
surprising that age, gender, employment, and living situation cannot sufficiently predict 
whether an individual is likely to have (had) cancer. Moreover, the results pointed that gender 
and living situation are not even statistically significant (Table 6). 
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Table 6. Logistic regression predicting the likelihood of cancer (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,229 ,012 373,996 1 ,000 1,257 

Gender ,081 ,060 1,866 1 ,172 1,085 
Employment status -,420 ,078 28,756 1 ,000 ,657 
Living situation -,071 ,068 1,087 1 ,297 ,931 
Constant -4,282 ,159 722,600 1 ,000 ,014 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Against this background, I chose, as with the other chronic illnesses discussed above, to still 
include this variable as a target in the spatial microsimulation model. Although the allocation 
of positive outcomes to the statistical areas is going to be random, this is the only way to have 
at least some distribution of the generated synthetic population to different groups in terms of 
cancer. Data provided by health insurance funds was then used to verify the modelled disease 
prevalence. 

6.3.5. Depression 

In Germany, and in western countries in general, depression is the most common mental dis-
order. It is associated with high levels of suffering and imposes significant economic burden 
estimated at 15.6 billion EUR per year (Krauth et al. 2014, p.1). 

Participants in the GEDA 2012 survey were asked whether they have ever been diagnosed 
with depression by a physician and if this has been in the past 12 months. I filtered out only 
the cases of ‘active’ depression, that is, having been diagnosed in the last year. Then, I carried 
out a binomial logistic regression to estimate the predictive power of age, gender, employment, 
and living situation. 

Without considering these variables, all cases were classified to the category ‘no’. Thus, 92% 
of them were correctly predicted as this was the proportion of people who replied negatively to 
having been recently diagnosed with depression. The regression model was statistically sig-
nificant: ᵪ2(4) = 259,600, p < 0.0005. Nonetheless, it generated 78 standardised residuals with 
a value of > ± 2,5 Std Dev. Moreover, it only managed to explain 3,1% of the variance in the 
dependent variable. While all independent variables were statistically significant (Table 7), they 
did not contribute to increasing the proportion of correctly predicted cases. 

Table 7. Logistic regression predicting the likelihood of depression (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age -,049 ,009 33,426 1 ,000 ,952 

Gender ,403 ,056 51,796 1 ,000 1,497 
Employment status -,523 ,061 73,197 1 ,000 ,593 
Living situation ,626 ,064 95,807 1 ,000 1,869 
Constant -2,617 ,120 473,415 1 ,000 ,073 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 
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The model suggested that of all four explanatory variables age has the weakest impact on the 
likelihood of depression. Gender plays slightly bigger role as females have 1,5 times higher 
odds of being diagnosed with depression than males. Being unemployed and living alone also 
increase those odds by approximately 1,7 and 1,9 times, respectively. While these certainly 
are some indications of potentially existing trends, they do not suffice to reliably predict the 
likelihood of depression. 

Considering the generated residuals, the small proportion of explained variance by the inde-
pendent variables, and their failure to increase the number of correctly predicted cases, it 
would be logical to leave depression out of the spatial microsimulation model. There is a wide 
variety of factors which can trigger depression, which is why attempting to model its distribution 
based solely on age, gender, employment, and living situation, may seem unjustified. Never-
theless, I had external data about depression at my disposal. Therefore, instead of narrowing 
down the scope of the model from the very beginning, I preferred to include depression as 
target variable to test out how the model will perform despite the unconvincing results of the 
statistical tests. 

6.3.6. Subjectively perceived health, chronic medical condition(s), and  
impairment due to illness 

Next to the specific medical conditions introduced above, the micro dataset contains variables 
regarding the overall health of the respondents: subjectively perceived health, suffering from 
chronic medical condition(s), and impairment in everyday activities due to illness.  

Subjectively perceived health 

Literature reviews and meta-analyses of scientific evidence show that subjective well-being 
can have a beneficial effect on health and longevity (Diener et al. 2017, p.133). Particularly 
immune, cardiovascular, and endocrine measures correlate with some types of subjective well-
being (ibid., p.139). 

Participants in the study GEDA 2012 were asked to evaluate their overall health by answering 
the question ‘How would you evaluate your overall health – very good, good, average, poor or 
very poor?’. The micro dataset contains a dichotomous variable corresponding to this question, 
coded into the categories ‘very good/good’ and ‘average/bad/very bad’.  

Without considering the four independent variables – age, gender, employment, and living sit-
uation, 70,4% of the cases were classified correctly by all of them being assigned to the cate-
gory ‘very good/good’. The binomial logistic regression model did not generate any residuals 
and was statistically significant: ᵪ2(4) = 2347,377, p < 0.0005. It explained 16,3% (Nagelkerke 
R2) of the variance in subjectively perceived health and classified 71,3% of the cases correctly. 
Sensitivity was 86,6%, specificity 34,8%, positive predictive value was 75,9% and negative 
predictive value was 47,8%. All predictor variables, except for gender, were statistically signif-
icant (Table 8). 
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Table 8. Logistic regression predicting the likelihood of subjectively perceived health as average/bad 
(own representation, Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 
2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,152 ,006 696,722 1 ,000 1,164 

Gender -,027 ,034 ,625 1 ,429 ,973 
Employment status -,638 ,039 262,552 1 ,000 ,528 
Living situation ,284 ,042 45,091 1 ,000 1,329 
Constant -1,611 ,079 416,720 1 ,000 ,200 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Out of all explanatory variables, employment status turned out to have the biggest impact on 
how respondents evaluate their own health. The results showed that employed people are 
approximately half as likely to view their health as average, bad, or very bad compared to 
people, who are currently not employed (regardless of whether they are unemployed or re-
tired). Age and living alone, on the other hand, slightly increased the odds of not feeling in 
good health, by 1,2 and 1,3 times, respectively. 

At the city quarter level, there are further constraint variables which can serve to better explain 
the variance in subjectively perceived health. Hypertension, diabetes, heart failure, depression, 
and cancer, can turn out to be good predictors. I thus carried out the binomial logistic regres-
sion once again, this time considering all constraint variables available at the first tier. 

The model was statistically significant: ᵪ2(9) = 4078,360, p < 0.0005, and generated only three 
standardised residuals > ± 2,5 Std Dev. The consideration of the additional health-related con-
straints increased the proportion of explained variance from 16,3% to 27,2% (Nagelkerke R2). 
Overall, the model managed to classify 76,5% of all cases correctly. Sensitivity was 92%, 
specificity 39,6%, positive predictive value was 78,4% and negative predictive value was 
67,4%. In this case, again, gender was the only explanatory variable, which was not statistically 
significant (Table 9). 

Table 9. Logistic regression predicting the likelihood of subjectively perceived health as average/bad 
when accounting for comorbidities (own representation, Source: Robert Koch-Institute, Department of 
Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,101 ,007 238,065 1 ,000 1,107 

Gender -,014 ,037 ,152 1 ,697 ,986 
Employment status -,456 ,042 117,968 1 ,000 ,634 
Living situation ,192 ,045 18,102 1 ,000 1,212 
Hypertension  ,689 ,041 282,556 1 ,000 1,991 
Diabetes mellitus  1,046 ,064 265,671 1 ,000 2,845 
Heart failure  1,270 ,102 156,168 1 ,000 3,560 
Cancer ,636 ,064 99,959 1 ,000 1,888 
Depression  1,547 ,061 650,746 1 ,000 4,695 
Constant -1,904 ,084 509,200 1 ,000 ,149 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 
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The results clearly showed that chronic illnesses have a much more pronounced effect than 
age, gender, employment, and living situation on how survey respondents view their health. 
Depression turned out to have the biggest impact as it increased the odds of having a negative 
perception of one’s own health almost five times. Heart failure and diabetes increased this 
likelihood approximately three times, followed by hypertension and cancer, with 2,0- and 1,9-
times higher odds, respectively. Against this background, modelling subjectively perceived 
health at the city quarter level promises to provide more reliable results compared to consid-
ering only the four basic constraints available at the statistical areas level.  

Chronic medical condition(s) 

For the analysis of the overall chronic disease prevalence, regardless of the type of medical 
condition, respondents of the survey GEDA 2012 answered if they have one or many long-
lasting illnesses requiring constant treatment and monitoring. Without considering the four 
basic independent variables, the model classified 59,2% of the cases correctly by assigning 
all of them to the category ‘no’. The logistic regression model did not generate any residuals 
with a value > ±2,5 Std Dev and it was statistically significant: ᵪ2(4) = 1692,293, p < 0.0005. 
Overall, it managed to explain 11,3% (Nagelkerke R2) of the variance in the dependent variable 
and thus increased the proportion of correctly predicted cases to 63,7%. Sensitivity was 40,6%, 
specificity was 79,6%, positive predictive value was 57,8% and negative predictive value was 
66,1%. All predictor variables were statistically significant (Table 10). 

Table 10. Logistic regression predicting the likelihood of chronic illness(es) (own representation, Source: 
Robert Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,143 ,005 751,525 1 ,000 1,153 

Gender ,074 ,031 5,605 1 ,018 1,077 
Employment status -,308 ,036 73,838 1 ,000 ,735 
Living situation ,149 ,040 13,618 1 ,000 1,161 
Constant -1,300 ,071 332,159 1 ,000 ,273 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

The model showed that age and living alone were factors, which very slightly increase the odds 
of suffering from a chronic illness, while gender barely plays a role. Being employed decreases 
the likelihood of being chronically ill by approximately 1,4 times and is thus the variable with 
the biggest prediction power. 

As in the case of subjectively perceived health, I conducted the logistic regression a second 
time to account for the available health data aggregated at the city quarter level. The model 
was statistically significant: ᵪ2(9) = 4080,295, p < 0.0005, and generated 13 standardised re-
siduals > ±2,5 Std Dev. Compared to the previous case of only considering age, gender, em-
ployment, and living situation as predictors of chronic disease, the model managed to increase 
the proportion of explained variance in the dependent variable more than twice – from 11,3% 
to 25,8% (Nagelkerke R2). The correctly predicted cases were 71,6% compared to 59,2% when 
not taking any explanatory variables into account, and 63,7% when considering the four basic 
ones. Sensitivity was 54,5%, specificity was 83,4%, positive predictive value was 69,3% and 
negative predictive value was 72,7%. All predictor variables, except for living alone, were sta-
tistically significant (Table 11). 



 
54 Modelling Health-Related Data in Hamburg’s Neighbourhoods 

Table 11. Logistic regression predicting the likelihood of chronic illness(s) when accounting for comor-
bidities (own representation, Source: Robert Koch-Institute, Department of Epidemiology and Health 
Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,071 ,006 142,923 1 ,000 1,074 

Gender ,129 ,033 14,924 1 ,000 1,138 
Employment status -,090 ,039 5,362 1 ,021 ,914 
Living situation ,054 ,044 1,528 1 ,216 1,056 
Hypertension  1,055 ,040 686,755 1 ,000 2,872 
Diabetes mellitus  1,873 ,083 510,079 1 ,000 6,510 
Heart failure  1,108 ,110 101,126 1 ,000 3,027 
Cancer ,453 ,065 48,748 1 ,000 1,572 
Depression  1,389 ,063 484,050 1 ,000 4,012 
Constant -1,588 ,077 429,085 1 ,000 ,204 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 

The results indicated that people with diabetes are six times more likely to answer affirmatively 
to the question whether they suffer from a chronic disease, which is, of course, logical. De-
pression, followed by heart failure, hypertension, and cancer also increased those odds. With 
this in view, modelling chronic disease at the city quartier level should deliver reliable results. 
Nevertheless, it is rather obsolete because there is data available about the specific chronic 
illnesses.  

Impairment in everyday activities due to illness 

Being impaired in everyday activities can sometimes be the consequence of suffering from 
chronic illness. The corresponding variable in the micro dataset is dichotomous and accounts 
for the state of feeling constantly impaired for at least six months. 

The logistic regression model generated valid results, without any residuals. It was statistically 
significant: ᵪ2(4) = 2564,907, p < 0.0005 and explained 17,4% (Nagelkerke R2) of the variance 
in the dependent variable. Overall, it classified 69,8% of the cases correctly (compared to 
67,1% without considering the independent variables). Sensitivity was 41,3%, specificity was 
83,8%, positive predictive value was 55,6% and negative predictive value was 74,4%. All pre-
dictor variables were statistically significant (Table 12). 

Table 12. Logistic regression predicting the likelihood of impairment due to illness (own representation, 
Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,150 ,006 726,379 1 ,000 1,161 

Gender -,100 ,034 8,909 1 ,003 ,904 
Employment status -,694 ,038 332,103 1 ,000 ,500 
Living situation ,332 ,042 62,918 1 ,000 1,393 
Constant -1,290 ,076 287,946 1 ,000 ,275 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 
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The model suggested that males and older people have slightly higher odds of being impaired 
in their everyday activities. Employed people, on the other hand, appeared half as likely to 
experience everyday impairment due to illness. Living alone suggested approximately 1,4 
times higher odds. 

Considering the available disease data aggregated at the city quarter level, the logistic regres-
sion model provided more promising results. It was statistically significant: ᵪ2(9) = 4035,437, p 
< 0.0005 and generated only six standardised residuals > ± 2,5 Std Dev. Overall, it managed 
to explain 26,4% of the variance in the dependent variable as opposed to 17,4% when only 
considering the four basic constraints. Furthermore, the explanatory variables contributed to 
increasing the proportion of correctly predicted cases to 74,5%. Sensitivity was 45,4%, speci-
ficity was 88,7%, positive predictive value was 66,4% and negative predictive value was 
76,8%. All predictor variables were statistically significant (Table 13). 

Table 13. Logistic regression predicting the likelihood of impairment due to illness when accounting for 
comorbidities (own representation, Source: Robert Koch-Institute, Department of Epidemiology and 
Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,115 ,006 331,663 1 ,000 1,122 

Gender -,117 ,035 10,898 1 ,001 ,890 
Employment status -,537 ,040 178,040 1 ,000 ,584 
Living situation ,247 ,044 31,362 1 ,000 1,280 
Hypertension  ,447 ,041 121,070 1 ,000 1,564 
Diabetes mellitus  ,677 ,063 113,871 1 ,000 1,968 
Heart failure  1,476 ,110 179,585 1 ,000 4,376 
Cancer ,692 ,064 118,386 1 ,000 1,997 
Depression  1,625 ,062 695,733 1 ,000 5,078 
Constant -1,528 ,080 360,784 1 ,000 ,217 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 

According to the results, depression and heart failure contributed most to increasing the odds 
of being impaired in daily activities – by 5,1 and 4,4 times, respectively. Cancer and diabetes 
mellitus made it twice as likely, whereas hypertension had the weakest effect. 

In all those cases – regarding overall health, chronic medical conditions, and impairment due 
to illness – the four basic constraint variables available at the statistical areas level did not 
explain much of the variance in the dependent variables (11-17%). Considering chronic dis-
ease data available at the city quarter level, however, nearly doubled the explained variance 
to 26-27%. I thus decided to model all of them as targets at both spatial scales. The results at 
the level of the city quarters are more reliable, which must be considered when interpreting the 
modelled spatial distributions. Nonetheless, modelling these variables at the first tier increases 
the reliability of the modelled population at the underlying spatial scale as well because the 
population is constrained to the realities in the corresponding city quarter. 
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6.3.7. Overweight and obesity 

While there is no aggregated data about overweight and obesity at the level of the city quarters, 
I wanted to include them as target variables and thus model their distribution at the statistical 
areas level as they are major risk factors for triggering many chronic diseases such as hyper-
tension and diabetes mellitus. 

In the individual dataset, overweight and obesity are operationalised by BMI. The latter is cal-
culated by dividing the weight in kilograms by the squared height in metres. A person who is 
1,70 metres tall and weighs 55 kilograms, for instance, would have a BMI = 19 and would thus 
be categorised as having normal weight. In this context, the WHO has established the following 
categories: ‘underweight’ (BMI < 18,5), ‘normal weight’ (18,5 – 24,9), ‘overweight’ (25 – 29,9), 
‘first-grade obesity’ (30 – 34,9), ‘second-grade obesity’ (35 – 39,9), and ‘third-grade obesity’ (≥ 
40) (Robert Koch-Institute 2014, p.93). 

In the study GEDA 2012, BMI is based on self-reported weight and height. Self-reported weight 
tends to be underestimated, as opposed to height, which is often overestimated. The BMI in 
the micro dataset may therefore be lower than if it were based on actual measurements. This 
is one possible flaw of the available micro data, which must be considered. 

To estimate the extent to which age, gender, employment, and living situation can explain the 
variance in being overweight, or obese (regardless of obesity grade), I ran a binomial logistic 
regression. Both dependent variables are dichotomous: ‘overweight according to WHO classi-
fication’ and ‘obesity according to WHO classification’. 

Of n=18.901 individuals tested for being overweight, no standardised residuals > ±2,5 Std Dev 
were generated. The model was statistically significant: ᵪ2(4) = 1581.408, p < 0.0005 and ex-
plained 10,7% (Nagelkerke R2) of the variance in the dependent variable. Without considering 
the explanatory variables, it managed to correctly classify 52,6% of the cases by assigning all 
of them to the category ‘yes’, thereby assuming that all respondents are overweight. Consid-
ering the four independent variables, the percentage of correctly classified cases increased to 
62,9%. Sensitivity was 69,9%, specificity was 55,2%, positive predictive value was 63,4% and 
negative predictive value was 62,3%. All predictor variables were statistically significant (Table 
14). 

Table 14. Logistic regression predicting the likelihood of overweight (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Age ,167 ,005 1018,654 1 ,000 1,182 
Gender -,629 ,031 409,974 1 ,000 ,533 
Employment status ,232 ,036 40,732 1 ,000 1,261 
Living situation -,208 ,041 25,833 1 ,000 ,812 
Constant -,136 ,069 3,887 1 ,049 ,873 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

In the case of obesity, the results were less convincing. Without considering the explanatory 
variables, 83,5% of all cases were correctly classified by assigning all of them to the category 
‘no’. The logistic regression model was statistically significant – ᵪ2(4) = 338.207, p < 0.0005, 
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and did not generate any standardised residuals > ±2,5 Std Dev. Nevertheless, it only man-
aged to explain 3% (Nagelkerke R2) of the overall variance in the dependent variable. Further-
more, only age and gender were statistically significant (Table 15), but they did not contribute 
enough to explaining the variance. The model thus failed to increase the percentage of cor-
rectly classified cases. 

Table 15. Logistic regression predicting the likelihood of obesity (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,095 ,007 186,485 1 ,000 1,099 

Gender -,104 ,041 6,648 1 ,010 ,901 
Employment status -,060 ,048 1,549 1 ,213 ,942 
Living situation ,078 ,051 2,379 1 ,123 1,081 
Constant -2,113 ,095 493,500 1 ,000 ,121 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

At the level of the city quarters, overweight and obesity can be modelled using the additional 
health-related constraint variables: hypertension, heart failure, diabetes, depression, and can-
cer. I carried out another set of logistic regression tests to account for them and found that they 
further increase the explained variance for both dependent variables: from 10,7% to 16,1% for 
overweight, and from 3% to 11,4% for obesity. In both cases, the regression model was sta-
tistically significant and generated no standardised residuals, which suggested valid results.  

In the case of overweight, the proportion of correctly predicted cases increased from 62,9%, 
when accounting only for the four basic constraints, to 66,2% when considering the health-
related variables available at the first tier. Sensitivity was 66,7%, specificity was 65,6%, posi-
tive predictive value was 68,3%, and negative predictive value was 63,9%. Apart from cancer 
and heart failure, all explanatory variables were statistically significant (Table 16). Hyperten-
sion and diabetes mellitus increased the odds of being overweight more than twice. This is 
logical as overweight is a significant risk factor for both chronic illnesses. 

Table 16. Logistic regression predicting the likelihood of overweight when accounting for comorbidities 
(own representation, Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 
2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,118 ,006 433,821 1 ,000 1,126 

Gender -,613 ,032 372,180 1 ,000 ,542 
Employment status ,364 ,038 92,436 1 ,000 1,439 
Living situation -,274 ,042 41,671 1 ,000 ,760 
Hypertension  ,917 ,041 492,956 1 ,000 2,502 
Diabetes mellitus  ,903 ,073 154,681 1 ,000 2,468 
Heart failure  ,080 ,095 ,701 1 ,402 1,083 
Cancer -,062 ,063 ,964 1 ,326 ,940 
Depression  ,306 ,059 26,855 1 ,000 1,358 
Constant -,214 ,071 9,167 1 ,002 ,807 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 
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For obesity, the consideration of all constraint variables available at the city quarter level con-
tributed to increasing the proportion of correctly predicted positive cases from 0% to 7%. Still, 
the overall share of correctly classified cases remained 83,5%. Sensitivity was 7%, specificity 
was 98,5%, the positive predictive value was 48,3%, and the negative predictive value was 
84,3%. All explanatory variables except for gender and living alone were statistically significant 
(Table 17). Like in the case of being overweight, hypertension and diabetes mellitus turned out 
to have the most pronounced effect on increasing the likelihood of obesity. 

Table 17. Logistic regression predicting the likelihood of obesity when accounting for comorbidities (own 
representation, Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 
2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age ,018 ,008 4,997 1 ,025 1,018 

Gender -,036 ,042 ,749 1 ,387 ,964 
Employment status ,112 ,051 4,871 1 ,027 1,119 
Living situation ,015 ,053 ,081 1 ,776 1,015 
Hypertension  1,080 ,048 516,757 1 ,000 2,946 
Diabetes mellitus  1,039 ,062 276,536 1 ,000 2,827 
Heart failure  ,326 ,095 11,740 1 ,001 1,385 
Cancer -,162 ,077 4,389 1 ,036 ,851 
Depression  ,285 ,069 16,807 1 ,000 1,330 
Constant -2,279 ,099 530,749 1 ,000 ,102 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 

Against this background, I decided to model overweight and obesity both at the city quarter 
and at the statistical areas level. In the case of overweight, the distribution at both levels would 
be relatively equally reliable. In the case of obesity, the matter is more complex. Age is not as 
reliable predictor. Instead, there seem to be other powerful stimuli for triggering obesity. Still, 
there was available external data from a sample survey carried for the purposes of the research 
project ‘Healthy Neighbourhoods’, which was used to validate the modelled spatial distribution 
of both overweight and obesity. 

6.3.8. Health behaviour 

Next to the illness-related variables, the micro dataset contains variables regarding individual 
health behaviour, such as frequency of physical and sporting activity, diet, smoking, and alco-
hol consumption. I carried out several statistical tests and found that the variables available at 
the statistical areas level – age, gender, employment, and living situation – can predict only 
sporting activity and smoking to a certain degree. 

Sporting activity 

Regular physical exercise has many positive effects, such as maintaining normal weight, re-
ducing stress, lowering blood pressure, etc. (Monteiro and Sobral Filho 2004). Regarding their 
sporting activity, participants in the study GEDA 2012 responded whether they had done any 
type of physical exercise in the past three months. I used the corresponding variable in the 
micro dataset as dependent variable and carried out a binomial logistic regression to estimate 
the explained variance. 
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Without considering the four explanatory variables, 65,8% of all cases were classified correctly 
by assigning all of them to the category ‘yes’, thereby assuming all survey participants had 
engaged in some type of sporting activity over the past three months. The logistic regression 
model was statistically significant - ᵪ2(4) = 1079.241, p < 0.0005, and did not generate any 
standardised residuals. It managed to explain 7,5% (Nagelkerke R2) of the variance in the 
dependent variable and slightly increased the proportion of correctly predicted cases to 67,3%. 
Sensitivity was 92,2%, specificity was 19,4%, positive predictive value was 68,7% and nega-
tive predictive value was 56,4%. All predictor variables were statistically significant (Table 18). 

Table 18. Logistic regression predicting the likelihood of sporting activity in the past 3 months (own 
representation, Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 
2014) 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Age -,124 ,005 530,395 1 ,000 ,884 
Gender ,108 ,032 11,599 1 ,001 1,115 
Employment status ,141 ,037 14,290 1 ,000 1,151 
Living situation -,215 ,040 28,381 1 ,000 ,806 
Constant 1,296 ,073 312,419 1 ,000 3,656 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Accounting for the health-related variables available at the city quarter level slightly increased 
the proportion of explained variance from 7,5% to 8,3%. The logistic regression model was 
statistically significant – ᵪ2(9) = 1188.536, p < 0.0005, and did not generate any standardised 
residuals. Overall, it managed to increase the proportion of correctly predicted cases to 67,8%. 
Sensitivity was 93%, specificity was 19,2%, positive predictive value was 68,9% and negative 
predictive value was 58,8%. Except for cancer, all explanatory variables were statistically sig-
nificant (Table 19). The results indicated that chronic illnesses, albeit slightly, decrease the 
likelihood of engaging in sporting activity. 

Table 19. Logistic regression predicting the likelihood of sporting activity in the past 3 months when 
accounting for comorbidities (own representation, Source: Robert Koch-Institute, Department of Epide-
miology and Health Monitoring 2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age -,108 ,006 345,296 1 ,000 ,898 

Gender ,092 ,032 8,179 1 ,004 1,096 
Employment status ,085 ,038 5,061 1 ,024 1,089 
Living situation -,198 ,041 23,614 1 ,000 ,820 
Hypertension  -,125 ,039 10,534 1 ,001 ,882 
Diabetes mellitus  -,376 ,058 41,925 1 ,000 ,687 
Heart failure  -,439 ,085 26,980 1 ,000 ,644 
Cancer -,106 ,059 3,230 1 ,072 ,899 
Depression  -,152 ,057 7,096 1 ,008 ,859 
Constant 1,349 ,074 332,183 1 ,000 3,853 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 
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Smoking 

Unlike physical exercise, smoking is a type of health behaviour associated with negative re-
percussions such as increasing the odds of lung cancer, infertility, etc. (e.g. Remen et al. 2018; 
American Society for Reproductive Medicine 2018). 

Participants in the study GEDA 2012 were asked whether they smoke, even if only occasion-
ally. I transformed the corresponding variable, which had four categories – ‘yes’, ‘occasionally’, 
‘not anymore’, and ‘never smoked’, into a dichotomous one to account only for smokers and 
non-smokers. To that end, smokers and occasional smokers were assigned to the category 
‘yes’, as opposed to ‘non-smokers’ and ‘ex-smokers’, who were put in the category ‘no’. 

Without accounting for the explanatory variables age, gender, employment, and living situa-
tion, 72,4% of all cases were predicted correctly by classifying all of them as non-smokers. 
The binomial regression model was statistically significant – ᵪ2(4) = 1084.623, p < 0.0005, and 
did not generate any standardised residuals. The independent variables managed to explain 
7,9% of the variance and while they did not contribute to increasing the total proportion of 
correctly predicted cases, they did predict at least 2,3% of the positive cases correctly. Sensi-
tivity was 2,3%, specificity was 99%, positive predictive value was 47,8%, and negative pre-
dictive value was 72,7%. All independent variables were statistically significant (Table 20). 

Table 20. Logistic regression predicting the likelihood of smoking (own representation, Source: Robert 
Koch-Institute, Department of Epidemiology and Health Monitoring 2014) 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Age -,124 ,006 502,489 1 ,000 ,883 
Gender -,338 ,034 101,187 1 ,000 ,713 
Employment status ,350 ,039 80,607 1 ,000 1,420 
Living situation ,521 ,045 134,701 1 ,000 1,684 
Constant -,011 ,073 ,022 1 ,881 ,989 

a. Variable(s) entered on step 1: age, gender, employment status, and living situation. 

Including the health-related constraints available at the first tier as explanatory variables in the 
logistic regression model barely altered the results. While the proportion of explained variance 
slightly increased to 8,4%, the overall share of correctly predicted cases remained the same. 
The model was statistically significant – ᵪ2(9) = 1155.844, p < 0.0005, and did not generate 
standardised residuals. Sensitivity was 2,8%, specificity was 98,9%, positive predictive value 
was 48,3% and negative predictive value was 72,8%. Apart from cancer and diabetes, all in-
dependent variables were statistically significant (Table 21). Out of these, being depressed 
and living alone had the most pronounced effect on increasing the odds of smoking. Currently 
being employed also suggested higher chances of being a smoker. People with heart failure, 
on the other hand, were approximately half as likely to smoke.  
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Table 21. Logistic regression predicting the likelihood of smoking when accounting for comorbidities 
(own representation, Source: Robert Koch-Institute, Department of Epidemiology and Health Monitoring 
2014) 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 1a Age -,111 ,006 337,572 1 ,000 ,895 

Gender -,359 ,034 112,280 1 ,000 ,699 
Employment status ,336 ,040 72,459 1 ,000 1,400 
Living situation ,506 ,045 124,896 1 ,000 1,658 
Hypertension  -,140 ,045 9,546 1 ,002 ,869 
Diabetes mellitus  -,136 ,075 3,299 1 ,069 ,873 
Heart failure  -,594 ,129 21,091 1 ,000 ,552 
Cancer -,015 ,073 ,043 1 ,836 ,985 
Depression  ,415 ,059 48,931 1 ,000 1,515 
Constant -,027 ,073 ,137 1 ,711 ,973 

a. Variable(s) entered on step 1: age, gender, employment status, living situation, hypertension, diabetes mellitus, 
heart failure, cancer, and depression. 

6.3.9. Overview of the selected constraint and target variables 

The choice of constraint and target variables slightly differs at the two tiers. At the level of the 
city quarter (clusters), there is a broader choice of constraints due to data availability. Thus, 
not only socio-demographic, but also health-related variables were used to constrain the syn-
thetic population (Table 22).  

Table 22. Constraint variables overview (own representation) 

Spatial scale Constraint variables Characteristic attributes 

Tier 1:  
city  

quarter 
(clusters) 

Tier 2: 
statistical 

areas 

age Tier 1: 18-64; 65+  
Tier 2: 18-24; 25-29 …; 80+ 

gender male; female 

currently employed yes; no 

living in a single household yes; no 
 hypertension (12-month prevalence) yes; no 

heart failure (12-month prevalence) yes; no 

diabetes (12-month prevalence) yes; no 

depression (12-month prevalence) yes; no 

cancer (in the past 10 years) yes; no 

The health-related variables used as constraints at the first tier do not count as targets at this 
level, as they are already known. At the level of the statistical areas, however, they do not play 
the role of constraints anymore because the corresponding population counts are no longer 
available. Thus, their distribution must be modelled based on the remaining constraints. As a 
result, they change their role from constraints to targets at the second tier. Additionally, there 
are other health-related variables, such as subjectively perceived health, impairment in daily 
activities, sport, and smoking, which are modelled as targets both at the city quarter and the 
statistical areas level. Table 23 provides a summary of the target variables at both modelling 
tiers. 
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Table 23. Target variables overview (own representation) 

Spatial scale Target variables Characteristic attributes 
 

Tier 2: 
statistical  

areas 

hypertension (12-month prevalence) yes; no 

heart failure (12-month prevalence) yes; no 

diabetes (12-month prevalence) yes; no 

cancer (in the past 10 years) yes; no 

Tier 1:  
city  

quarter  
(clusters) 

subjectively perceived health Very good/good; average/bad/very bad 

chronic illness yes; no 

impairment of everyday activities yes; no 

overweight yes; no 

obesity yes; no 

smoking yes; no 

sporting activity (in the past 3 months) yes; no 

With that, the stage of selecting constraint and target variables was completed. The following 
paragraphs are dedicated to describing the further path towards generating a synthetic popu-
lation.  

6.4. Population Synthesis 

6.4.1. Data pre-processing 

Before the actual synthetic population generation, the input data originating from different da-
tasets needed to be transformed so that the micro data and the aggregated geographic data 
have the same format. This initial step is referred to as data pre-processing. 

Against this background, I carried out several variable transformations. At the level of the city 
quarters no adjustments were necessary, as the health-related constraints were defined as 
dichotomous variables (e.g., hypertension – ‘yes’/’no’). I constrained age to just two intervals 
at this tier, ‘18-64 years’ and ‘65+ years’ because the health-related variables were subcate-
gorised into those two age groups. The last variable used as constraint at this scale was gen-
der, which was also coded dichotomously. Like age, it served for the further subdivision of the 
health constraints. 

At the scale of the statistical areas several modifications were necessary. While age was coded 
into 5-year-intervals both in the micro dataset and in the geographic dataset, in the latter, the 
final category was ‘80+’ as opposed to ‘85+’ in the micro dataset. Thus, I assigned all individ-
uals aged between 80-84 years as well as those older than 85 years to the category ‘80+’.  

Another necessary input data adjustment regarded the constraint ‘living in a single household’. 
While the geographic dataset contained single household counts for each statistical area, in 
the micro dataset there was a metric variable regarding household size. For the data format to 
become compatible, I converted the metric variable about household size in the micro dataset 
into a dichotomous one. Thus, it only provided information whether one lives in a single house-
hold or not. I then created a new variable in the geographic dataset to account for the number 
of non-single households. To that end, I subtracted the number of single households from the 
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total count of private households. The latter was available as a separate variable in the geo-
graphic dataset. 

The last constraint variable, which required adjustments of the initial data format, was ‘employ-
ment’. In the geographic dataset, there were aggregated counts of employed people subject 
to compulsory insurance for each statistical area, whereas the micro dataset contained a di-
chotomous variable about current employment. To account for all individuals, who are currently 
not employed, I subtracted the count of employed people subject to compulsory insurance from 
the total count of adults. While this means putting retired people in the same category as un-
employed, my aim was to consider the effects of employment on health – being active in a 
working environment every day. Therefore, the opposite category did not have to be limited to 
unemployed people only. Rather than that, I intended to encompass all individuals, who, for 
whatever reasons there may be, were not employed at the time of participating in the survey. 
I did not account for full-time and part-time employment because such detailed information 
was not available in the geographic dataset. 

The next step was to flatten the micro dataset. Flattening refers to taking one column in the 
dataset, which represents a single variable with multiple attributes and converting it into multi-
ple columns, each of them referring to the attributes of the given variable. For instance, flat-
tening an age-related variable coded into three categories, e.g., ‘18-44’, ‘45-64’, and ‘65+’, is 
going to result in three new columns, each corresponding to one of these age intervals (Table 
24). Flattening therefore does not alter the available information, but merely modifies the way 
it is stored.  

Table 24. Example of flattening individual data (own representation) 

Person ID Age  Person ID 18-44 45-64 65+ 
1 18-44 

à 
1 1 0 0 

2 45-64 2 0 1 0 
3 65+  3 0 0 1 

By the means of flattening, variables of type character are converted into multiple numeric 
columns, which can store only two values – either 0, or 1. In a single row, only one of the newly 
generated columns can contain the value 1, because an individual can only be assigned a 
single attribute relating to one variable. For instance, if a person is between 18 and 44 years 
old, this means that he or she cannot also be older than 65 years. 

With this in view, I flattened all constraint variables in the micro dataset and then combined the 
newly generated columns, each referring to a single variable attribute, into a single matrix. 
Thus, each row represented one individual, and each column contained attribute information 
about that person – their age, gender, whether they live in a single household, whether they 
are currently employed, and whether they suffer from hypertension, heart failure, diabetes, 
cancer, or depression.  

Last, I ensured that the column order is the same in both matrices – the one from the geo-
graphic dataset, and the one containing the flattened individual data. For the population syn-
thesis algorithm to run smoothly, the number of columns and their order must match perfectly. 
After this final data pre-processing step, I proceeded with the generation of the synthetic pop-
ulation.  
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6.4.2. The Iterative Proportional Fitting approach 

In the previous section, I introduced all constraint and target variables – both at the scale of 
the city quarters, and the statistical areas. As the constraints regarding health were available 
solely at the higher spatial scale, I wrote an algorithm that allows constraining the synthetic 
population at both spatial scales simultaneously. In essence, the algorithm assigns a weight 
to the individuals in the micro dataset depending on how representative they are for each city 
quarter, and for each statistical area within. The representativity for each zone is determined 
based on the aggregate count of individuals with their attribute characteristics. The weight 
assigned to each individual is updated iteratively after accounting for each category of the 
constraint variables available at both spatial scales. Hence, the term iterative proportional fit-
ting. 

The first step was to create an initial weight matrix ‘weights’ with dimensions equal to the 
number of individuals (rows), and the number of geographic zones (columns). For the latter, I 
used the count of the statistical areas rather than the city quarters because my goal was to 
generate synthetic population at the small urban scale. Generally, when creating an initial 
weight matrix, all cells are assigned the value 1. The weights are thus updated iteratively start-
ing from a neutral initial position. However, I opted for the weights computed by RKI for cor-
recting the GEDA 2012 survey sample as initial weight values in the created matrix. The RKI 
weights refer to each individual, regardless of the zone, as they were computed in relation to 
the total population of Germany and its composition. Therefore, all cells belonging to the same 
row in the initial weight matrix store the same value, that is, the weight related to the individual 
represented by this row. Thus, before adjusting the weight of each individual to ensure perfect 
fit for each zone, the representativity of the given individual for Germany is taken into account. 

Next, I generated the vector ‘tier1_id’ to store the ID of the corresponding city quarter for 
each statistical area. The vector length hence equals the count of the statistical areas and has 
the following format: 

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3… 

It becomes clear from this excerpt that the first nine statistical areas belong to the first city 
quarter, the next nine to the second city quarter, and so on. This vector was created as sepa-
rate object for the purpose of an aggregation carried out within the IPF algorithm.  

To grasp the logic of the population synthesis algorithm, here is an explanation of each line of 
code: 

for(iter in 1:50){ # I began by opening a for loop18 for the number of iterations. I set 50 
as a starting point, but the algorithm stops running before the 50th iteration if it reaches 
the breaking point defined at the end of the code. The latter is included to avoid unneces-
sary computations and thus speed up the process of population synthesis.  

for(i in 1:ncol(cons_tier1)){ # Within the first for loop, I opened another for 
loop so that the algorithm can run through each constraint category – i, available at the 
first tier and thus stored as column in the matrix cons_tier1. 

 
18 ‘For loop is a programming language conditional iterative statement which is used to check for certain conditions 
and then repeatedly execute a block of code as long as those conditions are met.’ (Techopedia 2014) 
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     index <- ind_cat[, i] == 1 # Next, I defined an index used for selecting individuals 
belonging to each constraint category i, that the algorithm is running through in iterative 
manner. ind_cat is the matrix containing the flattened individual data, where individuals 
(represented by the rows) are assigned either 1 or 0 in the different columns depending 
on whether the corresponding constraint category applies to them. For instance, when 
the algorithm is running through the constraint category males, only those individuals 
who were assigned 1 in the corresponding column i within ind_cat will be selected, as 
opposed to those who were assigned 0 (because they are females and thus should not 
be selected). 

    weights_sum <- t(aggregate(t(weights * ind_cat[, i]), by = 
list(tier1_id), FUN = sum))[2:nrow(ind),] # Next, I created a new matrix 
weights_sum with dimensions equal to the number of individuals (rows) x the number of 
city quarters (columns). To that end, I aggregated the values stored in the initial weight 
matrix weights by city quarter ID. The vector tier1_id created earlier was used as ag-
gregation reference as it contains the ID of the respective city quarter for each statistical 
area. In the generated matrix weights_sum, each cell represents the weight of a given 
individual for a certain city quarter, whereby this weight is updated iteratively with the for 
loop for each constraint category i.  

     weights_sum <- colSums(weights_sum) # Next, I aggregated the weights by column 
so that weights_sum becomes a vector with a length that equals the number of city 
quarters. Accordingly, each value represents the total number of individuals in the given 
city quarter based on the aggregated weights. 

     weights_corr <- cons_tier1[,i] / weights_sum # Here, the actual reweighting 
begins. I created a new vector, weights_corr, where corr stands for ‘corrected’ as the 
weights aggregated in the previous step must be corrected by the observed counts of the 
constraints at the first tier. To that end, I divided the observed count of individuals in each 
city quarter by the corresponding aggregated sum of individual weights. Again, this is 
carried out iteratively for each constraint category i. 

     weights_corr[is.nan(weights_corr)] <- 0 
    weights_corr[is.infinite(weights_corr)] <- 0 # In case the aggregated sum of 

individual weights for a certain city quarter turns out to be zero, this and the previous line 
of code intend to substitute with zero the values NaN or Inf assigned by the programme 
in cases of dividing by zero. This step ensures the algorithm will keep on going even if 
there are no individuals for a certain constraint category in the micro dataset. 

    weights_corr_exp <- weights_corr[tier1_id] # Next, I created a new, expanded 
vector, weights_corr_exp, containing the corrected weights. Its length equals the num-
ber of statistical areas. The sum of corrected weights for each city quarter is thus as-
signed to each statistical area that belongs to it.  

     weights[index, ] <- t(t(weights[index, ]) * weights_corr_exp) # Finally, I 
updated the initial weight matrix weights by multiplying the initial weights (= RKI weight) 
of the indexed individuals (the individuals belonging to the constraint category i) with the 
weights corrected for each city quarter based on the constraints observed at Tier 1. 
Thus, after iterating through all constraint categories available at the city quarter level, 
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each cell in the matrix will represent the weight of each individual for a given statistical 
area based on their representativity for the city quarter the statistical area is part of. 

   } # This for loop continues until all constraint categories available at Tier 1 are consid-
ered for correcting the weights. 

for(i in 1:ncol(cons_tier2)){ # Next, I opened another for loop for the IPF algo-
rithm to run through each column in the matrix cons_tier2. This matrix contains the 
constraint categories available at Tier 2, that is, the statistical areas. 

    index <- ind_cat[, ncol(cons_tier1) + i] == 1 # Like in the case with the city 
quarters, I defined an index to select individuals belonging to each constraint category i 
that the algorithm runs through in iterative manner. The matrix ind_cat contains the flat-
tened individual data for all constraint categories, both at Tier 1 and Tier 2. The indexing 
at Tier 2 must therefore begin from the first column succeeding the columns referring to 
Tier 1. The column indexing is hence defined as ncol(cons_tier1) + i. 

     weights_sum <- colSums(weights[index,]) # Next, I defined a vector 
weights_sum with a length equal to the number of statistical areas. Each value in this 
vector represents the sum of the weights generated with the previous for loop for Tier 
1, whereby only the weights of the individuals indexed in the previous step are summed 
up. 

     weights_corr <- cons_tier2[,i] / weights_sum # Next, the sum of the weights 
computed on the basis of the constraint categories at the city quarter level is corrected in 
order to optimise the fit for the level of the statistical areas. To that end, the observed 
count of individuals for each constraint category i in each statistical area is divided by 
the corresponding sum of individual weights in the vector generated in the previous step. 

     weights_corr[is.nan(weights_corr)] <- 0 
     weights_corr[is.infinite(weights_corr)] <- 0 # In case the aggregated sum of 

individual weights for a certain statistical area turns out to be zero, this and the previous 
line intend to substitute with zero any NaN or Inf values, which are assigned by default 
when trying to divide by zero. This step ensures the algorithm will keep running even if 
there are no individuals for a certain constraint category in the micro dataset. 

     weights[index, ] <- t(t(weights[index, ]) * weights_corr) # The last line of 
code takes the weights matrix, which was updated iteratively in the previous for loop 
for Tier 1 and is thus adjusted to fit perfectly the constraint categories available at the city 
quarter level, and updates the weights to optimise the fit at the statistical areas level. To 
that end, each weight is adjusted iteratively, for each constraint category i available at 
Tier 2. The algorithm runs category by category, indexing the individuals belonging to 
each one of them at the time. Each weight of the indexed individuals, which was last ad-
justed for the spatial context at Tier 1 is multiplied by the corresponding corrected weight 
from weights_corr. 

  } # This for loop continues until all constraint categories available at Tier 2 are considered 
for correcting the weights. 

    # Within the iteration-related for loop ‘for(iter in 1:50)’ I defined a new object to 
store the Total Absolute Error (TAE) representing the total sum of differences between 
the observed and simulated constraint categories for all statistical areas. TAE is updated 
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after each iteration and the algorithm stops running only when TAE becomes smaller 
than 0.001 or when the 50th iteration is completed. The last iteration may thus not be the 
50th, but the one which produces a TAE < 0.001: 

         

    total_abs_error_t2 = 0 
    for(j in 1:ncol(cons_tier2)){  
      index <- ind_cat[, ncol(cons_tier1) + j] == 1 
      abserror_t2 = sum(abs(colSums(weights[index,]) - cons_tier2[,j])) 
      total_abs_error_t2 <- total_abs_error_t2 + abserror_t2 
      } 
   

  # Break the iteration for loop if TAE at Tier 2 < 0.001 
if (total_abs_error_t2 < 0.001)  break 

} 

To make the process of reweighting more transparent, I am going to bring in an example with 
a reduced number of individuals, zones, and constraint categories: 

Table 25. Individuals, zones, and constraint categories for a reweighting example (own representation) 

Individuals with distinct characteristics N = 4   
Zones at Tier 1 N = 2 
Zones at Tier 2 N = 4 
Constraint categories at Tier 1 N = 2 
Constraint categories at Tier 2 N = 4 

Table 26. Example individual data (own representation) 

Person ID hyp.19 no hyp. male female 18-64 65+ 

1 0 1 1 0 1 0 

2 0 1 0 1 1 0 

3 1 0 0 1 0 1 

4 1 0 1 0 0 1 

Table 27. Example aggregated geographic data (own representation) 

 Cons_tier1 Cons_tier2 
Zone ID 
Tier 1 

Zone ID 
Tier 2 hyp. no hyp. males females 18-64 65+ 

1 1 
13 39 

10 12 15 7 

1 2 15 15 17 13 

2 3 
15 33 

12 8 16 4 

2 4 18 10 14 14 

 

  

 
19 hypertension 



 
68 Modelling Health-Related Data in Hamburg’s Neighbourhoods 

Now that the basic framework is clear, I am going to proceed with the steps: 

Step 1: Creating initial weight matrix (own representation) 

weights <- matrix(data = 1, nrow = nrow(ind_cat), ncol = nrow(cons_tier2)) 

 [,1] [,2] [,3] [,4] 
[1,] 1 1 1 1 
[2,] 1 1 1 1 
[3,] 1 1 1 1 
[4,] 1 1 1 1 

When creating an initial weight matrix, the weight of each individual for each zone is generally 
set to 1. While I assigned the RKI weight as initial individual weight for the purposes of this 
dissertation, I am going to show the simplified approach in this example. 

Step 2: Generating a vector holding the IDs of the spatial units at the higher scale (own representation) 

tier1_id <- cons_tier2$tier1_ID 

[1] 1 1 2 2 

Next, I generate a vector, the length of which equals the number of spatial units at the lower 
scale. In this example, they are four. The first two belong to the first spatial unit at Tier 1, and 
the latter two belong to the second unit at Tier 1. Thus, the ID of the first spatial unit is repeated 
twice and then followed by the ID of the second, again, repeated twice. 

Step 3: Updating the weight matrix according to the constraints available at Tier 1 (own representation) 

weights_sum <- t(aggregate(t(weights * ind_cat[, i]), by = list(tier1_id), FUN = 
sum))[2:nrow(ind),] 

 [,1] [,2] [,3] [,4]  ind_cat[,hyp]  [,1] [,2] [,3] [,4] 

[1,] 1 1 1 1  0  0 0 0 0 

[2,] 1 1 1 1 * 0 à 0 0 0 0 

[3,] 1 1 1 1  1  1 1 1 1 

[4,] 1 1 1 1  1  1 1 1 1 

 
 [,1] [,2] [,3] [,4] aggregate by  [,1] [,2] 

[1,] 0 0 0 0 tier1_id 0 0 

[2,] 0 0 0 0 à 0 0 

[3,] 1 1 1 1  2 2 

[4,] 1 1 1 1  2 2 

weights_sum <- colSums(weights_sum) 

[1] 4 4 
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weights_corr <- cons_tier1[,i] / weights_sum20 

[1] 13 15 / [1] 4 4 à [1] 3.25 3.75 

weights_corr_exp <- weights_corr[tier1_id] 

[1] 3.25 3.25 3.75 3.75 

weights[index, ] <- t(t(weights[index, ]) * weights_corr_exp) 

 [,1] [,2] [,3] [,4]  [,1] [,2] [,3] [,4] 

[1,] 1 1 1 1  1 1 1 1 

[2,] 1 1 1 1 à 1 1 1 1 

[3,] 1 1 1 1  3.25 3.25 3.75 3.75 

[4,] 1 1 1 1  3.25 3.25 3.75 3.75 

The weights must then be updated one more time at Tier 1 to account for the other constraint 
category ‘no hypertension’. Eventually, the weight matrix will look like this: 

 [,1] [,2] [,3] [,4] 

[1,] 9.75 9.75 8.25 8.25 

[2,] 9.75 9.75 8.25 8.25 

[3,] 3.25 3.25 3.75 3.75 

[4,] 3.25 3.25 3.75 3.75 

Step 4: Updating the weight matrix according to the constraints at Tier 2 (own representation) 

weights_sum <- colSums(weights[index, ])  

 [,1] [,2] [,3] [,4]   

[1,] 9.75 9.75 8.25 8.25   

[2,] 9.75 9.75 8.25 8.25 à [1] 26.00 26.00 24.00 24.00 

[3,] 3.25 3.25 3.75 3.75   

[4,] 3.25 3.25 3.75 3.75   

weights_corr <- cons_tier2[,i] / weights_sum21  

[1] 10 15 12 18 / [1] 26 26 24 24 à [1] 0.38 0.58 0.50 0.75 

weights[index, ] <- t(t(weights[index, ]) * weights_corr) 

 [,1] [,2] [,3] [,4]  [,1] [,2] [,3] [,4] 

[1,] 9.75 9.75 8.25 8.25  3.71 5.66 4.13 6.19 

[2,] 9.75 9.75 8.25 8.25 à 9.75 9.75 8.25 8.25 

[3,] 3.25 3.25 3.75 3.75  3.25 3.25 3.75 3.75 

[4,] 3.25 3.25 3.75 3.75  1.24 1.89 1.88 2.81 

 
20 In this example, I am updating the weights for the constraint category ‘hypertension’ 
21 In this example, I am updating the weights according to the constraint category ‘males’ 
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This is what the weight matrix is going to look like after updating it to account for the constraint 
category ‘males’ at Tier 2. Only the first and the last row are updated because the male indi-
viduals are stored in those two rows. Next, the weights must be adjusted based on the ob-
served counts of females, people aged 18-64 years, and people older than 65 years. After that, 
the algorithm keeps on running until it produces the perfect fit, that is, until the aggregated 
version of the weights matches the observed counts for each category in each zone at both 
spatial tiers. Eventually, the weight matrix will look like this: 

 [,1] [,2] [,3] [,4] 

[1,] 6.8 8.5 9.6 9 

[2,] 8.2 8.5 6.4 5 

[3,] 3.8 6.5 1.6 5 

[4,] 3.2 6.5 2.4 9 

To generate a synthetic population for the last zone, we must therefore replicate the first and 
the last individual nine times, and the second and the third individual five times. If we look at 
the individual data used for the purpose of this example, we quickly establish that this would 
result in assigning 18 males, 10 females, 14 people aged 18-64, and 14 people aged over 65 
to zone 4. This distribution perfectly matches the observed counts presented in Table 27. The 
hypertensive individuals assigned by the algorithm to this zone are 14. The third zone, which 
is part of the same spatial unit at Tier 1, has a weight sum of 2.4 + 1.6 = 4 individuals with 
hypertension. Thus, the total count of simulated individuals with hypertension for the second 
zone in Tier 1 equals 18. The corresponding observed count is 15. There are two reasons for 
this outcome. First, the algorithm finishes with the reweighting at the second tier, which means 
that the fit will always be better at the lower spatial scale, as it should be because the aim is to 
generate synthetic population at the smaller scale. Since hypertension is available as con-
straint only at Tier 1, it has a smaller influence on the final distribution compared to the con-
straint variables available at Tier 2. Second, the number of individuals included in this example 
was too small. The lacking diversity of individual characteristics therefore does not allow the 
algorithm to achieve a perfect fit at both spatial scales. In contrast, for the purposes of the 
actual model, 5.853 unique22 individuals both in terms of constraint and target variables char-
acteristics were fed as input data. 

All in all, this is how the two-tier IPF algorithm operates. To put this code together, I used two 
main references: the extensive work of Lovelace and Dumont (2016) on the subject of spatial 
microsimulation with R, and more specifically the chapter about Population synthesis and the 
IPF in theory; and the paper of Konduri et al. (2016), which provides insight into adopting a 
reweighting approach at multiple spatial scales for the purpose of population synthesis. 

  

 
22 With unique combinations of individual characteristics 
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6.4.3. Integerisation and Expansion 

While the IPF represents the core of population synthesis, the generated fractional weights are 
practically useless on their own. Allocating individual ‘X’ 1,2 times and individual ‘Y’ 0,8 times 
to zone ‘Z’, for instance, would not result in allocating two whole individuals, as each of them 
has differing characteristics. To generate a synthetic population, the weights must therefore 
be converted from decimal numbers into integers. This procedure is called integerisation.  

One possible method to integerise the generated fractional weights is to simply round them 
up. Nevertheless, this would imply that a weight of 0,51 and a weight of 0,99 are treated the 
same way and would thus result in losing information detail. There is another problem related 
to simply rounding decimal weights as well. Assuming that the integer is rounded up when the 
decimal remainder ≥ 0,5, or else rounded down, individuals with a weight < 0,5 will end up not 
being included in the sample at all. This causes a significant problem in cases when the IPF 
algorithm generates weights smaller than 0,50 only, which is not necessarily an exception. 
Such cases depend on the ratio of the observed counts for each constraint category to the 
corresponding population count in the micro dataset. If, for instance, there are only 10 males 
in zone ‘Z’, but 100 males in the micro dataset, the generated weight for this constraint cate-
gory will be 0,1. The latter is naturally going to be updated to account for all constraint catego-
ries. Still, the basic notion is that when computing weights for a zone with a total population 
much smaller than the individuals available in the micro dataset, these are generally going to 
be smaller than 1. In such cases, population synthesis may fail to produce adequate results 
when implementing a crude integerisation technique such as simple rounding. 

Against this background, scholars in the field of spatial microsimulation have developed more 
sophisticated solutions to this problem. One of them relies on introducing a so-called ‘inclusion 
threshold’. The latter is initially ‘set to 1 and then iteratively reduced (by 0.001 each time), 
adding extra individuals with incrementally lower weights’ (Lovelace and Ballas 2013, p.4). 
Below the exit value of this threshold in each zone, no more individuals can be included.  

Another integerisation method, referred to as ‘counter-weight approach’ sorts the individuals 
in ascending order according to their weight and then assigns them a counter. Then, an algo-
rithm iterates over all individuals in the order of their counter and computes a new integer 
weight, which ‘is set as the rounded weight plus the rounded sum of its decimal weight plus 
the decimal weight of the next individual, until the desired total population is reached’ (ibid.). 
The advantage of this solution, compared to the former one relying on an inclusion threshold, 
is that individuals with smaller weights of down to 0,25 may be selected, or, in other words, 
integerised to 1. Still, both approaches assume that an individual with a weight of 0,2 and 
another individual with a weight of 0,0001 have the same chance to be selected – that being 
no chance at all. Failing to include individuals with lower weights compromises the diversity of 
the sample. Those with a less common combination of personal characteristics are completely 
excluded, whereas those, who are more representative for a certain zone, are over-replicated. 
Furthermore, an individual with a weight of 0,2 is 2.000 times more representative than an 
individual with a weight of 0,0001. Therefore, putting them both into the group of individuals, 
who will never be selected, means oversimplifying the integerisation procedure. 

The ‘proportional probabilities approach’ to integerisation addresses the problem of the total 
exclusion of weights below a certain value. It relies on probabilistic selection sampling, where 
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the likelihood of being selected depends on the ratio of the weight to the total sum of weights. 
Thus, individuals with high weights should be replicated more times, and individuals with low 
weights should be replicated fewer times or not appear at all. While this does sound logical, 
the problem is that ‘because all weights are treated as probabilities, there is non-zero chance 
that an individual with a low weight (e.g., 0.3) is replicated more times than an individual with 
a higher weight (e.g., 3.3)’ (Lovelace and Ballas 2013, p.5). Moreover, if all weights are lower 
than zero, the choice of who gets selected becomes relatively random. 

Against this background, Lovelace and Ballas (2013) introduced a new integerisation method, 
referred to as ‘Truncate, replicate, sample’ (TRS). They argue that the ideal method ‘would 
build upon the simplicity of the rounding method, select the correct simulated population size 
(as attempted by the threshold approach and achieved by using ‘proportional probabilities’), 
make use of all the information stored in IPF weights and reduce the error introduced by in-
tegerisation to a minimum’ (ibid., p.5). The developed TRS integerisation method therefore 
aims to integrate the strengths of the different approaches introduced above. It is based on the 
notion that the generated weights do not simply represent the odds of an individual to be se-
lected. Rather than that, they indicate how many times an individual should be replicated in a 
certain zone (provided that the weight is higher than 1). If, on the other hand, the weight is 
smaller than 1, it then represents the probability of the individual being selected in a repre-
sentative sampling strategy, as in the case of the proportional probabilities approach. Hence, 
instead of interpreting the IPF weights as inaccurate count data, the TRS approach considers 
them to be a complex information source about both replication and selection probability. As 
its name suggests, the method is comprised of three separate steps. The first one – truncate 
– consists in cutting the decimal remainder to the right of the decimal point and thus keeping 
the integer part, which determines how many times the individual should be replicated in the 
given zone. The second step – replicate – refers to the replication of the individuals according 
to the integer weights defined in the previous step. Nevertheless, these two steps alone are 
not sufficient for generating a synthetic population with the same size as the observed one. 
Since the replication is based on integers, which were truncated rather than rounded up, the 
simulated population is always going to be smaller than the real one at this point. Therefore, 
the final step – sample – ensures that the desired population size is achieved by adding more 
individuals. The sampling is carried out based on selection probabilities equal to the decimal 
remainders cut in the first part of the TRS algorithm (ibid., pp.5-6). 
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To integerise the fractional weights generated by the two-tier IPF algorithm for the purposes 
of this dissertation, I used the TRS integerisation algorithm available in the book ‘Spatial Mi-
crosimulation with R’ by Lovelace and Dumont (2016, p.91): 

int_trs <- function(x){ # the TRS integerisation algorithm int_trs is defined as function 

xv <- as.vector(x) # The IPF-generated weight matrix is fed as x and converted into a 
vector xv 

xint <- floor(xv) # The integer part of the weights is extracted and stored into a new 
vector xint 

r <- xv - xint # Then, the decimal remainder of the weights is stored into a new vector r 

def <- round(sum(r)) # The deficit population is defined as the total sum of the decimal 
remainders. Deficit population refers to the population that must be filled in after replicating 
the individuals based on the integer part of the weights to reach the total observed popula-
tion count. 

# To that end, the weights must be ‘topped up’ (+ 1 applied: e.g., 1,6 becomes 2,0) 

topup <- sample(length(x), size = def, prob = r) # to select weights for topping 
up, a sample with the length of the vector x containing the weights, and the size of the deficit 
population is generated. The probability for a weight to be selected from this sample de-
pends on its decimal remainder. 

xint[topup] <- xint[topup] + 1 # the initially extracted integer parts of the weights se-
lected in the previous step are topped up. 

dim(xint) <- dim(x) # the vector xint, which contains the integerised weights, is con-
verted into a matrix with the same dimensions as the IPF-generated weight matrix. 

dimnames(xint) <- dimnames(x) # the newly created integer matrix xint is assigned the 
same row and column names as those of the IPF-generated weight matrix x. 

} 

Here is a TRS integerisation example with five random weights:  

0.90 1.20 2.40 3.60 4.90 

First, we store the integer part of the weights – Truncate à 

0 1 2 3 4 

Next, we store the decimal remainders à 

9 2 4 6 9 
 

The total observed population is filled up when the fractional weights are summed up: 

0.90 + 1.20 + 2.40 + 3.60 + 4.90 = 13 

If we use the integer parts of the fractional weights to replicate the individuals, we get a total 
population of: 

0 + 1 + 2 + 3 + 4 = 10 

This means that there is a deficit population of three people that must be filled in by topping up 
three weights. Obviously, the decimal remainders 0.9 and 0.6 have higher odds to be selected 
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than 0.2 and 0.4. The TRS algorithm is therefore most likely going to choose the weights 0.90, 
3.60, and 4.90 for topping up. The integerised version of the IPF-generated fractional weights 
will thus most probably look like this: 

1 1 2 4 5 

This is how the TRS approach, which I adopted for integerising the fractional weights gener-
ated by the two-tier IPF algorithm, works.  

With that, there was just one final step left to generate the synthetic population and it is widely 
known as expansion. In essence, each integerised weight corresponds to the number of times 
the individual should be replicated in the given zone. With this in view, the process of expansion 
consists in replicating the individuals as many times as the integerised weights. To that end, 
the following function was defined by Lovelace and Dumont (2016, p.95): 

int_expand_vector <- function(as.vector(x)){ # the matrix containing the integerised 
weights is fed into the function and converted into a vector 

   index <- 1:length(x) # an index with the length of the vector is created so that each 
integer is assigned a unique index 

   rep(index, round(x)) # each index is replicated as many times as the integer weight it 
refers to 

} 
 

To simplify this with an example, once a vector containing the following integers 

[1] 1 2 1 5 

is expanded, it will look like this: 

[1] 1 2 2 3 4 4 4 4 4    

Each index in this vector refers to a certain row in the individual dataset – a row, which repre-
sents an individual with unique characteristics. Hence, this newly generated expanded vector 
is used to index the rows in the micro dataset as many times as necessary for populating a 
given zone. Basically, entire rows from the micro dataset including both the constraint and 
target variables are extracted and allocated to a new synthetic population dataset and repli-
cated if needed. The big advantage of the synthetic population dataset is that it contains both 
individual data and spatial reference about the city quarter and the statistical area each indi-
vidual lives in. With that final step, the population synthesis was completed (see Appendix, 
Table 44, for a sample of the generated synthetic population). 
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6.4.4. Choice of software environment  

While software choice is barely addressed in papers on the subject of spatial microsimulation, 
I consider it an important aspect for researchers aspiring to get to know this method first-hand. 
The next few paragraphs are therefore dedicated to my journey regarding the selection of pro-
gramming language and software environment.  

Naturally, I was looking for a programming language, which is appropriate and mature for the 
intended purpose of setting up a spatial microsimulation model. Before I embarked upon the 
path of studying spatial microsimulation methods, I barely had experience with programming 
languages. Choosing an intuitive software, which would allow me to learn fast, was therefore 
essential. Another important aspect in my decision-making process was cost. For flexibility 
reasons, I preferred to use an open-source programme. Furthermore, open-source software 
products generally offer the advantage of a large user community sharing their knowledge and 
providing solutions to various programme-specific problems on the web.  

With this in view, I chose the software environment for statistical computing R (R Core Team 
2020). It ended up meeting all my needs as a researcher, who was already experienced in the 
field of statistics, but less so in the field of programming, and spatial microsimulation. I used R 
throughout the entire process – input data pre-processing, writing the two-tier IPF algorithm, 
integerising the generated fractional weights, applying expansion to convert the integers into 
actual synthetic population, and finally carrying out internal and external model validation (to 
be addressed in the next chapter). 

At the same time, I profited enormously from an already existing body of work on the topic of 
spatial microsimulation with R. Especially the book of Lovelace and Dumont (2016) served as 
my navigation into this fascinating field. Fortunately, R offers great flexibility and enabled me 
to take parts of the code, available in the book for teaching purposes, to adjust and expand 
them in order to finally set up the algorithm I needed for reaching my research goal. 

Since R was initially designed to operate for statistical purposes, many functions necessary for 
statistical analysis are already available in the default installation package. Hence, users do 
not need to define them as functions. In the context of population synthesis, carrying out a 
statistical analysis of the results is just as important as generating the individuals. Therefore, 
the integrated statistical analysis features of R were another factor, which influenced my deci-
sion-making. 

Being introduced back in 1993, R’s functionalities have grown enormously due to the continu-
ously expanding community of programmers contributing to the software environment. As a 
result, there are already predefined functions enabling to run the IPF algorithm without having 
to ‘hard-code’ it by yourself. Examples of such functions are ipfp and mipfp, which are available 
for installation in additional packages with the same names. With this in view, R offers even 
more comfort for novices in the field of deterministic reweighting, and with that in the field of 
spatial microsimulation models. Personally, I found it more rewarding to hard-code each part 
of the algorithm instead of using these ‘black-box’ functions, as this allowed me to develop an 
understanding of how IPF works. Nonetheless, having multiple options to select from was yet 
another advantage that made R the right choice for me. 
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With the generation of the synthetic population, the main task towards setting up a small-scale 
health model for Hamburg was completed. Still, there was one crucial step left – the model 
validation. The next chapter is going to explain its purpose and address the difference between 
internal and external validation. Moreover, it is going to present the results from validating the 
generated model so that the extent to which it manages to depict reality can be evaluated. 
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7. MODEL VALIDATION 
Model validation is an integral part of applying spatial microsimulation because it serves the 
purpose of evaluating the reliability of the generated synthetic data. In general, there are two 
types of validation – internal and external. 

Internal validation is also referred to as ‘model checking’ and it consists in ‘comparing model 
results against a priori knowledge of how they should be’ (Lovelace and Dumont 2016, p.143). 
This generally means that the modelled data is aggregated at a chosen level of spatial division 
(e.g., city quarters and statistical areas) and compared with the observed population counts 
from the geographic dataset used for setting up the model. Therefore, only the constraint var-
iables can be checked, but not the targets.  

External validation, on the other hand, also known as model evaluation, uses data external to 
the model for its verification. Depending on the external data available, this process can be 
executed at the aggregate and/or at the individual level. Nevertheless, the main reason for 
setting up spatial microsimulation models is there being no data available at the desired spatial 
level. Therefore, external validation often cannot be carried out at all. According to Lovelace 
and Dumont (2016), ‘in such cases internal validation, combined with proxy variables for which 
external datasets are available, may be the best approach to model evaluation’ (p.144). 

Internal and external validation have different purposes. While internal validation tests the co-
herency of the model and reveals errors in the algorithm or discrepancies in the input data, 
external validation determines the extent to which the modelled data corresponds to reality.  

If the internal validation fails, there may be a problem with the input micro data. Common prob-
lems include the excess of empty cells or the insufficient representativity of the survey sample. 
The latter is often manifested as lacking combinations of individual characteristics impeding 
an accurate estimation of the population composition. Another possible reason for a failed 
internal validation may be an error in the algorithm or the use of contradictory constraints (e.g., 
two dichotomous variables related to both employment and unemployment with differences in 
the definitions). There may also be a discrepancy in the total number of individuals for the 
various constraint variables in the geographic dataset (ibid., pp.144-145). In any case, internal 
validation results show whether the input data, or the algorithm need to be re-examined. If the 
differences between the modelled and the observed population aggregates for the constraint 
categories (e.g., total number of males) are minimal, the model is generally considered coher-
ent. Against this background, internal validation is considered ‘the bare minimum in terms of 
model evaluation’ (ibid., p.145). It should be regarded as standard procedure and thus carried 
out for each spatial microsimulation model because it requires only the used input data. 

External validation, on the other hand, relies on data external to the model, which was not used 
as input to set it up. Hence, there may be plenty of reasons for a failed external validation. This 
makes fixing the model much harder compared to simply correcting the algorithm or checking 
the input data for inconsistencies. Nevertheless, if external data is available, regardless of its 
form and geographic coverage, it should be used for model evaluation. While internal validation 
may help to rule out faulty methods, external validation provides actual insight into how good 
of a proxy the modelled data is (ibid., p.144).  
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With this in view, I carried out both internal and external validation. The next sections are going 
to present the results and describe in detail the applied methods and the specifics of the used 
external data.  

7.1. Internal Validation Results 

For the purposes of internal validation, it is generally recommended to use several different 
metrics. I therefore estimated Pearson’s correlation, the total absolute error (TAE), the relative 
error (RE), the root mean squared error (RMSE), and the mean absolute percentage error 
(MAPE) for each zone at the city quarter and at the statistical areas level – both before and 
after integerisation. My intention was to combine several differing estimation approaches, 
which are transparent, easy to interpret, and simple enough to communicate to a wider audi-
ence. Further metrics, which can generally be used for the purpose of internal validation, in-
clude the mean relative error and Chi-squared. 

Pearson’s Correlation (r) quantifies the linear correlation between the modelled and the 
observed population counts for each variable category in each zone. It is estimated using For-
mula 1: 

Formula 1. Pearson’s Correlation (Source: Lovelace and Dumont 2016, p.146) 
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Here, X and Y correspond to the observed and the modelled matrices (accounting both for 
zones and variable categories), which are converted into vectors for the purpose of this esti-
mation. The formula divides the covariance by the product of the standard deviation of each 
vector. Thus, the covariance is standardised.  

The better the fit between the observed and the modelled values, the closer r would be to 1. 
If the values match perfectly, the covariance will be equal to the product of the standard devi-
ations. Generally, ‘r values greater than 0.9 should be sought in spatial microsimulation and 
in many cases r values exceeding 0.99 are possible, even after integerisation’ (Lovelace and 
Dumont 2016, p.146). The main flaw of Pearson’s Correlation is its high sensitivity towards 
outliers. 

TAE is the sum of the absolute differences between the modelled and the observed population 
counts for each constraint variable category in each zone. It is estimated using Formula 2 

Formula 2. Total Absolute Error (Source: Lovelace and Dumont 2016, p.147) 

𝑇𝐴𝐸 =	01𝑒%.1
%.

	

where 𝑒!" =	𝑜𝑏𝑠!" −	𝑠𝑖𝑚!".  

Here, e refers to error, whereas obs and sim represent the observed and simulated (or mod-
elled) values for each zone (i) and each constraint variable category (j), respectively.  

It is important to emphasize on the absolute part of this measure, meaning that it takes the 
absolute values of the error so that differences cannot be compensated. For instance, having 
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10 males fewer, but 10 females more in zone Z, would result in an error of 20, rather than 0, 
as TAE counts each difference between observed and modelled cases. Therefore, albeit not 
particularly refined, the simplicity of this measure facilitates its comprehension. Still, the inter-
pretation of the results can be difficult because the calculated error is a number that cannot be 
related to anything in order to estimate whether TAE it is large, small, expected, or unexpected. 

RE is closely related to TAE as it is calculated by dividing TAE with the population of the re-
spective zone. If the results are compared for all constraint variables altogether, the total pop-
ulation must be additionally multiplied by the number of variables (Formula 3). RE may there-
fore be viewed as the percentage of error. Its main advantage over TAE is that it is not sensitive 
to the number of individuals and variable categories included in the model.  

Formula 3. Relative Error (Source: Lovelace and Dumont 2016, p.147) 
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RMSE is also partly based on TAE. However, it relies on squaring the errors rather than simply 
adding them up. Basically, RMSE estimates the square root of the mean of all squared errors 
(Formula 4). Thus, larger differences in the fit between the observed and the modelled popu-
lation become evident more easily. According to Chai and Draxler (2014), when errors have 
an approximately normal distribution RMSE is the more suitable choice than TAE and RE. 

Formula 4. Root Mean Squared Error (Source: Lovelace and Dumont 2016, p.147) 
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MAPE is the ‘mean or average of the absolute percentage error of forecasts’ (Swamidass 
2000). It is calculated by estimating the average of the sum of the absolute error for all zones 
and constraint variable categories divided by the corresponding observed population counts 
(Formula 5). 

Formula 5. Mean Absolute Percentage Error (Source: Stellwagen 2019) 
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The biggest advantage of MAPE is that it is easy to comprehend because the error is presented 
as percentage, as opposed to an abstract number that cannot be related to anything for the 
sake of interpretation (as in the case of TAE and RMSE). Therefore, MAPE is commonly used 
in forecasting: the smaller MAPE is, the better the forecast fit. For an even simpler understand-
ing as to how good the modelled cases depict reality, one can subtract MAPE from 1 and thus 
calculate something along the line of a Fitting Score, that is, the extent to which the modelled 
cases fit the observed cases. If MAPE = 5%, for instance, that would result in a Fitting Score 
of 95%.  

One downside of MAPE is that it is not suitable in cases when the observed value equals zero. 
Therefore, if the geographic dataset contains areas, where the observed population count for 
a certain constraint variable category is zero, MAPE cannot be applied for estimating the model 
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fit. Still, there are ways to work around such instances. The simplest option is to transform the 
given constraint variable by combining multiple variable categories into one and thus increase 
the observed population count. In an age-related constraint variable, for example, 5-year age 
intervals may be converted into 10- or even 20-year intervals. Such an approach would lead 
to losing some detail, but it would enable the estimation of MAPE. Nevertheless, some varia-
bles do not allow for such transformations. Dichotomous categorical variables, accounting for 
either/or conditions, such as having or not having certain medical condition, entirely exclude 
the possibility of variable transformation. In such cases, the only other option for using MAPE 
to estimate the model fit, would be spatial unit aggregation, that is, combining several smaller 
areas into one. Such an approach, however, could raise questions regarding the underlying 
logic of the spatial aggregation – is it based on administrative boundaries, such as combining 
urban blocks based on neighbourhood delineations, is it based on reaching a predefined pop-
ulation count, etc. In any case, such transformations will always lead to losing detail.  

Before exploring the fit between the observed and the modelled cases, I examined the extent 
to which the modelled cases for each constraint variable category coincide in their sum at both 
modelling tiers. For example, I checked whether the number of males allocated to the statistical 
areas within city quarter A (cases modelled at Tier 2) equals the number of males allocated to 
city quarter A (cases modelled at Tier 1), and so on. Only those constraint variables, available 
at both modelling tiers (age and gender), were considered because only they determine the fit. 
The results of this test are presented in Table 28.  

Table 28. Testing the convergence between Tier 1 and Tier 2 (own representation) 

 Min 1st Quarter Median Mean 3rd Quarter Max 

r 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

TAE 0 0 0 0 0 0 

RE 0 0 0 0 0 0 

RMSE 0 0 0 0 0 0 

MAPE 0 0 0 0 0 0 

Fitting Score 100% 100% 100% 100% 100% 100% 

All metrics indicate a perfect fit between the two tiers, that is, the individual counts regarding 
age and gender fully coincide at the city quarter and the statistical areas level. Simply put, the 
sum of all males allocated to statistical areas, belonging to a certain city quarter, equals the 
number of males allocated to the same city quarter. The same goes for females as well as for 
the two age intervals: 18-64 years and 65+ years. This outcome suggests that the IPF algo-
rithm, which constrained the model at two different spatial scales, did not cause any discrep-
ancies in the population counts belonging to corresponding constraint variable categories. 

The internal validation results for both modelling tiers, considering the observed and modelled 
cases for all constraint variable categories, are summarised in Table 29. The five metrics are 
compared before and after the integerisation of the fractional weights generated by the IPF 
algorithm. Thus, the extent to which integerisation negatively affects the fit, becomes evident. 
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Table 29. Internal validation results (own representation) 

 Tier 1: city quarters 
Before integerisation After integerisation 

Min Mean Max Min Mean Max 
r 1,0000 1,0000 1,0000 0,9996 0,9998 1,0000 

TAE 0,1641 3,1963 14,8555 363 2236,6 7124 
RE ~ 0,0000 ~ 0,0000 ~ 0,0000 ~ 0,0000 ~ 0,0000 ~ 0,0000 

RMSE 0,0091 0,1776 0,8120 12,89 72,95 228 
MAPE ~ 0,0000 ~ 0,0000 ~ 0,0000 2,6% 4,5% 7% 

Looking at the results, it becomes clear that non-integerised weights provide a better fit be-
tween the observed and the modelled cases at both tiers. However, whereas the model fit at 
the level of the statistical areas is perfect before integerisation, this is not the case at the level 
of the city quarters. The reason for this is that the algorithm starts constraining the synthetic 
population at the city quarter level but finishes at the statistical areas level. Since the constraint 
variables are different at both tiers, optimising the fit at the smaller scale leads to a slightly 
worse fit at the larger scale. Still, non-integerised weights are useless on their own, as they do 
not allow to carry out the expansion necessary for generating synthetic population. I am there-
fore going to focus on interpreting the results about the model fit after integerisation.  

Generally, Pearson’s Correlation, RE, and MAPE point to a better fit at the first tier, whereas 
TAE and RMSE suggest more satisfying convergence at the second tier. To explore this out-
come in more detail, the distributions of the metrics after integerisation are illustrated in figures 
8-12. 

Overall, the metrics point to a satisfying fit at both modelling tiers. Pearson’s Correlation is at 
least 0,991 after integerisation, which speaks for a remarkably close convergence between 
observed and modelled values. The results are slightly better at the level of the city quarters 
with all zones being in the range 0,999 – 1,000. In contrast, approximately 10% of the statistical 
areas fall below 0,999 (Figure 8). Still, those are minimal differences, and altogether this metric 
suggests more than an adequate fit between observed and modelled cases at both spatial 
scales. 

  

 Tier 2: statistical areas 
Before integerisation After integerisation 

Min Mean Max Min Mean Max 
r 1,0000 1,0000 1,0000 0,9919 0,9993 1,0000 

TAE ~ 0,0000 ~ 0,0000 ~ 0,0000 52 198,7 356 
RE ~ 0,0000 ~ 0,0000 ~ 0,0000 1,3% 4,1% 14,2% 

RMSE ~ 0,0000 ~ 0,0000 ~ 0,0000 2,45 9,36 20,35 
MAPE 0,0000 0,0000 0,0000 2,6% 8,6% 29,3% 
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Figure 8. Pearson’s Correlation regarding the convergence between observed and modelled population 
at both spatial tiers (own representation) 

   
TAE is significantly larger at the first modelling tier – more than 80% of all city quarters have a 
TAE of at least 1.000, whereas the statistical areas have considerably lower TAE within the 
range of 50 to 350 (Figure 9). This difference results mostly from the metric’s sensitivity to the 
number of individuals per zone. The city quarter with largest TAE (= 7.124) has a total popula-
tion of over 50.000 people – significantly larger than the average population of ca. 23.000 
people at this spatial scale. In fact, there is a positive correlation of 0,81 between population 
size and TAE at the city quarter level. At the level of the statistical areas, on the other hand, 
the correlation is weaker: 0,62. In this context, the larger variation in population size at the city 
quarter level (min = 2.871, max = 75.647) as opposed to the statistical areas level (min = 223, 
max = 5.761), supports the assumption that TAE tends to be larger for more populous areas. 
Since city quarters generally encompass several statistical areas, their populations are natu-
rally larger, which is why TAE is larger as well. 

Figure 9. Total absolute error regarding the convergence between observed and modelled population 
at both spatial tiers (own representation) 

   
TAE also depends on the number of variable categories. At the first modelling tier, there are 
40 categories, whereas at the second, there are 30. The larger TAE at the city quarter level is 
therefore not difficult to grasp.  

Another contributing factor may be the number of missing individual combinations in the micro 
dataset, impeding the algorithm from reaching the perfect fit. The total number of possible 
combinations at the first modelling tier is 128. Out of those, 102 are available in the micro 
dataset. This is not necessarily problematic, as cases of people having all five chronic diseases 
serving as constraints at this spatial scale, i.e., hypertension, heart failure, diabetes, cancer, 
and depression, shall be close to zero. The latter being simply an example for combinations, 
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which are not that necessary as they do not manifest that often in reality. Still, this ‘deficiency’ 
of the micro dataset may be another reason for higher TAE at the city quarter level. 

Looking at RE, the picture is different – all city quarters have a relative error of approximately 
zero. At the level of the statistical areas, on the other hand, RE falls into the range of 0,01 – 
0,14 (Figure 10). Hence, the percentage of error is clearly larger at the second modelling tier. 
In other words, the error per person is larger at the scale of the statistical areas. This results 
from a larger number of smaller differences, which is revealed after controlling for population 
size and number of constraint variable categories. 

Figure 10. Relative error regarding the convergence between observed and modelled population at both 
spatial tiers (own representation) 

    
RMSE is larger at the city quarter level than at the statistical areas level (Figure 11). At the first 
tier, all but one city quarters have a RMSE > 20, whereby one quarter have a RMSE > 100. At 
the second tier, on the other hand, all areas have RMSE £ 20. With this in view, RMSE at the 
first tier has a wider range and a broader distribution than at the second tier. This suggests 
that differences between observed and modelled cases may be fewer, but larger at the city 
quarter level than at the statistical area level. As already discussed, TAE follows a similar 
pattern and thus supports this assumption. The main reasons for this are the larger number of 
constraints and the missing combinations in the micro dataset, impeding a perfect fit.  

Figure 11. Root mean squared error regarding the convergence between observed and modelled pop-
ulation at both spatial tiers (own representation) 

   
MAPE, similarly to RE, is higher at the level of the statistical areas (Figure 12). While the min-
imum MAPE is the same at both modelling tiers (=2,6%), the maximum is more than four times 
larger at the scale of the statistical areas. The MAPE therefore reinforces the assumption that 
factoring in population size, the error is larger at the second modelling tier. 
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Figure 12. Mean absolute percentage error regarding the convergence between observed and modelled 
population at both spatial tiers (own representation) 

   
Overall, the internal validation results suggest a satisfying fit between the observed and the 
modelled populations at both spatial scales – the city quarters and the statistical areas. Pear-
son’s Correlation is higher than 0,99 even after integerisation for all spatial units, which sug-
gests an almost ideal convergence. The remaining four metrics – TAE, RE, RMSE, and MAPE 
point to an existing pattern in the differences between the two modelling tiers. There seem to 
be fewer, but larger differences between the observed and modelled cases at the city quarter 
level, leading to higher TAE and RMSE. The lack of certain individual combinations in the micro 
dataset appears to play the pivotal role here. In contrast, RE and MAPE are higher at the 
statistical areas level, suggesting a greater error per person due to a larger number of smaller 
differences. 

7.2. External Validation Results 

While good internal validation results verify the coherency of the model, they do not confirm 
that the generated data accurately describes reality. To that end, external validation is neces-
sary. For this purpose, representative samples of the population in the small areas are recom-
mended (Lovelace and Dumont 2016, p.159).  

To conduct external validation of my spatial microsimulation model, I used two data sources – 
a small representative survey for six statistical areas with differing social status; and total pop-
ulation counts regarding the prevalence of several chronic illnesses categorised by age, gen-
der, and social status, provided by three of Hamburg’s health insurance funds: AOK Rhein-
land/Hamburg, BKK Mobil Oil, and DAK-Gesundheit. Both the sample survey data and the 
health insurance data were obtained in the course of the research project ‘Healthy Neighbour-
hoods’.  

Before diving into the external validation, it should be noted that neither of the available exter-
nal data sources was perfect: the survey data only covered a limited number of statistical ar-
eas, whereas the insurance data completely lacked geographical reference. Nevertheless, I 
consider the use of this data a better alternative than skipping external validation altogether. 
Moreover, if there already was small-scale data about the prevalence of chronic disease avail-
able for the entire city of Hamburg, there would have been no demand for setting up this model 
in the first place. 
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7.2.1. External validation with survey data 

An integral part of the research project ‘Healthy Neighbourhoods' was primary data collection 
through standardised sample surveys. The aim was to compare the health situation across 
Hamburg’s neighbourhoods in terms of socio-economic standing. To that end, individual 
health-related data was obtained and analysed for six statistical areas with differing social sta-
tus according to the classification of the Social Monitoring. 

The six statistical areas were selected randomly, after applying several filters upfront: popula-
tion of at least 2.000 inhabitants, stable social dynamic (as in Social Monitoring 2016), and no 
health-related projects with a funding exceeding 10.000 EUR per annum conducted in the 
three years prior to the research project ‘Healthy Neighbourhoods’. The selection was carried 
out in four separate clusters, each representing a different social status: high, average, low, 
and very low. Of the six selected areas, one had high social status, one had average status, 
two had low status, and the remaining two had very low status. Part of the research project 
was dedicated to the development and implementation of health-promoting and prevention 
measures in two study areas belonging to each of the low social status classes. One of the 
areas selected within the classes low and very low was therefore intended as implementation 
area and the other one as control area (Yosifova 2021, pp.50–51). 

At the start of the project in July 2017, the population size in the study areas was within the 
range of 2.200 – 6.200 inhabitants (Statistisches Amt für Hamburg und Schleswig-Holstein 
2017) and was thus considered sufficient for reaching the intended sample of 150 survey re-
spondents per area. It took a bit longer than one year to conduct the interviews – from May 
2018 until July 2019. However, it proved quite difficult to reach the desired sample in all six 
areas, and data collection was thus terminated after the completion of 815 interviews. Follow-
ing the inspection of the input data for mistakenly checked boxes, misstatements, typing errors, 
etc., 799 of those were included in the final dataset (Buchcik et al. 2021, p.54). 

The survey covered three main topics of interest: individual health, health behaviour and health 
competence, and living environment – the focus being on the neighbourhood setting. Some, 
albeit not so many of the variables available in the dataset, directly corresponded to the varia-
bles I modelled at the level of the statistical areas using a spatial microsimulation. This allowed 
the external validation of several of the modelled individual health characteristics, including 
hypertension, heart failure, diabetes, cancer, depression, obesity, overweight, and smoking. 
Furthermore, the survey contained variables, which I was able to use as proxy for validating 
sporting activity, subjectively perceived health, and impairment in daily activities due to illness.  

Having access to external data is essential for model evaluation. Nevertheless, any possible 
limitations, or flaws of this data must be taken into consideration before issuing the final state-
ment how good the model is. The available external data may not be as good of a representa-
tion of reality either. This is especially the case with survey data, as there is almost always 
some kind of bias. Whenever possible, this must be accounted for by applying additional weight 
variables. With this in view, Table 30 illustrates the marginal distribution of the sampled popu-
lation for age and gender (in absolute and relative terms) compared to the corresponding mar-
ginal distribution of the observed population in the six statistical areas just before the start of 
the primary data collection (Statistisches Amt für Hamburg und Schleswig-Holstein 2018). 
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Table 30. Observed vs. sample cross tabulation: gender by age (own representation) 

 
18-64 65+ 

Count % of  
Total Count Count % of  

Total Count 

Statistical Area 
#66004  
in Sasel 

 
Females 

Sample  47 32,2% 28 19,2% 
Observed 663 33,1% 449 22,4% 

Males 
Sample 44 30,1% 27 18,5% 
Observed 609 30,4% 284 14,2% 

Statistical Area  
#43010 in  
Stellingen 

Females 
Sample 79 56,4% 8 5,7% 
Observed 884 35,2% 459 18,3% 

Males 
Sample 47 33,6% 6 4,3% 
Observed 866 34,5% 303 12,1% 

Statistical Area 
#9005 in 
Hamm 

 
Females 

Sample 56 42,1% 12 9% 
Observed 813 38,9% 160 7,7% 

Males 
Sample 57 42,9% 8 6% 
Observed 979 46,9% 137 6,6% 

Statistical Area 
#75019 in 
Lohbrügge 

 
Females 

Sample 55 49,1% 13 11,6% 
Observed 1.358 38,7% 399 11,4% 

Males 
Sample 39 34,8% 5 4,5% 
Observed 1.473 41,9% 283 8,1% 

Statistical Area 
#16023 in  
Wilhelmsburg 

 
Females 

Sample 34 58,6% 3 5,2% 
Observed 1.844 41,4% 452 10,2% 

Males 
Sample 21 36,2% 0 0% 
Observed 1.780 40% 376 8,4% 

Statistical Area 
#74024 in 
Rahlstedt 

 
Females 

Sample 66 48,9% 13 9,6% 
Observed 847 40,5% 228 10,9% 

Males 
Sample 44 32,6% 12 8,9% 
Observed 835 39,9% 182 8,7% 

Clearly, several adjustments were necessary. The differences between the sample and the 
observed distribution for some population groups were considerable. This was especially true 
for the relative distribution of age, as the survey only included adults. The sample distribution 
was therefore naturally distorted when compared to the observed one, which considered the 
entire population. 

To compute the weights for adjusting the marginal distribution in the sample, the observed 
percentage of the total count for a given category had to be divided by the corresponding 
percentage in the sample. For instance, the weight for a male, older than 65, and living in Sasel 
would be 14,2/18,5 = 0,77. Since the proportion of such individuals in the sample population 
was larger than in reality, it had to be scaled down to improve the representativity of the sam-
ple. Naturally, weights smaller than 1 serve the purpose of scaling down, whereas weights 
larger than 1 do the opposite.  

While this is how the general procedure works, Table 30 shows that there are no males, older 
than 65, and living in Wilhelmsburg in the sample. It was therefore not possible to validate the 
modelled characteristics for this population group using the survey in its original format. The 
solution to overcoming this problem was to merge the data for all six statistical areas. In so 
doing, the missing male respondents older than 65 years in Wilhelmsburg were compensated 
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for by the same type of individuals living in the other five areas. Thus, despite the loss of spatial 
detail, I was still able to use the survey data for model validation. Merging the data offered 
another advantage as well – it resulted in one bigger sample instead of six small ones, which 
increased the reliability of the data as it eliminated empty categories and reduced the number 
of categories with few individuals. Table 31 provides a comparison of the cross-tabulation gen-
der by age between the merged sample population and the observed population. To compen-
sate for the loss of spatial detail, I divided age into three instead of two categories. 

Table 31. Observed vs. merged sample cross tabulation: gender by age (own representation) 

18-44 45-64 65+ 

Count % of  
Total Count Count % of  

Total Count Count % of  
Total Count 

Females 
Sample 204 28,2% 133 18,4% 77 10,6% 
Observed 3.749 22,5% 2.660 16,0% 2.147 12,9% 

Males 
Sample 145 20,0% 107 14,8% 58 8,0% 
Observed 3.924 23,5% 2.618 15,7% 1.565 9,4% 

Besides age and gender, the other two constraint variables at the statistical areas level – em-
ployment and living situation played an equal part in calculating the weights (Table 32).  

Table 32. Observed vs. sample frequencies of living situation and employment status (own representa-
tion) 

 Yes No 

Count % of  
Total Count Count % of  

Total Count 

Living in a single household Sample 122 17,5% 575 82,5% 
Observed 5.336 32% 11.327 68% 

Currently employed Sample 430 64,6% 236 35,4% 
Observed 7.522 45,1% 9.141 54,9% 

The total observed population in the six statistical areas at the time chosen for reference 
(31.12.2017), was 16.663 people. To compute the weights, I adopted the Iterative Proportional 
Fitting approach, which was introduced earlier. As the sample data for the six statistical areas 
is merged into one, each individual must be assigned one single weight accounting for the total 
observed population in these six areas. Initially, this weight was set to 1 and it was then up-
dated iteratively using a for loop to account for age, gender, employment, and living situation. 
In essence, the weight was updated by dividing the observed count referring to a certain vari-
able category (e.g., males) by the corresponding count in the survey. This action was repeated 
for each variable category. First, the algorithm updated the weights to account for gender (male 
and female), then, it took the adjusted weight and updated it again to account for age (18-44 
years, 45-64 years, 65+ years), and so on. After the weights of all individuals were updated 
considering each of the variable categories, the first iteration was completed. If the algorithm 
were to stop here, the weights would have been ideally adjusted to the last variable category 
accounted for, but they would not have been as accurate for the previous ones. Therefore, the 
algorithm continued running from the beginning, that is, from the first variable category. This 
process was repeated until the aggregated version of the weights for each variable category 
ideally fitted the corresponding count in the observed population. Generally, the number of 
iterations depends on how fast the algorithm manages to reach the perfect fit, whereby the 
more variable categories there are, the more iterations are needed. The computation of the 
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weights necessary for optimising the representativity of the survey required four iterations. I 
then integerised the generated weights and expanded the individual indices to generate the 
final weighted sample survey dataset. The procedure was thus identical to the population syn-
thesis described in the previous chapter. 

The last step before proceeding with the validation was to recode several variables in the sam-
ple survey dataset to ensure they fit the corresponding variable categories in the synthetic 
population dataset (Table 33). 

Table 33. Recoding of survey dataset variables to fit the synthetic population dataset variables (own 
representation) 

Survey Dataset  Synthetic Population Dataset Recoded Categories  

‘How do you evaluate your 
overall health?’ 
‘Excellent’  
‘Very good’  
‘Good’ 
‘Less good’  
‘Bad’ 

Subjectively perceived health  
‘Very good/Good’ 
‘Average/Bad/Very bad’ 

‘Excellent’  
‘Very good’  

‘Good 
 

‘Less good’  
‘Bad’ 

→ 

 

 

→ 
 

‘Very good/ 
Good’ 
 

‘Average/ 
Bad/ 
Very bad’ 

‘Do you have none of those 
chronic illnesses?’ 
‘Yes’  
‘No’ 

Chronic medical  
condition(s)  
‘Yes’ 
‘No’ 

‘No’ 

‘Yes’ 

→ 

→ 
 

‘Yes’ 

‘No’ 
 

‘To what extent did pain  
impair you from carrying 
out your usual daily  
activities?’ 
‘Not at all’  
‘A little’  
‘Moderately’  
‘Quite’  
‘A lot’ 

Impairment in daily activities 
due to illness  
‘Yes’  
‘No’ 

‘Moderately’  
‘Quite’ 
‘A lot’ 

 

‘Not at all’ 
‘A little’ 

→ 

 

 

→ 

→ 

‘Yes’ 
 
 
 

‘No’ 

‘How often do you engage in 
any type of sporting  
activity?’ 
‘Not at all’  
‘Less than 1hr a week’  
‘1-2 hrs a week’ 
‘2-4 hrs a week’  
‘> 4 hrs a week’ 

Sporting activity over the 
past three months 
‘Yes’  
‘No’ 

‘Less than 1hr a week’  
‘1-2 hrs a week’ 
‘2-4 hrs a week’ 
‘> 4 hrs a week’ 

 

‘Not at all’ 

→ 
 
 
 
 

→ 

‘Yes’ 
 
 
 
 

‘No’ 

‘Do you smoke, even if only 
occasionally?’ 
‘Yes’  
‘No’  
‘Not anymore’ 

Smoking 
‘Yes’  
‘No’ 

‘Yes’ 

 
‘No’ 

‘Not anymore’ 

→ 
 
 
→ 

‘Yes’ 
 
 
‘No’ 
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Table 33-continued. Recoding of survey dataset variables to fit the synthetic population dataset varia-
bles (own representation) 

Survey Dataset  Synthetic Population Dataset Recoded Categories  

‘What is your current living 
situation?’ 
‘Alone’  
‘With partner’  
‘With other people’ 

Living in a single household 
‘Yes’  
‘No’ 

‘Alone’ 

 
‘With partner’  

‘With other people’ 

→ 
 
 
→ 

 

‘Yes’ 
 
 
‘No’ 

‘What is your current  
employment?’ 
‘Not employed’  
‘Mini job’  
‘Part-time job’  
‘Full-time job’ 

Employment 
‘Yes’  
‘No’ 

‘Mini job’ 
‘Part-time job’ 
‘Full-time job’ 

 
‘Not employed’ 

→ 
 
 
 

→ 
 

‘Yes’ 
 
 
 

‘No’ 

Body Mass Index (BMI) 
(Metric variable) 

Overweight: 25 ≤ BMI < 30 
‘Yes’ 
‘No’ 

25 < BMI < 30  

 
ELSE  

→ 
 

→ 

‘Yes’ 

 
‘No’ 

Body Mass Index (BMI) 
(Metric variable) 

Obesity: BMI ≥ 30 
‘Yes’ 
‘No’ 

BMI > 30  

 
ELSE  

→ 
 

→ 

‘Yes’ 

 
‘No’ 

Ideally, the external validation with the available survey data should account for variations in 
the model fit according to the four constraints applied at the statistical areas level – age, gen-
der, employment, and living situation. However, the sample is relatively small, and thus more 
than half of the disease categories remain empty when grouping the individuals according to 
those constraints. Using the sample data for model validation in such a format would therefore 
lead to poor results because of insufficient sample diversity. To support this statement, Table 
34 illustrates the unweighted sample disease data classified by age and gender. 

Table 34. Unweighted sample disease data classified by age and gender (own representation) 

 
18-44 45-64 65+ 

female male female male female male 
hypertension 10 10 30 26 31 27 
no hypertension 151 113 78 65 36 27 
heart disease  
(incl. heart failure) 3 0 7 13 13 11 

no heart disease 158 123 101 78 54 43 
diabetes 7 2 9 6 9 12 
no diabetes 154 121 99 85 58 42 
cancer 1 0 5 4 4 1 
no cancer 160 123 103 87 63 53 
depression 27 15 13 8 6 1 
no depression 134 108 95 83 61 53 

Especially in the case of cancer, diabetes, and heart disease, the observation counts are ex-
tremely small, which diminishes the reliability of the data. With this in view, I considered the 
survey data unsuitable for external validation when being additionally classified by any of the 
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constraint variables – be it age, gender, employment, or living situation. Rather than that, it 
was more plausible to compare total population counts, such as total number of people with 
hypertension in the survey as opposed to in the synthetic population. 

There were relatively many missing cases for the target variables ‘chronic illness’ (n=43; 6,6%), 
‘impairment due to illness’ (n=51; 7,9%), ‘sporting activity in the past three months’ (n=55; 
8,5%), and ‘BMI’ (n=69; 10,7%) in the survey. I therefore excluded them from the evaluation 
of the overall model fit and, instead, estimated their fit separately. Thus, I still managed to 
assess how well the simulated population illustrates the patterns of these variables, while at 
the same time I avoided a potential negative influence of the missing cases on the final evalu-
ation result.  

Against this background, I estimated the goodness-of-fit of the model by comparing the aggre-
gate sums of the individuals having hypertension, heart failure, diabetes, cancer, and/or de-
pression in the weighted survey and in the synthetic population. I stored the respective counts 
as integers in two separate vectors, each with a length = 10. In these vectors, each integer 
represents the sum of individuals belonging to one of the ten variable categories23. For the 
estimation, I used four different metrics introduced earlier: TAE, RE, RMSE, and MAPE (Table 
35). 

Table 35. External validation with survey data: Overall fit results (own representation) 

TAE RE RMSE MAPE 
7.074 9,2% 861 17% 

The TAE of 7.074 suggests that approximately 700 individuals are mistakenly allocated by the 
model to each one of the ten variable categories. To bring a little perspective into the matter, 
the total observed population for each couple of categories is 16.663 people. For instance, the 
number of people not having hypertension equals 16.663 – the count of individuals with hyper-
tension. The same goes for the four remaining sets of variable categories. With this in view, 
TAE appears relatively small. RE goes one step further into clarifying the results. Basically, it 
can be interpreted as the model assigning approximately 9% of the population in each con-
straint category incorrectly. While RMSE appears slightly abstract, it generally provides an idea 
about how big the absolute differences between the categories are. Here, RMSE suggests 
rather smaller than larger differences between the individual sums in both vectors. By far the 
most important metric in terms of the overall evaluation of the model fit is MAPE. With 17%, it 
points to a less than perfect, and yet way above-average result. 

To find out how well the model performs when simulating the patterns of individual target var-
iables, I estimated TAE and RE for each of them separately. This is intriguing as the targets 
are not constrained to observed data but are simply inferred from the available constraints. 
The latter is still a legitimate approach as the constraints manage to explain part of the targets’ 
variance (see 6.3. ‘Selection of Constraint and Target Variables’). The results are summarised 
in Table 36. 

 
23 Positive and negative outcomes of the variables hypertension, heart failure, diabetes, cancer, and depression. 
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Table 36. External validation with sample survey data: Characteristics-specific fit results (own represen-
tation) 

 
Total 
Count 

(Model) 

Total 
Count 

(Sample) 

% of  
Total 
Count  

(Model) 

% of  
Total 
Count 

(Sample) 

TAE RE 

Missing 
cases in 

sample in 
%  

Hypertension 4.802 3.672 28,8% 22% 1.130 30,8% 8% 
Heart failure 998 1.491 6% 8,9% 493 33,1% 8% 
Diabetes mellitus 1.839 1.277 11% 7,7% 562 44% 8% 
Cancer 618 637 3,7% 3,8% 19 3% 8% 
Depression 2.907 2.242 17,4 % 13,5% 665 29,7% 8% 
Sporting activity 
(past 3 months) 10.015 10.328 60,1% 62% 313 3% 8,5% 

Subjectively  
perceived health24 

9.891 12.253 59,4% 73,5% 2.362 19,3% 1,7% 

Impairment  
due to illness 7.364 4.113 44,2% 24,7% 3.251 79% 7,9% 

Chronic medical 
condition(s) 8.766 6.208 52,6% 37,3% 2.558 41,2% 6,6% 

Smoking 5.627 5.676 33,8% 34,1% 49 0,9% 2,3% 
Overweight 5.948 4.714 35,7% 28,3% 1.234 26,2% 12,2% 
Obesity 3.496 2.983 21% 17,9% 513 17,2% 12,2% 

Overall, the external validation with survey data points to a higher-than-average goodness of 
fit for the different target variables as well. The estimations suggest that the model provides 
excellent fit for the variables ‘cancer’, ‘sporting activity’, and ‘smoking’, and a much less ade-
quate match for other variables, such as ‘impairment in daily activities due to illness’. The 
results for ‘hypertension’, ‘depression’, ‘subjectively perceived health’, ‘obesity’, and ‘over-
weight’ indicate a rather satisfying fit. ‘Chronic medical condition(s)’, ‘diabetes mellitus’, and 
‘heart failure’, on the other hand, are less well represented in the synthetic population, at least 
as far as the sample survey data is considered a reliable illustration of reality. Against this 
background, there are certain details about the survey, which may have an ameliorating effect 
on the discouraging results for some of the variables. 

First, I would like to address ‘impairment due to illness’. Here, the proportion of affected popu-
lation in the model is considerably larger compared to the sample survey. There are several 
questions in the survey that relate to this matter, such as ‘Do you have difficulty climbing 
stairs?’, ‘Do you have difficulty moving heavier objects?’, and the one I took as a reference ‘To 
what extent did pain impair you from carrying out your usual daily activities?’. Taking all these 
variables into account, may deliver a more encouraging result. Nonetheless, such an approach 
may also result in over-representing impairment in daily activities.  

Next, I am going to set the focus on ‘diabetes mellitus’. The number of individuals suffering 
from diabetes in the simulated population is larger than in the weighted survey dataset. One 
possible explanation for this may be that the survey relies on self-reported diabetes, whereas 
the data from the Morbidity Atlas used for constraining the model includes cases of diabetes 

 
24 as good 
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types 1 and 2, diabetes resulting from malnutrition, ‘other, specific types of diabetes’ as well 
as ‘other, unspecified types of diabetes’, all represented by the ICD-10 Codes: E10-E14 (Erhart 
et al. 2013, p.4). The number of individuals in the sample is relatively small. It is therefore not 
unlikely for it to fall short of covering the entire spectrum of diabetes diagnoses and thus deliver 
a picture which underestimates actual diabetes prevalence. 

Finally, I would like to consider the specifics of the variable ‘heart failure’. In the survey, re-
spondents were asked whether they (have) had any type of heart disease, including heart 
attack, chronic condition because of a heart attack, coronary heart disease, angina pectoris, 
stroke, chronic condition as a result of a stroke, or heart failure. It is therefore not surprising 
that the number of individuals with heart disease in the sample survey dataset is larger than 
the corresponding synthetic population group because the latter accounts solely for heart fail-
ure. 

The considerations regarding ‘diabetes mellitus’ and ‘heart failure’ are reason to believe that 
the overall goodness-of-fit of the model may be better than indicated by the metrics in Table 
35. With this in view, I regard the external validation results as encouraging rather than the 
opposite. Still, the survey data taken as reference covers only six statistical areas. Further-
more, the sample is relatively small, which makes the data suitable for comparison but not so 
much for validation. As the survey itself may not be a completely reliable representation of 
reality, the results do not necessarily say how well the model manages to illustrate existing 
disease patterns. Therefore, while the estimated outcome suggests that the model provides 
an adequate picture of reality, a humble interpretation of the results is advisable. To delve 
deeper into the model evaluation, the next section will present the results from the external 
validation with data from three of Hamburg’s health insurance funds. 

7.2.2. External validation with health insurance data 

In the course of the project ‘Healthy Neighbourhoods’ (2017-2021), health-related data was 
obtained for research purposes from three health insurance funds in Hamburg: AOK Rhein-
land/Hamburg, BKK Mobil Oil, and DAK-Gesundheit, covering approximately 30% of the total 
population (Mindermann et al. 2021, p.116). For reasons of data protection, the dataset I was 
provided with by the project partners responsible for the health insurance data acquisition 
(HAW Hamburg), did not allow data classification by insurance fund. The data was aggregated 
at the level of the social status index classes defined by the Social Monitoring. 

To evaluate my spatial microsimulation model, I used the total counts of people with hyperten-
sion, heart failure, diabetes mellitus, cancer, and depression divided in terms of gender and 5-
year age intervals. Since the generated synthetic population encompassed only adults, I did 
not use insurance data about children and adolescence.  

Before proceeding with the model validation, I had to scale up the available population counts 
because, as already noted, they covered less than one third of the population in Hamburg. I 
therefore calculated a weight for each age-gender category: males aged 18-24 years; females 
aged 18-24 years; males aged 25-29 years, and so on. The last age category was 80+. The 
weight was estimated by dividing the observed population count for each of those age-gender 
categories (at the time of 31.12.2017) by the corresponding population count in the health 
insurance data, which was also related to 2017. To account for possible differences in the 
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demographic structure of neighbourhoods with differing social status, the weights for the age-
gender categories were computed for each status index class separately.  

The obtained health insurance data was aggregated in seven, rather than in four status index 
classes as it is customary for the Social Monitoring. The reason for this was the uneven popu-
lation distribution in the four established status index classes ‘high’, ‘average’, ‘low’, and ‘very 
low’ (Table 37). With over 63% of Hamburg’s total population living in statistical areas with 
average social status, aggregating the health insurance data based on this classification would 
lead to a great loss of detail.  

Table 37. Distribution of the statistical areas and their population in four status index classes (own rep-
resentation, Source: Statistisches Amt für Hamburg und Schleswig-Holstein 2018) 

Status index class Standard deviation Number of  
statistical areas Total population 

high  < -1,00 156 301.078 
average -1,00 to 1,00 542 1.141.480 
low 1,01 to 1,50 67 157.410 
very low > 1,50 82 209.265 
Total 847 1.809.233 

The methodology used for the allocation of the statistical areas to the status index classes was 
briefly introduced in Chapter 3.3.1. ‘Hamburg’s Social Monitoring’. It is explained in more detail 
in the pilot report of the Social Monitoring (Pohlan et al. 2010, pp.44–46). In essence, the social 
status index is comprised of seven main indicators which are standardised using a z-transfor-
mation (Formula 6). 

Formula 6. z-Transformation (Pohlan et al. 2010, p.6) 

𝑧% =
𝑥% − 𝑥̅
𝑠  

where: 

• 𝑥𝑖 = the value to be standardised 
• 𝑥F	= the mean 
• 𝑠 = the standard deviation 

Through the z-transformation, the mean value of each indicator is set to 0, and the standard 
deviation is set to 1. This allows comparing the variance of indicators with differing dimensions 
(e.g., measured in absolute vs. relative terms). The status index equals the sum of the z-values 
of all seven indicators. Finally, the statistical areas are allocated to one of the four status index 
classes based on standard deviation. If, for instance, the status index falls within -1,00 to 1,00 
standard deviations of the average, the statistical area is classified as having ‘average’ social 
status (Table 37). 

To solve the problem with the unequal population distribution within the four established status 
index classes, the class ‘average’ was further divided into four categories. The range ‘-1,00 to 
1,00 SD’ was split into the categories ‘-1,00 to -0,50 SD‘, ‘-0,49 to 0,00 SD’, ‘0,01 to 0,50 SD’, 
and ‘0,51 to ‘1,00 SD’. This resulted in a more balanced distribution of the population based 
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on the social status of their statistical area of residence (Table 38). The obtained health insur-
ance data was aggregated according to the illustrated, slightly refined status index classifica-
tion (Mindermann et al. 2021, p.112). 

Table 38. Refined distribution of the statistical areas and their population in seven status index classes 
(Source: Mindermann et al. 2021, p.112) 

Status index class Standard deviation Number of statistical ar-
eas 

Total population 

high < -1,00 156 301.078 
average 1 -1,00 to -0,50 163 321.520 
average 2 -0,49 to 0,00 152 334.192 
average 3 0,01 to 0,50 125 262.837 
average 4 0,51 to 1,00 102 232.931 
low 1,01 to 1,50 67 125.410 
very low > 1,50 82 209.265 
Total 847 1.809.233 

Before going into further detail about the interpretation of the external validation results, I want 
to address some limitations of the obtained health insurance data. First, it covers solely inhab-
itants with a statutory health insurance. Those who are privately insured are hence not repre-
sented. Second, the data encompasses just about one third of the population with statutory 
health insurance. Third, the socio-demographic composition in terms of age and gender in the 
obtained insurance data slightly differs from that of Hamburg’s total population (Tables 39-40). 

Table 39. Comparison of gender distribution in 2017 (absolute/relative) between the obtained insurance 
data and the total observed population in Hamburg (Source: Mindermann et al. 2021, p.117) 

 
Obtained insurance data Hamburg Total* Deviation** 

Absolute count Relative count (%) Absolute count Relative count (%) in (%) 
Females 255.902 52,8 955.103 50,8 2,0 
Males 229.086 47,2 925.894 49,2 -2,0 
Total 484.988 100,0 1.880.997 100,0  
* Hamburg’s total population including people with private health insurance 
** from the reference data ‘Hamburg Total‘  

Table 40. Comparison of age distribution in 2017 (absolute/relative) between the obtained insurance 
data and the total observed population in Hamburg (Source: Mindermann et al. 2021, p.117) 

 Obtained insurance data Hamburg Total* Deviation** 
Absolute count Relative count (%) Absolute count Relative count (%) in (%) 

0-6 years 31.866 6,6 114.852 6,1 0,5 
6-10 years 17.028 3,5 66.002 3,5 0,0 
11-15 years 21.815 4,5 78.504 4,2 0,3 
16-21 years 31.090 6,4 103.622 5,5 0,9 
22-45 years 153.338 31,6 678.628 36,1 -4,5 
46-65 years 120.708 24,9 497.665 26,5 -1,6 
65+ years 109.143 22,5 341.724 18,2 4,3 
Total 484.988 100,0 1.880.997 100,0  
* Hamburg’s total population including people with private health insurance 
** from the reference data ‘Hamburg Total‘  
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With this in view, while the results of the validation will surely provide insight into how well the 
model depicts reality, they should be regarded as an approximate evaluation rather than an 
absolute one because the underlying health insurance data does not capture the whole picture 
either. 

Having clarified this, I do not wish to undermine the results of the model validation with the 
available insurance data. On the contrary, using data from three different health insurance 
funds to evaluate the model is a major benefit I want to put an emphasis on. As pointed out in 
the interviews with Prof Dr Busch and PD Dr Augustin, some health insurance funds lack a 
diverse client profile, which is why using data from more than one source increases the credi-
bility of the results. 

With that said, I am going to begin with the actual model validation. As already noted, my first 
step was to scale up the insurance data because it did not cover the entire population. To that 
end, I applied a weight to each unique group of individuals depending on their age, gender, 
and the status index of their statistical area of residence. This weight equals the ratio of the 
observed population belonging to a given group (e.g., males, aged 18-24, living in an area with 
high social status) to the corresponding population count in the insurance data. 

I decided to use MAPE for illustrating the results of the external validation. It is by far the most 
intuitive metric and thus allows to quickly grasp how well the model illustrates different disease 
patterns. The errors for hypertension, heart failure, diabetes, cancer, and depression, classi-
fied by age and gender, are summarised in Table 41. 

Table 41. MAPE for modelling disease patterns* classified by age and gender (own representation) 

age gender hypertension heart failure diabetes cancer depression 

18-44 
female 6,2% 243% 630% 68,8% 9,2% 
male 100% 520,1% 828,9% 74,9% 14,8% 

45-64 
female 9,6% 150,8% 238,8% 68% 28,1% 
male 9,6% 133,3% 341% 66,7% 27% 

65+ 
female 13% 28,7% 309,1% 68,9% 28,2% 
male 17,7% 12,5% 303,3% 66,3% 30,3% 

18–44 (males and females) 53,1% 381,5% 729,4% 71,9% 12% 
45-64 (males and females) 9,6% 142% 289,9% 67,3% 27,5% 
65+ (males and females) 15,3% 20,6% 306,2% 67,6% 29,3% 
females (all age groups) 9,6% 135,9% 469,5% 68,9% 18,7% 
males (all age groups) 58,9% 266,3% 566,1% 70,6% 22,6% 
Total 26% 181,4% 442% 68,9% 23% 
* At the level of the seven status index classes 

According to the results, the model manages to simulate depression and hypertension rela-
tively well as opposed to cancer, heart failure, and diabetes mellitus. Especially the latter two 
seem to be extremely poorly represented by the synthetic population. This is true for both 
genders as well as for all age groups. Looking at the absolute counts of the diseased people 
(Appendix, Table 45), both diabetes and heart failure affect much more individuals in the syn-
thetic population than in the health insurance dataset. Nevertheless, comparing the total ab-
solute counts of diseased individuals in the Morbidity Atlas, the synthetic population, and the 
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insurance dataset, suggests closer results between the Morbidity Atlas and the synthetic pop-
ulation, than the insurance dataset (Table 42). This is valid regardless of the status index of 
the statistical area of residence. 

Table 42. Total counts of diseased people differentiated by age and gender according to different 
sources25 (own representation) 

Data source Age Gender Hypertension Heart 
failure Diabetes Depression Cancer 

Constraint data 
(Morbidity  
Atlas26; Cancer 
Registry) 

18-64 
Females 84.344 10.203 28.920 116.705 11.441 
Males 107.576 16.191 41.417 73.799 7.305 

65+ 
Females 125.935 35.562 42.608 45.930 15.633 
Males 94.050 27.383 41.962 19.052 16.663 

Health  
insurance  
funds data 

18-64 
Females 94.410 3.884 7.207 138.641 42.985 
Males 99.494 6.041 8.234 83.270 27.220 

65+ 
Females 133.495 22.733 10.774 53.724 49.994 
Males 98.194 18.125 10.858 24.673 43.262 

Synthetic  
population 

18-64 
Females 88.155 10.278 29.555 116.432 13.591 
Males 112.614 16.265 41.993 73.985 8.352 

65+ 
Females 124.828 34.588 42.405 43.274 17.366 
Males 93.191 26.525 41.212 17.649 18.054 

Keeping in mind that the Morbidity Atlas served for constraining the synthetic population data 
at the level of the city quarters, these results are not surprising. The huge difference between 
the total count of individuals with heart failure and diabetes in the Morbidity Atlas and the health 
insurance dataset, however, is very much unexpected. While the data in the Morbidity Atlas is 
older (2011) and there is thus a 6-year-gap between both data sources, it is quite unlikely that 
so many ill individuals have been cured from those chronic conditions. Since the data in the 
Morbidity Atlas comes from all health insurance funds in Hamburg rather than from just three 
of them, the more likely explanation is that the larger proportion of individuals suffering from 
heart failure and diabetes are insured with health insurance funds different than AOK Rhein-
land/Hamburg, BKK Mobil Oil, and DAK-Gesundheit. This large discrepancy between the total 
counts in the Morbidity Atlas and the insurance data suggests that the latter is not that reliable 
source for validation. I therefore do not necessarily consider the model to have failed in illus-
trating the prevalence of heart failure and diabetes. Still, the simulated disease patterns cannot 
be verified using another data source, which puts their reliability into question. 

With an average MAPE = 68,9%, the external validation with insurance data indicates that 
cancer is not as well represented by the synthetic population either. The number of individuals 
with any type of oncological disease in the insurance dataset is approximately three times 
larger than that in the Cancer Registry and the synthetic population (Table 42). Since I had to 
scale up the population available in the insurance dataset to carry out the external validation, 
the number of cancer patients in that 30%-sample of Hamburg’s statutory insured population 
was scaled up as well. The most probable reason for this difference is hence a disproportionate 

 
25 Morbidity Atlas, Cancer Registry, Health insurance funds, synthetic population  
26 Prevalence percentages were used instead of absolute population counts and applied to population data from 
31.12.2017 to constrain the model, because the absolute population counts in the Morbidity Atlas refer to 2011. 
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count of cancer patients being insured in the three health insurance funds that delivered the 
data. Against this background, the synthetic population does not necessarily fail in illustrating 
patterns of oncological disease. The available external data for validation, however, does not 
allow verifying how reliable the modelled data is. 

In contrast, hypertension is relatively well simulated, especially if the population group of males 
aged between 18-44 years is excluded (Table 41). For some reason, the algorithm has allo-
cated more individuals with hypertension to this category than necessary. The average error 
for males is 58,9% as opposed to just 9,6% for females. The MAPE for all population groups 
is hence 26%, with the largest proportion of error resulting from the poor fit for younger males. 

Depression is represented by the synthetic population relatively well, whereby the results are 
more satisfying for individuals younger than 45. The best represented population group is that 
of females aged between 18 and 44 years (MAPE = 9,2%), whereas the worst is that of males 
older than 65 years (MAPE = 30,3%). With three times larger error, this is quite a difference. 
Still, the overall error of 23% ranks depression as the disease with the best model fit of all five. 

Looking at the results depicted in Table 41, there is another observation worth mentioning – 
females are better represented by the synthetic population than males for all disease types. 
As for age, no such conclusion can be drawn because the trend varies depending on the ill-
ness. In terms of status index, however, there are certain variations in MAPE (Table 43). In 
other words, regarding different types of disease, the synthetic population matches the ob-
served population from the health insurance dataset better in statistical areas with a certain 
social status, than in others. For instance, the error for simulating hypertension slightly in-
creases (+ 4,3%) with decreasing social status. The same pattern is evident for depression, 
where the error increases even more (+10,7%). In the case of heart failure and diabetes, on 
the other hand, the reverse trend is exhibited – the error decreases with decreasing social 
status. Observed in absolute terms, the change seems significant (-47,9 % for heart failure and 
-62,6% for diabetes). Given the scale of the error for these two diseases, however, it is more 
advisable to track the change in error in relative terms – it decreases by 22,7% for heart failure 
and by 13% for diabetes. Cancer is the only disease that does not exhibit significant variation 
in MAPE based on status index. 

Table 43. MAPE for simulating disease patterns differentiated by status index class (own representation) 

status index hypertension heart failure diabetes cancer depression 
high  24% 210,7% 479,7% 69,9% 16,1% 
average 1  24% 197,9% 474% 69,2% 19,6% 
average 2  24,7% 187,2% 449,4% 68,9% 22,3% 
average 3  26% 172,6% 420,4% 68,6% 23,4% 
average 4  27,2% 175,5% 426,9% 68,4% 25,5% 
low 27,8% 162,8% 425,6% 69,1% 27,1% 
very low 28,3% 163,2% 417,1% 68,5% 26,8% 

In summary, the available health insurance data did not prove to be a completely reliable 
source for model evaluation – especially in regard to heart failure, diabetes, and cancer. The 
reason for this assumption is that the differences in the total counts of diseased individuals in 
the insurance dataset and the datasets used for constraining the model are inexplicably large. 
In fact, the findings imply that the insured patients may not be a representative sample of 
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Hamburg’s population – at least not in terms of these types of disease. Still, this outcome alone 
cannot serve as solid foundation for declaring the synthetic population a reliable illustration of 
the prevalence of diabetes, heart failure, and cancer. Instead, it simply suggests that these 
types of disease cannot be validated. Hypertension and depression, on the other hand, ap-
peared to be relatively well simulated – especially for certain population groups. 

Overall, external validation with both sample survey and health insurance data delivered mixed 
results. Neither of the two external data sources could be assessed as reliable representation 
of reality due to factors such as population coverage and population diversity. However, since 
there were no other sources available, I preferred to use them and carry out the model evalu-
ation while keeping in mind their limitations. 

The external validation with sample survey data suggested that the modelled health behaviour 
regarding smoking and sporting activity depicts reality very accurately. Obesity was also rela-
tively well represented despite the unconvincing results of the logistic regression test about the 
extent to which the constraint variables manage to explain its variance. Out of the chronic 
illnesses, cancer was by far most accurately illustrated by the model. Depression and hyper-
tension were relatively well, albeit far from perfectly simulated. 

The results from the external validation with health insurance data were overall less encour-
aging. They only allowed verifying the five chronic illnesses available as constraints at the city 
quarter level – hypertension, heart failure, diabetes mellitus, depression, and cancer. Out of 
those, only hypertension and depression were relatively well simulated by the model, whereby 
this was not applicable for all population groups. It was not possible to evaluate the goodness 
of fit for heart failure, diabetes, and cancer because the absolute counts of diseased population 
in the available insurance dataset and in the health-related constraint datasets (Morbidity Atlas 
and Cancer Registry) differed greatly. The latter suggested an existing bias in the population 
insured with the three health insurance funds whose data I used for model validation. Since 
the health-related data used for constraining the model originates from all statutory health in-
surance funds rather than just three of them, it should be counted as the more reliable data 
source.  

Against this background, I do not consider the external validation as failed despite what may 
appear as a poor result at the first glance. Rather than that, the findings should serve as evi-
dence of the overall complexity of model validation with external data sources. The interpreta-
tion of the results must always be coupled with considerations regarding the known (and the 
suspected) limitations of the external data at hand. With these final words on the process of 
model validation, the section dedicated to generating synthetic population is concluded. 
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8. A CONTRIBUTION TO SETTING UP CITYWIDE HEALTH 
MONITORING SYSTEMS  

In this chapter, I am going to introduce a couple of application examples for the generated 
small-scale health data. Thus, I will address the practical use of the model and demonstrate 
how it could contribute to setting up citywide health monitoring systems. 

The greatest advantage of the model is that it provides disaggregated population data. Instead 
of total population counts for certain categories, individuals with attribute characteristics are 
available for each statistical area. Moreover, the generated synthetic population is not merely 
a population sample, but a complete representation of Hamburg’s total population. Besides the 
socio-demographic and health attributes, each individual is assigned a spatial reference about 
the city quarter and the statistical area of residence.  

This data format allows a much broader spectrum of possibilities for further in-depth analysis. 
For instance, it can aid in identifying areas, which are especially problematic in terms of health, 
social status, and characteristics of the living environment. Thanks to data availability, such 
strategy can be implemented without much effort for the city of Hamburg. To that end, geodata 
about the spatial distribution of noise pollution, public green space, social infrastructure, etc. 
and socio-economic data from the Social Monitoring can be used. The generated small-scale 
health data therefore represents the last missing ingredient in the triad ‘environment – social 
status – health’. 

The validation of this data, carried out in the previous chapter, did not necessarily deliver en-
couraging results. Nonetheless, there were some inherent flaws to the used external data, 
which must be considered. The survey data originated from a relatively small and slightly bi-
ased sample covering only six statistical areas. The health insurance data, on the other hand, 
covered the entire city but only around 30% of the population with statutory health insurance. 
Because of this partial population coverage, the insurance data was weighted according to the 
population distribution in terms of age, gender, and social status of the statistical area of resi-
dence. The results showed significant differences between the weighted population counts 
related to heart failure, diabetes mellitus, and cancer in the insurance data and the correspond-
ing population counts in the Morbidity Atlas. The latter contains data from all statutory health 
insurance funds based in Hamburg. This outcome hence indicated that the individuals insured 
with the three funds, which provided the data used for model evaluation, are not necessarily 
representative for Hamburg’s total population – at least not in terms of those illnesses.  

With this in view, the model is not flawed despite what the results of the validation partially 
suggest. Instead, it should be regarded as initial database suitable for identifying potentially 
problematic areas, but insufficient for issuing final statements about the health situation in 
them. To clarify the nature and extent of the suspected problems, further analyses are highly 
recommended.  

All in all, this is the gain from the model – it can serve as citywide small-scale health warning 
system – highlighting neighbourhoods in need of timely health-promoting, or other measures. 
Combining the generated synthetic population with socio-economic data and geodata about 
the living environment can become a gold mine for urban health researchers. In this regard, 
the next sections are going to introduce two examples for possible data applications. 
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8.1. Application Example I: Identifying Hotspots of Hypertensive Individuals 
Exposed to Excessive Noise from Road and Air Traffic 

Continuous exposure to traffic noise can have a 
negative influence on the cardiovascular system 
(e.g., Zeeb et al. 2017; Chang et al. 2015; 
Dratva et al. 2012; World Health Organization 
Regional Office for Europe 2011; Umweltbun-
desamt 2006). In this context, Figure 13 illus-
trates the chain of reactions triggered by noise 
exposure. There are two pathways of reaction – 
a direct one manifested as hearing loss, and an 
indirect one, which can be the disturbance of 
various activities, including sleep and communi-
cation, or a cognitive and emotional response. 
The indirect pathway of reaction generally 
causes annoyance. Both the direct and the indi-
rect pathways are considered stress indicators 
leading to (unspecific) physiological stress reac-
tions of the autonomic nervous system and/or 
the endocrine system. These reactions are risk 
factors for the normal functioning of blood pres-
sure, the blood lipids and blood glucose levels, 
etc. Eventually, these risk factors may cause the manifestation of disorders such as chronic 
cardiovascular diseases including hypertension, arteriosclerosis, and ischaemic heart disease. 

Scientific evidence about the effects of road and air traffic on the risk of ischaemic heart dis-
ease and hypertension is ample. The number of studies related to rail traffic noise, however, 
is limited (World Health Organization Regional Office for Europe 2011, p.xv). For the purposes 
of this application example, I am therefore going to focus on air and road traffic exclusively. 

The risk of hypertension from road traffic noise has been found to increase by ‘1.38 (95% CI 
1.06– 1.80) per 5-dB(A) in the 24-hour noise level (L24h ≈ 40–70 dB(A))’ (World Health 
Organization Regional Office for Europe 2011, p.40). Adjusting for air pollution does not affect 
the odds ratio for road traffic noise regarding the prevalence of hypertension (ibid.). Another 
study found that the effects of exposure to noise traffic at home were greater for people, who 
were also exposed to high noise levels at work (Umweltbundesamt 2006, p.12). Furthermore, 
epidemiological studies suggest that continuous, rather than occasional exposure to excessive 
levels of road and air traffic noise bears higher risk of cardiovascular disease, including hyper-
tension and myocardial infarction (World Health Organization Regional Office for Europe 2011, 
p.33). Regarding the question what levels of noise are considered harmful, ‘the German road 
traffic noise study (response rate 60%) carried out in Bonn suggested a relative risk for hyper-
tension of 1.5 for subjects who lived in areas where the traffic noise level exceeded Lday = 65 
dB(A)). This finding was significant’ (Umweltbundesamt 2006, p.26). 

Dratva et al. (2012) carried out a stratified analysis by chronic disease status, which yielded 
larger effect estimates related to systolic blood pressure (SBP) and diastolic blood pressure 

Figure 13. Noise exposure reaction scheme  
(Source: Babisch 2002) 
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(DBP) in participants reporting physician-diagnosed hypertension, diabetes, and cardiovascu-
lar disease (p.53). Chang et al. (2015) also found that hypertensive adults are more susceptible 
to noise exposure, with a greater effect on ambulatory systolic blood pressure. There is hence 
a larger need for protecting this specific subpopulation from continuous exposure to excessive 
traffic noise levels. 

Against this background, the generated small-scale health data can serve for identifying sta-
tistical areas with high concentration of hypertensive people. With the use of available geodata 
about road and air traffic noise, hotspots of hypertensive individuals exposed to excessive 
noise levels can be detected. Thus, timely noise-reduction measures can be implemented 
where they would have the most significant impact on protecting human health. This is one 
possible application of the generated synthetic population that I am going to address in the 
following paragraphs. 

To single out statistical areas with a concentration of hypertensive individuals, I created a chor-
opleth map where the colour of the area darkens as the number of people suffering from hy-
pertension increases (Map 1). I chose to observe absolute rather than relative counts of hy-
pertensive individuals to avoid the population size of the given statistical area influencing the 
selection. For instance, a statistical area with a total population of 500 people could end up 
classified as having high concentration even if the number of hypertensive individuals is just 
200 because they would represent more than a third of its population. Rather than that, my 
aim was to identify statistical areas where the count of people suffering from hypertension is 
above the average at this spatial scale regardless of how populous the area is.  

Against this background, there are three colour categories in Map 1 – from light, through me-
dium, to dark grey. Each of them refers to the count of hypertensive individuals, whereby the 
classification is based on the standard deviation (Std Dev). The first category encompasses 
all statistical areas, where the count of hypertensive individuals is below the average of 493 
people (< 0.00 Std Dev). The second category encompasses statistical areas with more than 
the average number of people suffering from hypertension but less than the average + 1 stand-
ard deviation, that is, between 493 and 720 individuals (0.00 Std Dev – 1.00 Std Dev). The 
third category encompasses statistical areas, where the number of hypertensive individuals is 
higher than the average + 1 standard deviation (> 1.00 Std Dev). These areas have more than 
720 people suffering from high blood pressure. 
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Map 1. Distribution of hypertensive individuals at the level of the statistical areas (own representation, 
geodata source: Landesbetrieb Geoinformation und Vermessung (LGV) Hamburg 2021) 

 

Map 1 indicates a certain spatial pattern in the distribution of people suffering from hyperten-
sion throughout the city. Statistical areas with more such individuals are mainly located in its 
periphery, east of the Alster Lake as well as south of the Elbe River. In contrast, statistical 
areas in the city centre and its vicinity exhibit lower concentrations of hypertensive individuals. 
Looking at the spatial distribution of the statistical areas in terms of their social status, as de-
fined in the Social Monitoring 201827 (Map 2), there appeared to be a connection with the 
identified pattern for hypertension. To establish whether there were actual indications for such 
a relationship, I carried out Pearson’s Correlation Test. For this purpose, I chose to look at the 

 
27 Social Monitoring 2018 is taken as reference instead of the most current one because the socio-demographic 
data that served for constraining the synthetic population was used for computing the status index for 2018 as well 
(time reference: 31.12.2017). 
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proportion rather than the absolute count of hypertensive individuals in order to control for 
population size. 

Map 2. Social Monitoring Hamburg 2018 (Source: Behörde für Stadtentwicklung und Wohnen 2018) 

 
The correlation between the percentage of hypertensive inhabitants and the standardised sta-
tus index was weak, but what is more interesting is that it was negative (r = -0.211). This implies 
that statistical areas with higher social status have larger proportion of hypertensive popula-
tion28. Controlling for age, r = -0.017 for those aged 18-64 years, and r = 0.294 for older indi-
viduals. Age is generally a risk factor for hypertension, and it is therefore interesting to observe 
that the proportion of elderly people suffering from this chronic disease is larger in deprived 
neighbourhoods. For younger individuals, there is no such trend. At the same time, when look-
ing at the entire population without accounting for age, the relationship is reverse. Hence, other 
factors different than age, which I could not control for here, lead to a larger overall proportion 
of hypertensive population in more affluent urban neighbourhoods. There may be some rela-
tionship between these factors and social status, such as the latter influencing people’s diet or 
lifestyle in a way that indirectly triggers hypertension. This, however, is merely an assumption, 
which is not based on actual numbers and figures.  

While r is weak both for the total, and for the elderly subpopulation, it still indicates a certain 
relationship between the proportion of hypertensive population and the social status of the 

 
28 Statistical areas with ‘high’, ‘average1’, and ‘average2’ status index have negative standardised status sums 
due to their proportions of unemployed population, proportions of population with migration background, etc. be-
ing below the city’s average. 
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statistical area. Nonetheless, the difference in the direction of the correlation does not allow 
including social status as additional criterium for filtering statistical areas in need of timely 
noise-protection measures due to a high concentration of hypertensive individuals. 

The distribution of the hypertensive population shown in Map 1, overlayed with noise from air 
and road traffic (Lden) is illustrated in Map 3. Only levels ³ 65 dB(A) were considered as this 
is the benchmark regarded as potentially harmful for human health (Umweltbundesamt 2006, 
p.26).  

Map 3. Distribution of hypertensive individuals overlayed with air and road traffic noise (own represen-
tation, geodata source: Landesbetrieb Geoinformation und Vermessung (LGV) Hamburg 2021; Behörde 
für Umwelt, Klima, Energie und Agrarwirtschaft 2017) 

  

Almost all statistical areas located in the immediate vicinity of the airport exhibit an above 
average count of hypertensive individuals. West of the airport there is the A7 highway, an 
additional noise emitter. Especially the statistical areas on the west side of the highway are 
place of residence for many people suffering from hypertension. These neighbourhoods im-
mediately draw the attention in terms of necessity to protect individuals with high blood pres-
sure from traffic noise. Additionally, there are several statistical areas in Wilhelmsburg, such 
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as Kirchdorf-Süd located west of the A1 highway, and Elbinselquartier west of Bundesstraße 
75, possibly requiring attention. Finally, the statistical areas in Billstedt and Mümmelmanns-
berg located right around the intersection of A1 and Bundesstraße 5 have large number of 
hypertensive residents exposed to potentially harmful levels of noise.  

The benefit of the generated citywide individual health data is that it allows identifying areas, 
which may require timely health-promoting or protective measures, within the large urban 
realm. While modelled data cannot completely substitute real patient data, it can aid in sharp-
ening the focus at the small scale and thus point the magnifying glass to those spatial units, 
which appear to be potentially problematic. Based on the modelled small-scale health data 
regarding hypertension, the above-mentioned statistical areas are highlighted in Map 4 and 
suggested for further in-depth analysis.  

Map 4. Areas suggested for further in-depth analysis  (own representation, geodata source: Landesbe-
trieb Geoinformation und Vermessung (LGV) Hamburg 2021; Behörde für Umwelt, Klima, Energie und 
Agrarwirtschaft 2017) 

 

The areas were selected based on two main criteria: above average count of hypertensive 
residents and location near a large noise emitter, such as a highway, airport, or main federal 
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road (German: Bundesstraße).  Naturally, each area must be explored in more detail in terms 
of building structure, existing natural noise barriers between the emitters and the buildings 
(such as trees), proportion of the population living in the area affected by the emitted noise, 
etc. Each of these aspects may have an ameliorating or, on the contrary – an aggravating 
effect, worth considering. The main use of the modelled health data therefore consists in 
providing a foundation for further analysis. 

Nevertheless, there are certain limitations of the available data, which I would like to address. 
First, the noise geodata originates from estimations rather than actual measurements. Hence, 
both data sources – about noise, and about hypertension – are based on modelling ap-
proaches. The necessity to carry out further analyses of the local situation before starting to 
develop any conceptual measures aimed at reducing noise is thus crucial. 

Second, only main roads are included in the noise geodata. Naturally, it was not intended for 
the noise estimations to encompass the entire road network as this would have led to an ex-
tremely high computation load. This inherent ‘flaw’ of the data may thus be leading to the un-
derrepresentation of the real noise situation. As a result, it may not be possible to identify some 
of the areas with large numbers of hypertensive individuals exposed to excessive noise levels. 
Nevertheless, this risk must be relatively small as only roads with smaller traffic volume were 
excluded from the estimations.  

Third, the exact place of residence of the hypertensive individuals within the statistical areas 
is unknown. It is not unlikely that they are not the ones living in the immediate vicinity of the 
noise emitters. Moreover, even if they do live right on an arterial road, for instance, their apart-
ment may be looking in the opposite direction. They would hence be much less, if at all, af-
fected by the high noise levels.  

Finally, only the exposure at home is accounted for as there is no readily available data about 
where each individual works. While such information can theoretically be generated using 
agent-based modelling, this approach goes beyond the scope of this dissertation. Since sci-
entific evidence points to higher vulnerability of individuals exposed to occupational noise in 
addition to being exposed to high noise levels at home (Umweltbundesamt 2006, p.12), ne-
glecting this dimension results in presenting only part of the whole picture.  

In summary, the generated synthetic population can be integrated with socio-economic data 
(e.g., from Hamburg’s Social Monitoring), as well as with geodata about various health-relevant 
aspects of the living environment. In the previous paragraphs, I introduced an example of what 
such an analysis can look like. The available data allowed to identify potentially problematic 
neighbourhoods within the spatial realm of the city in terms of noise and its negative effect on 
the more vulnerable, hypertensive population. The adopted approach enabled determining 
where in the city are there potential hotspots of individuals suffering from a specific chronic 
disease exposed to characteristics of the living environment harmful for their health.  

The findings should be viewed as a compass direction rather than an actual warning alert. For 
the latter, additional in-depth analyses must be conducted. The main advantage of the gener-
ated synthetic population is that it allows setting filters at the small scale. Thus, the danger of 
masking heterogeneity because of looking at aggregated population counts available for much 
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larger spatial units is avoided. Ultimately, this approach can save time and financial resources 
thanks to the tools it provides for more accurate citywide diagnoses.  

In the context of the ongoing COVID-19 pandemic, making the right decisions and doing this 
quickly can save lives. The next application example is thus going to illustrate how the gener-
ated synthetic population can be used for identifying vulnerable population groups at risk of 
developing severe symptoms of the novel coronavirus at the small urban scale. 

8.2. Application Example II: Identifying Spatial Concentrations of Vulnerable 
Populations within the Context of the COVID-19 Pandemic 

In December 2019, Wuhan, a city in the Chinese province of Hubei, faced the outbreak of a 
novel coronavirus – SARS-CoV-229, which caused a fast-spreading respiratory disease, affect-
ing millions of people worldwide. It all started with the emergence of clusters of pneumonia of 
unknown origin, whereby human infection is assumed to have occurred sometime between the 
beginning of October and mid-December 2019. On the last day of 2019, the World Health 
Organisation (WHO) announced the arrival of a novel coronavirus. The first case outside of 
China was reported in Thailand on January 13th, 2020, followed by cases in more than 20 other 
countries in South and Southeast Asia, Europe, the USA, and Canada. On February 11th, the 
new disease was officially named ‘COVID-19’. By mid-March, Europe started to struggle with 
local epidemic outbreaks. At the same time over 170 countries worldwide were hit by the new 
virus, which led to the WHO declaring it a pandemic. 

Next to SARS-CoV-2, there are six other human coronaviruses (as of September 2021). The 
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and the Middle East Respira-
tory Syndrome coronavirus (MERS-CoV) are known for their high mortality but are very rare 
and do not circulate for long time periods. The other four, HCoV-229E, HCoV-OC43, HCoV-
HKU1, and HCoV-NL63, on the other hand, are very common and thus mutate frequently 
causing mostly colds and diarrhoea (van Damme et al. 2020, p.7). Genetically, SARS-CoV-2 
is closely related to SARS-CoV – the first deadly human coronavirus, which posed a pandemic 
threat when it occurred in 2002 in Hong Kong. Still, although SARS-CoV had alarmingly high 
case fatality rate (CFR) of 9,7%, it disappeared quickly after the implementation of strict public 
health mitigation measures. SARS-CoV-2, albeit not as deadly, is far more transmissible. Com-
pared to other coronaviruses and influenza, it has the longest incubation period of four to 
twelve days. On top of that, there is no interval between the onset of the first symptoms and 
the maximum infectivity, which significantly contributes to its high rate of transmission and 
impedes containment efforts (Petersen et al. 2020, p.e238). According to van Damme et al. 
(2020), the ‘transmission dynamics of SARS-CoV-2 can be compared with influenza’, but un-
like influenza, this is a new pathogen (p.5). 

There are various factors affecting transmission: population density (e.g., people per house-
hold, indoor space per person), age structure (i.e., proportion of the elderly and children), forms 
of religious and social events, socially accepted mode of greeting (e.g., kissing, hugging, shak-
ing hands, etc.), frequency of hand washing, availability of ventilation and air conditioning. 
Geographical factors such as climate, urbanisation rate, air traffic intensity, and population 

 
29 Severe acute respiratory syndrome coronavirus 2 
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movements also play a role in accelerating the transmission of the virus (van Damme et al. 
2020, p.4). 

In the case of SARS-CoV-2, the demand for hospitalization and intensive care is considerably 
higher compared to the 2009 influenza pandemic ‘because of the subset of patients who de-
velop acute respiratory distress syndrome’ (Petersen et al. 2020, p.e240). Mortality is ‘strongly 
skewed towards people older than 70 years, dissimilar to the 1918 and 2009 influenza pan-
demics’ (Petersen et al. 2020, p.e238). Other factors, which strongly influence CFR are male 
gender, comorbidities, BMI, and the ‘adequacy of supporting treatment, mainly oxygen therapy’ 
(van Damme et al. 2020, p.11).  

Against this background, COVID-19 – the infectious disease caused by SARS-CoV-2, poses 
a worldwide challenge to national public health systems. Political decisions must be taken fast 
and yet remain open and flexible for timely changes depending on the current situation – be it 
skyrocketing surge of new cases or constantly dropping infection rates.  

Responses to the pandemic can so far generally be divided into so-called ‘coping strategies’ 
and ‘collective strategies’. Coping strategies encompass actions, which people and families 
take to protect themselves from infection and/or to combat the onset of symptoms. Collective 
strategies, on the other hand, are either voluntary or mandatory actions designed by local au-
thorities and intended for the general public. While coping strategies are mainly about increas-
ing personal hand hygiene, following respiratory etiquette, keeping distance, and wearing a 
face mask, collective strategies may include more drastic measures such as introducing mass 
masking, closing down schools, kindergartens, places of worship, cancelling cultural events, 
temporarily terminating public transport services, limiting national and international travel and 
even imposing complete lockdowns (van Damme et al. 2020, pp.7–8). 

At the beginning of the pandemic, some epidemiologists (mostly in UK, Sweden, and the Neth-
erlands) recommended to try and build herd immunity instead of imposing draconian measures 
aimed to contain the spread of SARS-CoV-2. However, the intensity of transmission quickly 
led to more and more countries imposing some form of lockdown ‘ranging from very strict 
(‘Chinese, Wuhan style’), over intermediary (‘French/Italian/New York City style’ and ‘Hong 
Kong style’), to relaxed (‘Swedish style’), or piecemeal’ (van Damme et al. 2020, p.8). Whether 
lockdowns turn out to be effective depends on a variety of factors including what stage of the 
local epidemic they are introduced at and what their scope is. The willingness of the population 
to adhere to the imposed measures, their trust in the government, and the degree of enforce-
ment by the public authorities are of critical importance for making these decisions (ibid.).  

Against this background, certain population groups carry heavier burden than others – be it in 
financial terms because of the imposed lockdowns, in terms of their physical health and mental 
wellbeing, etc. Since there are various manifestations of vulnerability resulting from COVID-
19, it is important to define the use of this term for the purposes of the application example. 

8.2.1. Defining vulnerability in the context of COVID-19 

Over the past year, COVID-19 has touched the life of every one of us. Nevertheless, the exact 
implications vary significantly depending on individual characteristics including age, health sta-
tus, socioeconomic standing, working conditions, and living situation. In the context of the novel 
coronavirus, ‘deep-rooted inequalities […] can lead to the pandemic having a disproportional 
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impact on groups that were already in a situation of greater vulnerability’ (United Nations 2020, 
p.3). Having an unstable job and irregular income, living in poor housing conditions, being 
socially isolated, perceiving one’s own health as poor, and/or struggling from a mental health 
condition puts people at particular risk of experiencing a more severe impact of the coronavirus 
pandemic (OECD 2020, p.3). The World Health Organisation (2020) identifies the following 
population groups as especially vulnerable in an urban setting: those living in informal settings, 
homeless people, refugees and migrants, the elderly – especially those living in isolation, those 
with underlying medical conditions, socially marginalised groups as well as those at risk of 
violence during lockdown (p.5). Where in the city one lives is not of lesser importance. Data 
from London and New York suggests that per-capita infection rates are higher in socially de-
prived neighbourhoods where the average household size is larger compared to more affluent 
urban areas (United Nations 2020, p.9). 

Still, depending on the individual situation, the specific challenges vulnerable population 
groups must face may differ. Elderly people, for instance, are mainly concerned with direct 
effects on their physical health – serious complications may result from underlying medical 
conditions, or their general health may worsen even after they have successfully healed from 
the virus. Furthermore, strong confinement measures aimed at protecting them from an infec-
tion can have an adverse side effect as they significantly restrain their independence and limit 
their social interactions. For those living alone or in long-term care, social isolation is especially 
difficult to bear. Last, but not least, the imposed lockdown measures (may) cause the disruption 
of necessary routine check-ups for those suffering from a chronic disease (OECD 2020, p.18). 

Women constitute another particularly vulnerable population group. Single parenthood and 
having a lower or irregular income is more often the case for women than men. Moreover, 
prolonged times of social isolation have led to increasing numbers of domestic violence affect-
ing women’s personal safety (OECD 2020, pp.18–19). 

Home confinement is expected to have a long-lasting adverse effect on children’s mental 
health, thus making them another vulnerable population group in the context of the COVID-19 
pandemic. Especially in the case of families living in overcrowded accommodations, the lack 
of personal space often leads to frustration. Boredom and the prolonged loss of contact with 
friends and classmates can manifest as additional stressors and thus negatively influence the 
emotional well-being of children and adolescence (OECD 2020, p.19). 

In view of these multifaceted implications that COVID-19 can have for different population 
groups, I want to narrow down the definition for vulnerable populations for the purpose of this 
application example as individuals at higher risk for developing severe symptoms of COVID-
19.  

What constitutes severe symptoms of COVID-19? The WHO defines severe symptoms as ‘se-
vere acute respiratory illness (fever and at least one sign/symptom of respiratory disease, e.g. 
cough, shortness of breath; AND requiring hospitalization)’ (Clark et al. 2020, p.e1003). Robert 
Koch-Institute (2020a) outlined several risk factors, which often cause the development of se-
vere symptoms of COVID-19 and thus possibly lead to complications. These include age30, 

 
30 the risk is constantly rising from 50 years onwards (Robert Koch-Institute 2020b) 
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gender31, smoking, obesity, coronary heart disease, hypertension, chronic pulmonary disease, 
chronic liver disease, chronic kidney disease, diabetes mellitus, cancer, and weakened im-
mune system due to chronic illness and/or the regular intake of specific medications such as 
Cortison. Clark et al. (2020) also point out that ‘older individuals, males, and those with under-
lying conditions such as cardiovascular disease and diabetes are at increased risk of severe 
COVID-19 and death’ (p. e1004). Asthma, on the other hand, is relatively common and only 
moderate to severe cases are considered a risk factor according to US guidelines (ibid. e1005). 
Data from UK suggests that COVID-19-related death is associated with: being male, older age, 
deprivation, diabetes, severe asthma, and various other medical conditions (Williamson et al. 
2020, p.430). 

8.2.2. Identifying vulnerable populations at the small urban scale  

In an urban setting, there are diverse subpopulations. Hence, their individual characteristics 
make up a complex, heterogeneous spatial reality. While spatially aggregated data does pro-
vide some information about existing (e.g., socio-demographic) patterns, information about the 
interconnectedness of multiple risk factors is still missing at the small scale.  

For the governments to be able to design place-specific responses taking into account existing 
spatial disparities of the pandemic impact, ‘disaggregated mapping of COVID-19 vulnerability 
[…] within cities is critical’ (United Nations 2020, p.12). This would facilitate a more efficient 
outlining of strategies aimed at reducing the transmission of the virus in vulnerable groups. 
The WHO defines this approach as ‘shielding’, i.e., introducing a combination of ‘measures to 
protect vulnerable persons at increased risk of severe disease from COVID-19 […] or in-
creased risk of infection’ (Clark et al. 2020, p.e1004). This strategy can bring direct as well as 
indirect benefits. On the one hand, it can reduce mortality in susceptible population groups. 
On the other, it can facilitate the mitigation of a surge in demand for hospital beds (ibid.). Fur-
thermore, identifying vulnerable population groups within cities can foster reaching out to them 
directly or targeting local actors (e.g., chronic disease support groups) for a more efficient dis-
semination of information (World Health Organization 2020, p.15). At the same time, an opti-
mised allocation of measures and resources could be facilitated. For instance, neighbourhoods 
with a concentration of people at risk of developing severe symptoms can be prioritised in the 
process of vaccination. Allocation of pop-up testing sites for COVID-19 and/or pop-up flu shot 
clinics within the city could also be more effective if based on such knowledge. 

As of June 2020, the USA have introduced a ‘COVID Local Risk Index’ which ‘estimates city- 
and neighbourhood-level risk of COVID infection and illness severity based on social and eco-
nomic factors and the distribution of age, race/ethnicity and underlying health outcomes in the 
community’ (City Health Dashboard 2020). While this index ultimately allows mapping popula-
tion vulnerability at the neighbourhood level, it is composed using aggregated data. In contrast, 
the generated synthetic population allows much more flexibility in terms of defining and local-
ising vulnerable population groups within the city depending on any number of combinations 
of different risk factors. 

 
31 males are slightly more vulnerable than females according to frequency of hospital admission (Clark et al. 2020, 
p.e1007) 
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As highlighted in the previous paragraphs, the main risk factors for developing severe symp-
toms of COVID-19 are age, gender, chronic medical conditions such as hypertension, diabetes 
mellitus, cancer, respiratory, liver, and kidney diseases, obesity, and smoking. Several of those 
are available as individual attributes in the synthetic population. Although the external valida-
tion did not manage to completely verify all of them, the generated small-scale data can still 
lay a foundation for further analyses. 

According to the Robert Koch-Institute (2020a), the risk for the elderly people with underlying 
medical conditions to develop a severe reaction to the novel coronavirus leading to hospital 
admission rises with each chronic disease. With this in view, Map 5 illustrates spatial concen-
trations of individuals with more than three risk factors, including age of more than 65 years, 
male gender, hypertension, heart failure, diabetes mellitus, cancer, smoking, and obesity. 

Map 5. Individuals with more than 3 risk factors for developing severe symptoms of COVID-19 (own 
representation, geodata source: Landesbetrieb Geoinformation und Vermessung (LGV) Hamburg 2021) 

  
Age and gender alone constitute two risk factors. However, since they are universally distrib-
uted personal characteristics, they cannot lead to the formation of spatial concentrations. Look-
ing at individuals with more than three risk factors therefore ensures accounting for (at least) 
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two other specific conditions and thus increases the odds of identifying hotspots of vulnerable 
populations. 

Like in the previous application example, I classified the statistical areas into three groups 
using standard deviation. Areas, where the total count of individuals with more than three risk 
factors is below the average of 170 people, fall into the first category (< 0.00 Std Dev). Areas, 
where the corresponding count is between 170 and 250 people, fall within the second category 
(0.00 – 1.00 Std Dev). Finally, areas with more than 250 such individuals belong to the third 
category (> 1.00 Std Dev). The dark grey areas in Map 5 thus represent the highest spatial 
concentrations of populations at greater risk for developing severe symptoms of COVID-19. 

The exact operationalisation of vulnerability in terms of risk factors count, weighting of certain 
comorbidities, and the like, is not the primary goal here. As the virus is mutating, risk factors 
will be subject to change. The modelled individual health data offers the much-needed flexibility 
in this regard. It can be used to illustrate the small-scale distribution of one or several specific 
diseases in combination – both in absolute and relative terms. Visualisations such as Map 5 
can thus be used as tools facilitating the navigation of the complex vaccination process.  

In the City of Toronto, for instance, residents living in so-called ‘hot spot postal codes’ have a 
priority for getting a vaccine: ‘Hot spot areas are neighbourhoods identified by the Province of 
Ontario with ongoing and historic high rates of COVID-19 transmission, hospitalization and 
death. These areas were also identified by the province to have populations with higher risk 
factors including racialization, income, quality of housing, immigration status and education 
attainment’ (City of Toronto 2021). 

The Canadian approach is an example of using small-scale spatial data to prioritise the vac-
cination of certain population groups. While the city of Toronto has set the focus on the socio-
economic dimension of vulnerability, this does not mean that the physiological dimension is 
irrelevant. It is much more likely that there was simply no small-scale health data available. 
The generated synthetic population can thus be used to build upon the Canadian approach 
and thus reveal an even broader spectrum of individual factors increasing vulnerability. 

To add the socio-economic dimension of vulnerability following the example of Toronto, the 
social status of the statistical areas can be considered as well. Map 6 thus highlights the pre-
viously identified statistical areas with concentrations of vulnerable populations, which addi-
tionally have either low or very low social status according to the recent Social Monitoring 
(Behörde für Stadtentwicklung und Wohnen 2020). 

All selected areas are located either east of the Alster Lake or south of the Elbe River, thus 
confirming already familiar patterns of social inequality. In this context, recent evidence from 
Cologne points out to higher infection rates in densely populated, socially deprived districts 
(German: Stadtbezirke). During the third wave of COVID-19 infections, there were significant 
differences in the 7-day incidence across city districts, ranging from 0 to 700 (Deutschlandfunk 
2021). Johannes Nießen, the Head of the Public Health Department in Cologne, stated that 
deprived city quarters were especially affected at the time being. In this regard, the Public 
Health Department established a local testing centre in one of the severely affected areas, 
where there is also a scarcity of general practitioners - Cologne-Chorweiler. The next step was 
to open a vaccination centre (ibid.). At the same time, mobile, or pop-up vaccination centres 
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can be set up in areas where the concentrations of vulnerable populations are higher at a 
certain point in time – due to virus mutations related to specific risk factors, for instance. The 
latter can serve as examples for protecting the most vulnerable population groups by improving 
their access to testing and vaccination, thus adopting a location-oriented approach. 

Map 6. Areas with low social status and high concentration of individuals at increased risk for developing 
severe symptoms of COVID-19 (own representation, geodata source: Landesbetrieb Geoinformation 
und Vermessung (LGV) Hamburg 2021; social status source: Behörde für Stadtentwicklung und 
Wohnen 2018) 

 
There are many possibilities for using the generated synthetic population to illustrate patterns 
of vulnerability – be it solely physiological (as in the case of comorbidities), behavioural (e.g., 
smoking), socio-economic (social status of the statistical area of residence), or all the above. 
The introduced examples of visualising vulnerability at the scale of the statistical areas repre-
sent merely a couple of many possible approaches that can prove to be useful for developing 
future strategies for protecting the most vulnerable population groups. The bottom line is that 
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the generated small-scale data provides a multitude of opportunities. It fills a gap. It can serve 
as a starting point. It can lay a foundation for more detailed explorations.  

In general, the interviewed experts (see Chapter 5. ‘Modelling Health Data on a Small Urban 
Scale from the Perspective of German Public Health Researchers’) were rather reserved about 
how reliable the modelled data would be and what kind of impact the knowledge of the spatial 
distribution of vulnerable people at the small scale may have on the further unfolding of the 
pandemic. Nonetheless, there are examples from abroad about small-scale data being used 
to identify spatial hotspots of vulnerable individuals and thus support local authorities in their 
efforts to save lives. 

While COVID-19 is the most recent example of a pandemic we must deal with in a densely 
urbanised world, it is unlikely to be the last one. I therefore doubt that having spatially fine-
grained health data can ever be obsolete, or even a downside. We cannot know for sure what 
exactly is coming our way and thus having as detailed data as possible can only be a plus. 
Epidemics always have a spatial ingredient to them. Monitoring how viruses are spreading is 
vital. Many researchers are currently dedicated to the development of models predicting the 
rise and scope of infections, including their spatial and temporal manifestation. In this context, 
knowing where the most vulnerable people live can be an additional asset for combating the 
current and future pandemics. This is exactly the contribution that the generated spatial mi-
crosimulation model can make.  
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9. SUMMARY AND DISCUSSION 
In the previous pages, I explored a spatial microsimulation approach to modelling individual 
health data on a small urban scale. To that end, the city of Hamburg served as case study. 
The entire data modelling process included several main stages. First, I examined the spatial 
structure of Hamburg to determine which level of administrative division is going to be most 
suitable as data holder. Then, I singled out available data sources for the purpose of population 
synthesis. These included a micro dataset from a national representative survey and several 
geographic datasets containing socio-demographic and health data aggregated at different 
spatial scales. Next, I carried out logistic regression tests to determine to what extent the iden-
tified constraint variables can explain the variance of the selected health-related target varia-
bles. I was thus able to compile the final list of constraint and target variables. Then, I used 
deterministic iterative proportional fitting to design an algorithm for constraining the synthetic 
population at two spatial scales – the city quarters and the statistical areas. Thus, I generated 
a dataset containing synthetic individuals with health-related attributes for each statistical area. 
To estimate the coherency of the model, I carried out an internal validation using various met-
rics such as TAE, RE, RMSE, and MAPE. For the evaluation of the model’s goodness of fit, I 
used two external data sources – sample data from a survey conducted in six statistical areas 
with differing social status, and insurance data aggregated at the level of the status index clas-
ses from three health insurance funds in Hamburg – AOK Rheinland/Hamburg, BKK Mobil Oil, 
and DAK-Gesundheit.  

Overall, the model validation pointed to differences in the goodness of fit depending on type of 
disease. The model exhibited adequate fit for hypertension and depression both according to 
the survey and the health insurance data. The sample survey data suggested extraordinary 
model fit for cancer as opposed to the health insurance data, which delivered less encouraging 
results. Diabetes mellitus appeared to be poorly modelled both according to the survey and 
the insurance data. The simulated spatial distribution of heart failure was evaluated as rela-
tively satisfying with the survey data. According to the insurance data, however, the model fit 
for this variable was completely inadequate.  

The survey data allowed verifying health behaviour variables as well. The model fit for smoking 
and sporting activity was nearly perfect. Obesity and overweight were also well represented 
by the synthetic population. In contrast, impairment in daily activities due to illness and suffer-
ing from a chronic medical condition were rather poorly illustrated. 

Notwithstanding, the external data used for model evaluation had some inherent flaws, such 
as insufficient population diversity and limited geographic coverage. These limitations were 
explored in detail in Chapter 7.2. ‘External validation results’.  For this reason, I am interpreting 
the validation results from a comparison rather than an actual evaluation perspective. Since 
there was no other readily available data, this approach proved to be the better alternative to 
skipping external validation altogether.  

Following the model validation, I introduced two application examples for the generated small-
scale health data. First, I demonstrated the opportunities for visualising the spatial distribution 
of chronic disease and its possible interactions with factors of the living environment. To that 
end, I examined the small-scale distribution of hypertensive individuals and their exposure to 
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noise from road and air traffic. This example illustrated the main purpose of modelling individ-
ual health data at the small urban scale – it allows revealing effects of the living environment 
taking place in a highly localised manner. When health data is limited to absolute or relative 
disease counts at some level of spatial division encompassing tens of thousands of inhabit-
ants, such potential patterns generally remain undetected. 

The second application example demonstrated how the synthetic population can be used to 
identify local hotspots of vulnerable individuals in the context of the COVID-19 pandemic. The 
novel coronavirus confronts us with an ever-changing flow of information about the risk factors 
for developing severe symptoms leading to hospital admission and, possibly, death. Chronic 
diseases including hypertension, diabetes mellitus, and cancer, as well as socio-demographic 
factors such as old age and male gender were identified as such from the very beginning. The 
generated synthetic population thus allows detecting spatial concentrations of individuals sub-
ject to several risk factors. Naturally, the spectrum of risk factors may change over time, but 
my aim was not to exhaust all imaginable possibilities. Instead, I strived to demonstrate the 
overall advantages of the explored approach to modelling individual health data. Depending 
on data availability, the introduced spatial microsimulation method can generate an even 
broader palette of individual health-related attributes, thus offering more possibilities for anal-
ysis.  

Next to the health-related risk factors, scientific evidence about the impact of social deprivation 
of urban neighbourhoods on COVID-19 infection rates is mounting. I thus integrated data avail-
able from the recent Social Monitoring to identify statistical areas with low or very low social 
status on the one hand, and high concentration of inhabitants with multiple risk factors for 
developing severe symptoms on the other. Similar approaches are already adopted in Canada 
to navigate more efficiently the complex vaccination process. The added value of the gener-
ated synthetic population is that it offers individual health data next to the already available 
socio-economic data classifying neighbourhoods in terms of social status. It thus builds upon 
the methodology applied in the city of Toronto for prioritising the vaccination of population 
groups living in deprived areas. 

It was beyond the scope of this dissertation to delve deeper into the topic of hypertension and 
noise exposure, or that of COVID-19 and population vulnerability. Exhausting the spectrum of 
possibilities for specific measures for health promotion and disease prevention after the addi-
tional in-depth analysis of the local situation was never defined as objective of this dissertation. 
Instead, my goal was to contribute to the scientific dialogue about available options for obtain-
ing individual health data on a small urban scale, and to demonstrate its advantages over 
aggregated health data.  

Getting access to health data is a sensitive topic. There are solid arguments in favour of its 
protection. Looking at Germany, and more specifically – Hamburg, the procedure for acquiring 
data from health insurance funds is extremely complex. To obtain such data at the neighbour-
hood level is not at all possible – at least not for now. As each health insurance fund manages 
the data of its own insurants, there is currently no centralised point of contact for data acquisi-
tion. This poses an additional challenge for researchers, who strive to quickly gain insight into 
ongoing health processes and their manifestation within the spatial realm of the city. At the 
same time, health has, now more than ever, become a topic everyone is interested in. To 
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combat the COVID-19 pandemic, researchers should be making use of all tools available for 
getting as much and as detailed information as possible. Settling for spatially aggregated 
health data – especially when the latter is delivered at the scale of areas inhabited by tens of 
thousands of individuals – is no longer an option.  

The appreciation for small-scale data is growing – especially in light of the current health crisis. 
In North America, socio-demographic and socio-economic data available at the neighbourhood 
scale is increasingly used to facilitate decision-making. One of its applications, in USA, is to 
estimate the local risk of infection and its potential severity. Prioritisation of vulnerable popula-
tions for vaccination is an example of how such small-scale data is used in Canada. 

This type of small-scale data is already available in Hamburg, but it is not made use of – at 
least not as targeted. Hamburg also has the advantage of readily available health data aggre-
gated at the level of the city quarters. The city has therefore a lot of potential in terms of utilising 
available data sources. The generated spatial microsimulation model offers a possible solution. 
It is the product of a well-established modelling technique, which has been implemented for 
decades in countries such as the UK, Australia, and the USA. It opens a whole new spectrum 
of possibilities for analysis. 

Implementing the proposed method to generate individual health data for the entire city of 
Hamburg is a huge opportunity. The biggest asset of the introduced approach is the two-tier 
modelling strategy, which allowed constraining the synthetic population using available health 
data aggregated at the level of the city quarters. This contributed significantly to achieving a 
more reliable distribution of disease prevalence at the lower spatial scale of the statistical ar-
eas. Another essential advantage of the proposed spatial microsimulation approach is that the 
model can be updated with more current or more detailed data anytime. It should thus not be 
regarded as final product subject to no further changes but as a starting base that can be 
continuously upgraded and improved. At its current state, the model still represents a huge 
step forward because it fills the gap of not having any idea what kind of disease patterns unfold 
below the surface of the city quarters – as heterogenous as they are. The generated synthetic 
population allows combining individual health data with available social, economic, and geo-
graphic data to put all the pieces of the puzzle together. It provides direction and encourages 
further analysis. 

The conducted interviews showed that some public health researchers in Germany are still 
sceptical about modelling health data mainly due to the possibility of generating unreliable 
results, not reaching to any relevant conclusions, or simply confirming what has already been 
known. Nonetheless, constant technological advances in the field of data modelling, coupled 
with the ever-increasing computational power of computers make it hard to find excuses not 
to use such techniques for research purposes. There being a potential danger to develop a 
model, which cannot fully do justice to reality with all its diverse characteristics should not be 
a reason not to try out such methods. The proposed spatial microsimulation model offers some-
thing extremely valuable and not readily available from another source – individual health data 
georeferenced at the scale of Hamburg’s neighbourhoods and covering its entire population. 
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10. CONCLUSION AND OUTLOOK 
Obtaining health data on a small urban scale – one corresponding to neighbourhoods – is a 
highly challenging endeavour due to data protection regulations. Against this background, the 
contribution of this dissertation was providing an alternative solution for the exploration of 
health-related patterns within cities. A spatial microsimulation method for generating georefer-
enced individual health data was introduced, whereby each step of the modelling process was 
described in detail. Using Hamburg as case study allowed going beyond the theory of spatial 
microsimulation and compiling an entirely new dataset with synthetic individuals – each of them 
with health-related attributes and spatial reference about the statistical area of residence. 
Thus, the first one of the defined research questions – ‘How can health-related data be gener-
ated at a small urban scale?’ – was answered. 

The synthetic population was used to demonstrate how individual health data available at the 
scale of urban neighbourhoods can serve to unmask spatial interactions between environmen-
tal and socioeconomic factors on the one hand, and the prevalence of chronic disease on the 
other. To that end, spatial concentrations of hypertensive individuals exposed to excessive 
noise from road and air traffic were explored and detected within the spatial realm of Hamburg. 
The social status of the respective neighbourhoods was also considered in order to assess its 
contribution to the vulnerability of the inhabitants. With that, the second research question – 
‘How can spatial interactions between environmental and/or socioeconomic factors and the 
prevalence of chronic disease be made evident using the modelled data?’ – was addressed.  

The benefit of using the generated synthetic population in light of the current COVID-19 pan-
demic was also brought to attention. Knowing which are the risk factors for developing severe 
symptoms possibly requiring hospital admission, hotspots of vulnerable individuals subject to 
more than three such factors were identified at the neighbourhood scale. Evidence from the 
USA and Canada supports the use of similar approaches to prepare for rising infections and 
navigate the vaccination process more efficiently. The last research question – ‘How can the 
generated small-scale health data facilitate the efforts of public health officials to combat the 
novel coronavirus?’ – was thus answered as well. 

There are only a few necessary requirements for transferring the proposed spatial microsimu-
lation approach to other cities. First, an established level of spatial division for data collection 
purposes must be in place. Second, there must be at least two datasets available – one geo-
graphic dataset containing aggregated socio-demographic data for each small area, and one 
individual level dataset, typically a representative survey, containing health-related information. 
Finally, some type of external data is necessary for model evaluation. This can be a small 
survey encompassing several spatial units or aggregated health-data at a larger spatial scale 
compatible with the one used for the modelling purposes. There are no strict guidelines to 
follow. Nonetheless, it is advisable to use different data sources for the model evaluation if 
such are available. Thus, the final ‘verdict’ about how well the model manages to depict reality 
is going to be more reliable. 

In conclusion, I believe the dissertation managed to hold its promise. The proposed spatial 
microsimulation approach presents a huge opportunity to fill the existing gap of missing health 
data at the urban neighbourhood level and thus offers a whole new spectrum of possibilities 
for analysis. With that, researchers in the field of public health and urban planning could find a 
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common ground for more intensive cooperation so that cities, not only in Germany or Europe, 
but also all over the world, could continuously increase their knowledge about existing interac-
tions between disease prevalence and factors of the living environment and thus become 
healthier places. 
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11. APPENDIX 
Table 44. Sample from the generated synthetic population (own representation)
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Table 45. External validation with insurance data: Absolute counts by age, gender, and status index 
(own representation) 

Status 
Index 

Age &  
Gender 

Hyper. 
(insur.) 

Hyper. 
(model) 

Diab. 
(insur.)  

Diab. 
(model) 

Heart 
failure 
(insur.)  

Heart 
failure 

(model) 

Cancer 
(insur.) 

Cancer 
(model) 

Depr. 
(insur.) 

Depr. 
(model) 

high 18-44_m 17 928 35 914 1 117 10 263 560 3 497 7 416 1 855 31 953 36 806 

18-44_f 15 699 14 741 1 313 9 689 535 1 768 11 620 3 636 54 894 49 776 

45-64_m 11 730 11 299 798 4 133 694 1 803 3 635 1 015 5 431 4 938 

45-64_f 10 027 10 611 529 2 303 290 1 144 5 612 1 722 9 769 8 381 

over65_m 40 689 34 114 3 931 16 735 9 139 11 086 20 668 7 044 8 958 6 776 

over65_f 64 014 56 469 4 227 18 712 14 447 19 271 23 912 7 490 23 690 17 941 

average1 18-44_m 17 980 36 026 1 105 10 312 559 3 497 7 412 1 863 32 142 36 908 

18-44_f 15 730 14 766 1 334 9 697 512 1 778 11 683 3 652 55 436 50 305 

45-64_m 14 651 13 634 1 017 5 493 858 2 220 3 504 1 148 7 605 6 101 

45-64_f 13 833 13 361 783 3 308 483 1 475 6 311 1 859 13 023 10 499 

over65_m 40 996 34 518 4 205 17 223 9 468 11 169 20 111 6 969 9 636 6 842 

over65_f 65 285 57 687 4 765 19 606 14 875 19 665 23 871 7 577 24 591 18 404 

average2 18-44_m 18 013 36 178 1 111 10 333 570 3 497 7 443 1 870 32 314 37 039 

18-44_f 15 760 14 820 1 324 9 702 516 1 795 11 698 3 654 55 685 50 719 

45-64_m 14 756 13 741 1 207 5 897 889 2 361 3 546 1 173 8 777 6 355 

45-64_f 14 727 13 665 1 082 3 700 610 1 519 5 938 1 814 14 550 10 575 

over65_m 40 411 33 909 4 376 17 195 9 556 11 112 19 454 6 820 9 717 6 835 

over65_f 65 090 57 655 4 843 19 874 15 136 19 780 23 353 7 387 24 711 18 321 

average3 
 

18-44_m 17 980 36 020 1 112 10 288 561 3 497 7 440 1 888 32 231 36 945 

18-44_f 15 809 14 772 1 337 9 698 516 1 778 11 702 3 645 55 575 50 323 

45-64_m 11 748 10 487 1 120 4 350 849 1 818 2 638 871 7 208 5 122 

45-64_f 11 561 10 682 971 2 825 564 1 205 4 060 1 406 11 451 8 240 

over65_m 36 535 30 022 3 979 15 663 9 028 9 992 17 804 5 977 8 923 6 183 

over65_f 60 750 52 846 4 572 18 226 14 596 18 832 21 457 6 613 23 235 16 603 

average4 
 

18-44_m 18 014 35 989 1 112 10 310 567 3 497 7 399 1 862 32 259 36 949 

18-44_f 15 756 14 779 1 331 9 694 522 1 784 11 709 3 647 55 327 50 163 

45-64_m 10 748 9 456 1 144 4 337 841 1 766 2 252 765 7 035 4 639 

45-64_f 10 749 9 290 817 2 646 443 1 091 3 356 1 144 10 548 7 115 

over65_m 35 536 29 143 3 815 15 329 8 905 9 839 17 253 5 892 8 881 5 990 

over65_f 59 933 51 662 4 485 17 981 14 515 18 553 20 821 6 526 23 106 16 184 

low 18-44_m 18 007 35 908 1 104 10 275 570 3 497 7 432 1 855 32 079 36 894 

18-44_f 15 752 14 774 1 327 9 682 519 1 783 11 693 3 630 54 993 49 925 

45-64_m 8 224 7 031 839 3 253 615 1 289 1 669 567 5 268 3 288 

45-64_f 8 220 7 173 707 2 076 441 784 2 431 793 7 974 5 043 

over65_m 33 043 26 516 3 486 14 187 8 669 9 222 16 169 5 252 8 262 5 552 

over65_f 56 572 48 469 4 169 16 870 14 167 17 847 19 513 5 928 21 416 14 774 

very low 18-44_m 18 018 35 920 1 100 10 309 561 3 497 7 496 1 843 32 084 36 938 

18-44_f 15 743 14 780 1 328 9 679 521 1 801 11 667 3 643 54 952 50 016 

45-64_m 8 455 7 417 918 3 537 671 1 443 1 660 641 5 506 3 736 

45-64_f 8 854 7 348 866 2 283 484 817 2 427 784 8 710 5 382 

over65_m 32 978 26 251 3 626 14 240 8 804 9 180 16 277 5 245 8 420 5 617 

over65_f 55 977 47 758 4 233 16 716 14 461 17 657 19 241 5 832 21 767 14 612 
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