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ABSTRACT: The evaluation of decadal climate predictions against observations is crucial for their benefit to stakeholders.

While the skill of such forecasts has been verified for several atmospheric variables, land hydrological states such as ter-

restrial water storage (TWS) have not been extensively investigated yet due to a lack of long observational records.

Anomalies of TWSare globally observedwith the satellitemissionsGRACE (2002–2017) andGRACE-FO (since 2018). By

means of a GRACE-like reconstruction of TWS available over 41 years, we demonstrate that this data type can be used to

evaluate the skill of decadal prediction experiments made available from different Earth system models as part of both

CMIP5 and CMIP6. Analysis of correlation and root-mean-square deviation (RMSD) reveals that for the global land

average the initialized simulations outperform the historical experiments in the first three forecast years. This predominance

originates mainly from equatorial regions where we assume a longer influence of initialization due to longer soil memory

times. Evaluated for individual grid cells, the initialization has a largely positive effect on the forecast year 1 TWS states;

however, a general grid-scale prediction skill for TWS of more than 2 years could not be identified in this study for CMIP5.

First results from decadal hindcasts of three CMIP6 models indicate a predictive skill comparable to CMIP5 for the mul-

timodel mean in general, and a distinct positive influence of the improved soil–hydrology scheme implemented in the MPI-

ESM for CMIP6 in particular.
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1. Introduction

Forecasting global or regional climatic conditions for several

years into the future is now within reach after numerous sci-

entific breakthroughs in the field of decadal climate prediction

(Doblas-Reyes et al. 2013; Boer et al. 2016; Marotzke et al.

2016). Decadal prediction services operated by meteorological

agencies provide unconditional forecasts for up to 10 years in

advance by initializing Earth system models (ESMs) with ob-

servations or reanalysis data (Meehl et al. 2009). This initiali-

zation sets decadal predictions apart from long-term climate

projections covering a century or more that are governed by

boundary conditions such as the greenhouse gas concentrations

or the solar activity. Projections therefore reproduce the climate

variability in a statistical sense only, but offer no information

about the actual conditions in the next 2–10 years ahead.

Due to its relevance for agricultural and water management

decisions the information about a future evolution of surface

temperatures and precipitation rates is very interesting for

stakeholders. Therefore, the skill of present-day decadal pre-

diction systems has been extensively assessed for state vari-

ables like sea surface and land temperatures (Corti et al. 2012;

Bunzel et al. 2018), and also associated indices as the Atlantic

multidecadal or Pacific decadal oscillations (Kim et al. 2012).

Forecasting hydrometeorological quantities appears to be

more challenging, with still limited forecast skill for precipi-

tation (Mehrotra et al. 2014) and soil water availability (Yuan

and Zhu 2018; Zhu et al. 2019). This is certainly related to the

difficulties of accurately modeling those spatially and tempo-

rally highly variable quantities, but also to the limited avail-

ability of satellite and in situ observations that can be utilized

for both model validation and calibration.

A satellite mission designed to map Earth’s gravity field has

been providing time variations in regional terrestrial water

storage (TWS), which can be regarded as the integration of

precipitation, evapotranspiration, and lateral runoff over time

as described by the water balance equation. The Gravity

Recovery and Climate Experiment (GRACE, in orbit from

April 2002 to October 2017; Tapley et al. 2019) consists of two

small twin satellites orbiting Earth at a very low altitude (less

than 500 km) with a typical distance of about 220 km. Both

satellites continuously measure the changes in their relative

distance that are caused by spatial variations in Earth’s gravi-

tational attraction. Differences in those measurements between

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JCLI-D-20-

0042.s1.

Corresponding author: Laura Jensen, laura.jensen@hcu-hamburg.de

1 NOVEMBER 2020 J EN SEN ET AL . 9497

DOI: 10.1175/JCLI-D-20-0042.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).



subsequent overpasses are traced back to changes in water mass

stored at or beyond Earth’s surface. The observations from

GRACE are being continued by the GRACE-FO mission

(Flechtner et al. 2016; Kornfeld et al. 2019) launched inMay 2018.

Data from GRACE were frequently used for the validation

of both hydrological (Döll et al. 2014; Eicker et al. 2014;

Güntner 2008; Syed et al. 2008) and land surface models

(Scanlon et al. 2018; Zhang et al. 2017). The record has been

compared also against long-term projections of ESMs (Rodell

et al. 2018; Jensen et al. 2019), but rarely been used to evaluate

decadal predictions. In an early attempt, Zhang et al. (2016)

utilizedGRACE-derived TWS to assess the effects of different

initialization techniques on the quality of MPI-ESM hindcasts.

In the present study, a GRACE-based TWS dataset is for the

first time employed to evaluate a multimodel ensemble of

decadal climate prediction experiments published in the con-

text of phases 5 and 6 of the Climate Model Intercomparison

Project [CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al.

2016)]. The skill of the decadal hindcasts is assessed both

globally and regionally by means of anomaly correlation and

root-mean-square deviation (RMSD). We can demonstrate

that the new observation type ‘‘terrestrial water storage’’ as

available from the GRACE and GRACE-FO missions is

suitable as additional dataset in the validation and/or calibra-

tion of climate model experiments. Since data from CMIP and

GRACE are jointly available in only 9 years (2002–2011), we

make use of a GRACE-like reconstruction of TWS, which

expands the analysis time frame to 41 years.

2. Data and methods

a. GRACE, GRACE-FO, and GRACE-REC

From the sensor data collected by GRACE and GRACE-

FO, it is possible to unambiguously quantify surface mass

changes. By subtracting high-frequency mass variations (at-

mosphere and ocean non-tidal mass variability, tides in atmo-

sphere, oceans, and solid Earth) and non-water-related

processes (glacial isostatic adjustment, tectonic displace-

ments), the water changes on land are isolated from this inte-

grated signal. GRACE-derived TWS changes typically have a

temporal resolution of one month and a spatial resolution of a

few hundred kilometers. It is inherent to the measurement

principle that GRACE-derived TWS changes contain all

storage compartments (i.e., soil moisture, groundwater, snow,

permafrost, glaciers, ice sheets, rivers, and lakes), and with

GRACE alone they cannot be disaggregated into their dif-

ferent origins. GRACE observations are directly traced back

to the measurement of time differences and are therefore not

affected by long-term drifts and biases (Kim and Tapley 2002).

Thus, satellite gravimetry can be regarded as a long-term stable

observation technique for land water storage changes.

The currently available time series from GRACE and

GRACE-FO range from April 2002 to November 2019. The

majority of decadal hindcast experiments of CMIP5 are ini-

tialized only until 2010 (i.e., forecast year 1 equals 2011). Thus,

only up to 2011 we can access model data for all forecast years

(1 to 10). As this is crucial for our analysis, the effective overlap

time span of GRACE/GRACE-FO with CMIP5 decadal

hindcasts is just 9 years. Deriving forecast skill from only nine

data points is likely dominated by random noise and robust

results can hardly be expected. For example, a correlation

coefficient of two time series with nine data points each would

have to be larger than 0.67 to be significantly different from

zero (with a significance level of 95%). To increase the overlap

time span between observations and decadal hindcasts we

make use of a century-long reconstruction of climate-driven

water storage changes that is based on GRACE observations

(GRACE-REC; Humphrey and Gudmundsson 2019).

By assuming that short-term anomalies of TWS are mainly

driven by fluctuations in the relevant atmospheric drivers,

Humphrey and Gudmundsson (2019) use precipitation and

temperature data from atmospheric reanalyses to reconstruct

past anomalies of TWS. The statistical model is based on the

assumption that precipitation events have an exponentially

decaying influence on the subsequent water storage that is

governed by the temperature-dependent residence time of the

water in the soil. Three parameters of the statistical model are

calibrated for each grid cell against GRACE observations by

means of a least squares adjustment: one parameter for the

scale and two related to the residence time.

For this study, we use the reconstruction calculated with the

Goddard Space Flight Center (GSFC) GRACE solution

(Luthcke et al. 2013) and Global Soil Wetness Project phase 3

(GSWP3) precipitation and temperature (Kim 2017). As

demonstrated by Humphrey and Gudmundsson (2019),

GRACE-REC is close to the original GRACE observations

within the overlapping period with a correlation of monthly

global land averages larger than 0.75. In the yearly averaged

time series that we use in our study the correlation is even

higher with 0.92 (see online supplemental material section S1).

GRACE-REC fits better to GRACE than TWS estimates

from hydrological or land surface models in terms of correla-

tion and Nash–Sutcliffe efficiency. Furthermore, GRACE-

REC was evaluated against several observational datasets, in-

cluding basin-scale water balances from ERA-Interim and runoff

observations, as well as streamflow measurements. Particularly

the comparison to streamflow measurements from 1901–2010

showed that even though GRACE-REC was calibrated to

GRACEwithin theGRACE time span only, the correlation does

not degrade for the earlier time spans, where no calibration data

are available. Thus, we assume GRACE-REC to be a reliable

estimate for water storage changes also for the years prior to the

GRACE era.

The reconstruction is affected by several sources of uncer-

tainty, including measurement and processing uncertainties in

GRACE, structural model errors, and uncertainties in the

precipitation and temperature data. To consider these spatially

and temporally correlated errors, Humphrey andGudmundsson

(2019) derived in total 100 ensemble members of the GRACE-

REC dataset by employing a spatial autoregressive noise model

generating random realizations of the error structure. Thus, it is

possible to derive realistic aggregated errors for basin-averaged

time series such as the global land average. Although GRACE-

REC is only a proxy for real GRACE observations, we consider

it as a feasible replacement to demonstrate the value of a long

TWS record for decadal prediction analysis: Not only is the
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correlation of GRACE-REC and the original GRACE obser-

vations for the yearly global land average very high (0.92), but

also the evolution agrees very well with the GRACE time series

lying within the error bounds of the reconstruction (see sup-

plemental material section S1).

We note that GRACE-REC is derived from precipitation

and temperature data and is thus not entirely observation-

based despite of being calibrated against satellite gravity

data. However, as none of the ESMs evaluated in this study

is initialized or forced with GSWP3 data, we assume that

GRACE-REC is a largely independent dataset for the

comparison with water storage–related variables simulated

by decadal hindcasts of coupled ESMs. The observational

record of GRACE is being continued by GRACE-FO, and

next-generation gravity missions are currently being pre-

pared in the United States, China, and Europe (Pail et al.

2015) so that it is safe to assume that gravity observations

will be available for validation, calibration (and possibly

even initialization) of ESM decadal prediction experiments

also in the future. We emphasize that GRACE-REC is used

in this study only to extend the sample size for arriving at

statistically more robust results. For the evaluation of indi-

vidual forecasts from different operational decadal predic-

tion systems, we always recommend using real satellite data

from GRACE and GRACE-FO as readily available from, for

example, the GravIS portal maintained by GFZ Potsdam (grav-

is.gfz-potsdam.de).

b. CMIP5 decadal hindcasts

CMIP5models do not provide a standard output variable for

terrestrial water storage. We therefore sum up the variables

total soil moisture content (mrso) and surface snow amount

(snw) to approximate modeled TWS (abbreviated as mTWS in

the following). For the variables mrso and snw, five CMIP5

models provide monthly mean output of decadal hindcasts

which were initialized every year with ocean temperature and

salinity fields (Table 1). Four of these models are initialized

from 1960 to 2010, while for one model the last initialization

year is 2009. Eachmodel experiment consists of 3–10 ensemble

members usually generated using 1-day lagged fields for ini-

tialization. For further analysis we compute the ensemble

mean permodel as well as amultimodel mean (MMM) from all

model ensemble means (39 members in total). For the MMM

we also compute the spread as the weighted standard deviation

from all ensemblemembers, propagating the uncertainty of the

individual models to the uncertainty of the MMM giving each

model equal weight (see supplemental material section S2).

Each hindcast runs for 10 years after its year of initialization.

The mTWS anomalies for the months of the first full year after

initialization (i.e., forecast year 1) are expected to be close to the

TABLE 1.Models used in the analysis. The upper fivemodels take part in CMIP5; the lower threemodels take part in CMIP6. The name,

institution (with country), reference, original spatial resolution, and the number of ensemble members for the decadal (Init) and the

uninitialized (Hist) experiments are provided.

Name Institution Reference Resolution Init Hist

CMIP5

Fourth Generation Canadian Coupled

Global Climate Model (CanCM4)

Canadian Centre for Climate Modeling

and Analysis (Canada)

von Salzen et al. (2013) 2.88 10 5

NOAA’s Geophysical Fluid Dynamics

Laboratory Coupled Model, version

2.1 (GFDL-CM2p1)

NOAA Geophysical Fluid Dynamics

Laboratory (United States)

Delworth et al. (2006) 2.58 3 28 10 10

Hadley Centre CoupledModel, version 3

(HadCM3)

Met Office Hadley Centre

(United Kingdom)

Gordon et al. (2000) and

Pope et al. (2000)

3.758 3 2.58 10 10

Model for Interdisciplinary Research on

Climate, version 5 (MIROC5)

University of Tokyo, National Institute

for Environmental Studies, and Japan

Agency for Marine-Earth Science and

Technology (Japan)

Watanabe et al. (2010) 1.48 6 3

Max Planck Institute Earth System

Model, low resolution (MPI-ESM-LR)

Max Planck Institute for Meteorology

(Germany)

Giorgetta et al. (2013) and

Müller et al. (2012)

1.98 3 3

CMIP6

Fourth Generation Canadian Coupled

Global Climate Model (CanESM5)

Canadian Centre for Climate Modeling

and Analysis (Canada)

Swart et al. (2019) 2.88 20 25

Model for Interdisciplinary Research on

Climate, version 6 (MIROC6)

University of Tokyo, National Institute

for Environmental Studies, and Japan

Agency for Marine-Earth Science and

Technology (Japan)

Tatebe et al. (2019) 1.48 10 3

Max Planck Institute Earth System

Model, version 1.2, high resolution

(MPI-ESM1–2-HR)

Max Planck Institute for Meteorology

(Germany)

Müller et al. (2018) 0.98 5 2
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observations because the influence of the initialization is still

large. The mTWS anomalies for the second year after initiali-

zation (i.e., forecast year 2) are expected to fit a bit less to the

observations than those from forecast year 1, but with a skillful

forecasting system they should still fit better than a trivial fore-

cast.With increasing lead time after initialization (forecast years

3–10) the forecast skill is expected to degrade further with re-

spect to the observations. To assess the forecast time span up to

which the decadal experiments still exhibit skill with respect to

an uninitialized forecast, we build so-called forecast year time

series. This means that we rearrange the mTWS anomalies from

all decadal simulations with respect to their forecast year: Since

the decadal simulations are initialized every year between 1960

and 2009 (at least), there exist forecast year 1 mTWS anomalies

for all models for each year between 1961 and 2010, and if we

keep only these first-year mTWS anomalies from each decadal

hindcast we obtain a discrete time series consisting only of

forecast year 1 mTWS anomalies. Analogously, forecast year 2

mTWS anomalies exist for each year between 1962 and 2011,

constituting a forecast year 2 time series. This can be done for

the other forecast years 3–10 as well. The first year for which the

tenth forecast year exists, is 1970 (10 years after the first ini-

tialization in 1960). Thus, the common time span where each

forecast year between 1 and 10 is available is 1970 to 2010, hence

this is the time span for which we perform our further analysis.

The forecast year time series derived from decadal hindcasts are

referred to as initialized simulations (Init) in this study.

As a reference for the skill assessment we use mTWS time

series from 1970 to 2010 obtained from historical runs of the

same CMIP5 models. Historical CMIP5 experiments are typ-

ically initialized from an arbitrary point of a quasi-equilibrium

control simulation. Their starting date is set to 1850, and sim-

ulations are forced by observations of, for example, solar in-

solation, greenhouse gas emissions, and land cover change

(Taylor et al. 2012). The historical experiments in CMIP5 usu-

ally end in 2005, hence for our analysis we extend them until

2010with data fromCMIP5projections under the representative

concentration pathway scenario 4.5 (RCP4.5, i.e., assuming a

moderate increase in greenhouse gas concentration and radia-

tive forcing until 2100). As the conditions in 1850 have virtually

no influence on the simulated data for the years 1970–2010 we

refer to these concatenated reference runs as uninitialized or

historical simulations (Hist) in the following. Please note that for

CanCM4, snw is not stored in the CMIP5 archive for both his-

torical andRCP4.5 simulations, so thatweuse the corresponding

runs fromCanESM2 instead, which consists of CanCM4coupled

to a terrestrial and ocean carbon model. Also for Hist we com-

pute ensemblemeans permodel and amultimodelmean from31

members in total. All monthlymodel output grids are remapped

to a common 28 3 28 geographical grid.

c. Calculation of anomalies

To be independent of seasonal variations and to exclude

biases due to the time of initialization of the decadal experi-

ments, the monthly time series for GRACE-REC, Init, and

Hist are averaged to annual sampling. Subsequently, from each

time series the linear trend and bias for the time span 1970–

2010 are removed to obtain anomalies. We restrict our analysis

to those detrended values since the linear drifts present in the

GRACE-REC time series originate solely from trends in the

precipitation dataset used for the reconstruction. Thus, they

are not fully representative for all long-term changes in TWS,

since long-term changes in runoff and evapotranspiration are

not considered. Furthermore, the trends are different for dif-

ferent versions of the GRACE-REC dataset that use different

reanalyses, and are not everywhere similar to the trends in the

original GRACE observations, which also capture changes in

deep groundwater. In addition, there is still a large intermodel

spread regarding soil moisture and snow trends in CMIP5

models, which restricts consensus between trends in GRACE-

based TWS and mTWS from CMIP5 to selected regions only

(Jensen et al. 2019).

We recall that TWS and mTWS anomalies that remain after

removing the linear trend do not entirely represent the same

physical entity. Model-based mTWS does not include surface

water variability in rivers and lakes, which are typically rep-

resented by a river routing module in ESMs but are not stored

in the CMIP5 archive. Furthermore, mTWS does not capture

anthropogenic interventions on the water cycle such as

groundwater abstraction or dam building, which is an emerging

signal in the GRACE TWS observations (Voss et al. 2013). In

addition to the incomplete representation of TWS inESMs, the

GRACE-RECdatasetmight be biased in some regions by non-

water-related processes, such as glacial isostatic adjustment

(GIA) and tectonic deformations. To account for such con-

ceptual differences in TWS and mTWS we exclude in our

analysis regions that are strongly affected by surface water

variability, groundwater abstraction, and earthquakes (about 7%of

the land surface without Greenland and Antarctica; see supple-

mental material section S3). GIA causes a long-term linear mass

trend, hence not influencing the annual anomalies. The soil depth

realized in ESMs is typically limited to a constant depth of a few

meters, which probably is not representative for the full water

holding capacity everywhere.However, a certain fraction of deeper

soil layers, groundwater, and surface water can be implicitly con-

tained in total soil moisture content as the water budget is ap-

proximately closed in theCMIP5models (Liepert andLo2013) and

water transport to ocean and atmosphere is limited. But ground-

water dynamics beneath the soil layer and groundwater–soil inter-

actions are not represented in the models and thus their feedback

on the climate system is not considered in the CMIP5 ESMs, pos-

sibly leading to systematic deficits. Even though mTWS might not

capture the full magnitude of the water storage variability at least

the relative changes in the anomalies should be similar, as a drying

or wetting of the upper soil layers is often reflected in a general

drying orwetting of all water storage compartments (Swenson et al.

2008). Thus, at least in terms of Pearson’s correlation coefficient

that is used in the following sections as one of our evaluation

metrics, the different magnitudes of TWS and mTWS should be of

minor consequences for the results.

3. Results

a. Global average

To assess the general skill of CMIP5 decadal hindcasts re-

garding mTWS we first analyze time series of the global land
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average (excluding Greenland and Antarctica, and regions

highly affected by surface waters, groundwater abstraction,

and earthquakes as defined in the supplemental material)

calculated from the yearly mTWS anomalies in the time span

1970–2010. For illustration, in Fig. 1 the global mean GRACE-

REC anomaly time series expressed in equivalent water height

(EWH) is displayed with gray bars and corresponding error

bars obtained from 100 ensemblemembers. It is overlaid by the

global mean forecast year 2 anomaly time series of the multi-

model mean (MMM; red line) and the global mean anomaly

time series of the MMM from the uninitialized runs (dashed

blue line). The respective model spreads are depicted in light

red and light blue shading. The mean spread of the forecast

year 2 Init time series is 3.44mm EWH, and for the Hist time

series it is 3.77mm EWH. Both values exceed the mean spread of

the GRACE-REC time series (2.05mm EWH), and thus we con-

sider GRACE-REC a reliable reference for evaluation of model

results. Furthermore, the Init spread is smaller than theHist spread,

which hints at a superior reliability of Init predictions over Hist ex-

periments for forecast year 2. We note that the root-mean-square

(RMS) of the global mean time series of the Init run (1.56mm

EWH) is only about half as large as for GRACE-REC (2.92mm

EWH), and for the Hist run (1.22mm EWH) even smaller. This

might point toward some skill in representing variability of the ini-

tialized predictions compared to uninitialized runs. One reason for

smaller variability in the models (compared to GRACE-REC)

might be the incomplete representation of TWS in CMIP5 models

discussed above. Another reason is the tendency of multimodel

means to smooth out temporal anomalies via ensemble averaging,

which is a known issue in seasonal and decadal modeling (Smith

et al. 2019). Several approaches for rescaling forecast anomalies have

beenproposed; however, thediscussion about thebestmethod is still

ongoing, so none of those methods is implemented here.

The correlation (which is unaffected by the magnitude of

the signal) of the GRACE-REC time series with the MMM

forecast year 2 time series is 46%, which is substantially higher

than the correlation with the MMM Hist time series (15%).

Furthermore, the RMSD between the observational time se-

ries and the forecast year 2 initialized time series is smaller than

for the Hist time series (2.58 vs 2.95mm EWH). We repeat the

computation of the correlation and RMSD between the

GRACE-REC anomaly time series and the model time series

for all forecast lead times from 1 to 10 years (Fig. 2). In addition

to the MMM (black lines) we also compute the correlations

and RMSD for the ensemble means of the five individual

models (colored lines in Fig. 2). As expected, the correlation

generally decreases with increasing forecast year. For the

MMM the initialized hindcasts exceed the uninitialized runs

(stippled lines in Fig. 2) in terms of correlation for the first

three forecast years (0.64, 0.46, and 0.24 vs 0.15). From forecast

year 4 onward no clear improvement of Init over Hist is found.

The same holds for the RMSD (Fig. 2b), which is clearly

smaller for Init than for Hist for the first two forecast years

(2.23 and 2.58mm vs 2.95mm) and very slightly smaller for the

third forecast year (2.93mm).

For the individual models (colored lines) the correlation–

forecast year relationship is noisier, but for the majority also at

least the first three forecast year correlations are above theHist

correlation of the respective model. Exceptions are the

HadCM3 and the MPI-ESM-LR: for these models the Hist

correlation is already comparably high (0.29 and 0.31), and

only the first (MPI-ESM-LR) and respectively second

(HadCM3) forecast years are above this value. In theHadCM3

some later forecast years are also above the Hist correlation,

but this is probably not a robust result. For forecast year 1 and 2

the correlation for the MMM is higher than all individual

model correlations (black line above colored lines), and for the

RMSD the MMM has the lowest values compared to the in-

dividual models. This suggests that using an ensemble of dif-

ferent models for forecasting mTWS is preferable over using

FIG. 1. Global land average (Greenland, Antarctica, and regions highly affected by surface waters, groundwater

abstraction, and earthquakes excluded) annual time series for 1970–2010 for GRACE-REC TWS anomalies (gray

bars), forecast year 2 initialized hindcast mTWS of multimodel mean (MMM; red line), and mTWS MMM of

uninitialized simulations (dashed blue line). Corresponding error bounds computed as the (weighted) standard

deviation of the respective ensemble members are indicated by thin black error bars (GRACE-REC) and light red

and light blue shaded areas (MMM Init and Hist, respectively).
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one specific model alone. A positive relationship between the

size of the ensemble and the correlation of the ensemble mean

with the observations was already found in decadal hindcasts

for other variables (e.g., temperature and precipitation; Smith

et al. 2019) and here we show that this also applies for TWS.

The time scale of 3 years that we identify for the improved

prediction skill of the Init over the Hist simulations is largely

consistent with a study from Yuan and Zhu (2018), who ana-

lyzed the maximum lead times where initial conditions prevail

over meteorological forcings in TWS predictability and found

it to be shorter or equal to 3 years in 79% of the land area

(Greenland, Antarctica, and desert regions excluded), and

shorter or equal to 5 years in even 89%.

For the correlation and RMSD values of the MMMwe perform

an error propagation considering the spread of the ensemble

members of GRACE-REC and of the Init/Hist runs (see supple-

mental material section S2). The resulting error bounds are dis-

played in light gray in Fig. 2 representing the standard deviation

of the correlation and RMSD values (1-sigma). As expected

from the large model spread, the uncertainties of the correla-

tions and RMSDs for the global average are quite large and

only in the first forecast year a clear separation between Init

and Hist simulations is seen. Thus, although there is some in-

dication that forecast year 2 and 3 exhibit forecast skill (the

correlations are higher than those for forecast year 4–10, and

higher than the Hist correlations; RMSD values are respec-

tively lower), at this time no clear conclusion can be drawn

about the robustness of this result. The relatively large error

bounds also arise from a limited number of data points (41)

from which correlation and RMSD are calculated and thus will

decrease with an increasing number of hindcast experiments.

For the global average the Init predictions outperform the

Hist experiments for the first two to three forecast years. To

quantify the added value of especially the second and third

forecast years of the decadal predictions we compare the re-

sults to those from a persistent forecast (Fig. 3). This means

that instead of using the actually predicted TWS state we retain

the TWS state of the first forecast year also for the second,

third, and so on up to tenth forecast year. Keeping the pre-

diction for the first forecast year for the next couple of years

would—in case of having a similar quality as the decadal

predictions—be a cheap alternative for dynamic forecasting of

TWS from an ESM integration. However, when calculating the

correlation of the global average GRACE-REC time series

with the MMM persistent forecast, it shows that for forecast

years 2 and 3 it is substantially lower than for the decadal

predictions, whereas the RMSD is higher (Fig. 3). This further

supports our earlier conclusion that the decadal predictions

have an actual forecast skill for mTWS beyond the first forecast

year. The light gray and light red bounds around the curves in

Fig. 3 denote the 1-sigma error boundary of the correlation

coefficients and the RMSDs, calculated via variance propaga-

tion of the ensemble spread of GRACE-REC and the ESMs

(light gray same as in Fig. 2). Due to the large overlap of the

error bounds especially in the third year these results still re-

main somewhat arguable. In addition to the rather short time

span that contributes to the uncertainty, it is mainly caused by

the spread of the ESM results.

To test if the model spread is an appropriate measure for the

prediction uncertainty (Goddard et al. 2013) we calculate the

temporal mean of the spread for the Init and Hist runs and

compare it to the standard deviation of the differences between

FIG. 2. (a) Correlations (as a function of forecast lead time) of the global mean GRACE-REC TWS anomaly

time series with the global mean forecast year mTWS time series from decadal hindcasts (solid lines) and the

uninitialized time series (dashed lines) for the time span 1970–2010. Colored lines indicate individual ESMs; the

solid black line denotes the multimodel mean (MMM) of the five ESMs. Greenland and Antarctica are excluded.

(b) As in (a), but for RMSD. Light gray shaded areas denote the standard deviations of the MMM correlations

and RMSDs.
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MMM and observation anomalies (i.e., the RMSD). In a per-

fectly calibrated prediction system the two measures should be

the same (Palmer et al. 2006). However, here the model spread

overestimates the RMSD (cf. green lines to black lines in

Fig. 3b) by a factor of 1.1 to 1.5 (mean 1.3). This indicates that

the inhomogeneity between the different CMIP5 models is still

too large for reliable forecasts of mTWS, which was similarly

found for instance by Goddard et al. (2013) and Doblas-Reyes

et al. (2013) for other variables (temperature, precipitation).

As a result also the error boundaries of the correlation and

RMSD values probably are rather pessimistic estimates. We

believe that five models with a total number of 39 ensemble

members do not represent a perfectly calibrated system, and a

one-to-one match thus cannot be expected. An increased

number of ensemble members and further model develop-

ments might improve the reliability (see section 3c). Apart

from the (rather constant) factor between Init model spread

and Init RMSD, the evolution of the two measures over the

different forecast years is increasing in parallel, which means

that themodel spread is generally reflecting the influence of the

initialization on the forecast quality. Furthermore, the Init

spread is smaller than the Hist spread for the first two forecast

years, consistent with the findings for correlation and RMSD

and further strengthening the conclusion of a global mean

forecast skill of decadal mTWS hindcasts for the first two to

three forecast years.

b. Regional analysis

In addition to the analysis of the global mean, also regional

skill assessments are performed. For Fig. 4 we calculate annual

time series averaged over different Köppen–Geiger climate

zones (Peel et al. 2007). In equatorial regions (22% of land

area) the initialized runs clearly outperform the uninitialized

runs for the first three forecast years (Fig. 4a). For these years

the MMM correlation is substantially higher than the global

mean correlation (0.90, 0.64, and 0.38 vs 0.64, 0.46, and 0.24; cf.

Fig. 2a) and also exhibits substantially smaller error bounds.

The good forecast skill in equatorial regions is caused by a

generally deeper soil depth compared to the other climate

zones and correspondingly a longer soil moisture memory of

the initialization (Stacke and Hagemann 2016). In the other

climate zones only the first forecast year shows a clear

predominance of Init over Hist runs, thus the forecast skill

for TWS seems to be limited to shorter lead times in these

regions (Figs. 4b–d). In temperate regions (16% of land

area) the first year’s correlation is slightly higher than for

the global mean correlation (0.74 vs 0.64), whereas for arid

and polar regions it is lower (0.32 and 0.40). The reason for

the poor performance in arid regions (36% of land area)

could be related to the generally limited presence of water

combined with sporadic rain events. In polar regions (26%

of land area) the low correlations might be due to a limited

or even missing representation of frozen soil and surface

water in ESMs and the generally more complex hydrolog-

ical processes related to snow accumulation and melting.

Temperate regions only cover a small percentage of the

land area, so the aggregation area might be too small to

yield a reliable result.

For a more detailed regional analysis of forecast skill we

compute global maps of correlation for theGRACE-RECwith

the Init and Hist MMM time series (Fig. 5). From the visual

comparison of the Hist correlation map (Fig. 5a) with the

MMM forecast year 1 correlation map (Fig. 5b) we conclude a

general success of the initialization, as its correlation is much

higher than without initialization. This shows that initialization

has a direct positive effect not only on the respective initialized

variables (e.g., ocean temperature and salinity) but also on

derived variables such as mrso and snw. The MMM forecast

FIG. 3. Comparison of mTWS Init simulations (solid black, as in Fig. 2) and a persistent forecast (red) for the

multimodel mean (MMM) global average time series for the time span 1970–2010 in terms of (a) correlation and

(b) RMSD. The green lines in (b) denote themean spread of theMMMfor Init andHist. The light gray (as in Fig. 2)

and red bounds indicate the 1-sigma error boundaries.
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year 2 correlation map (Fig. 5c) also exhibits a higher fraction

of positive correlations than the Hist correlation map.

To more objectively analyze the maps, we calculate for

each map (and for the maps for forecast year 3–10; not shown)

the percentage of global land area exhibiting a significantly

positive or negative correlation (Fig. 5d, blue curves).

Furthermore, we obtain the percentage of significantly positive

or negative correlation within the equatorial climate zone as

defined in the Köppen–Geiger classification scheme (Fig. 5d,

red curves). The significance of the correlation coefficients was

tested for a confidence level of 95%. For forecast years 1 and 2

of the initialized hindcasts, the global land area fraction being

significantly positive is clearly above the corresponding value

from Hist (38% and 16% vs 9%). For forecast year 3, the

fraction (12%) is still higher than for the Hist simulations and

all longer lead times between 4 and 10 years (max. 10%). Yet,

the difference from the later forecast years is not as distinctive

as for the first two forecast years. Thus, a general grid-scale

forecast skill of CMIP5 decadal predictions for TWS of 3 years

(or even more) is not identified. However, when focusing on

the equatorial climate zone only, the percentage of signifi-

cantly positive correlations in forecast year 3 is clearly higher

than for the later forecast years (15% vs a maximum of 11%)

and also compared to Hist (10%). This confirms the results

from Fig. 4a and suggests that the predictive skill in equato-

rial regions is higher than for other climate zones, possibly

due to a longer-lasting influence of the initialization caused

by an increased soil water memory time in these regions. The

results for the significantly negative correlations (light blue

and red curves in Fig. 5d) largely reflect the findings for the

significantly positive correlations and thus are not further

discussed here.

FIG. 4. Correlations (as a function of forecast lead time) of the GRACE-REC TWS anomaly time series with the

forecast year mTWS time series from decadal hindcasts (solid lines) and the uninitialized time series (dashed lines)

averaged over different climate zones for the time span 1970–2010. Colored lines indicate individual ESMs; the

solid black line denotes the multimodel mean (MMM) of the five ESMs. Light gray shaded areas denote the

standard deviations of the MMM correlations.
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c. A first look into CMIP6

Phase 6 of the Coupled Model Intercomparison Project

(CMIP6; Eyring et al. 2016) started a few years ago, and the

results from the various efforts are currently being made

available. Besides major changes in the organization of the

simulations, the participating ESMs were subject to further

developments of their physical and numerical schemes. One

element of CMIP6 is the Decadal Climate Prediction Project

(DCPP; Boer et al. 2016) which defines the experiment setup

for initialized simulations. Compared to CMIP5, more fre-

quent initialization dates and larger ensemble sizes are ex-

pected to increase the robustness of the predictions. However,

the choice of methods to initialize the simulations and to

generate ensembles is still left to the individual research groups

and is not specified by DCPP.

At the time of writing, CMIP6 decadal hindcasts and cor-

responding Hist simulations are available for the variables

mrso and snw from four ESMs. As the IPSL-CM6A-LR does

not provide yearly-initialized decadal runs for its predecessor

model from CMIP5, we restrict the analysis to three models

(CanESM5, MIROC6, and MPI-ESM1–2-HR; see Table 1)

with 35 ensemble members (30 members for the Hist simula-

tions) in total. From these we compute ensemble means per

model. We also calculate a multimodel mean from the en-

semble means of the three models together with the weighted

MMM spread. We apply the same processing as before:

building forecast year time series, and calculating correlations

and RMSDs from the global mean Init and Hist with the global

mean GRACE-REC TWS time series depending on the fore-

cast year. Subsequently, we compare the results from the

CMIP6 hindcasts of the three different models to the CMIP5

hindcasts of the respective predecessor models (CanCM4,

MIROC5, and MPI-ESM-LR). We also compare the MMM

from the three CMIP6 models to the MMM of the three cor-

responding CMIP5 models (Fig. 6).

Interestingly, the forecast year 1 correlations for the CMIP6

hindcasts are smaller than those for the CMIP5 hindcasts for

two of the three models and theMMM (see Fig. 6, left) and the

RMSDs in forecast year 1 are larger in CMIP6 vs CMIP5

hindcasts (see Fig. 6, right). However, with just three models

providing data at this time, it is not yet possible to trace this

behavior to a common source such as changes in the initiali-

zation strategy (full-field vs anomaly), the addition of further

variables for initialization, changes in the initialization date, or

simply the model resolution. The forecast year 2 correlations,

however, are larger for CMIP6 than for CMIP5 for all three

models and the MMM; the RMSD is smaller only for

CanESM5 and MPI-ESM1–2-HR. For forecast year 3, the re-

sults again vary frommodel tomodel: CanESM5 andMIROC6

degrade relative to CanCM4 andMIROC5; andMPI-ESM1–2-

HR improves substantially over its predecessor. The deviations

between the three models result in slightly degraded forecast

year 3 correlations and RMSDs for the MMM when pro-

gressing from CMIP5 to CMIP6. Concluding from only three

models so far, the forecast skill of decadal mTWS predictions

in CMIP6 for the first three forecast years seems to be on a

similar level to that in CMIP5. However, the differences be-

tween the model generations depend on the respective model:

for MPI-ESM (Figs. 6e,f) substantial improvements are docu-

mented between CMIP5 and CMIP6, but not for the other

two models.

Generally, the CMIP5 MMM correlation curve (Fig. 6g)

exhibits a clear linear decay of the correlation from forecast

year 1 to 3 approaching the level of the Hist correlation for the

FIG. 5. Global maps of correlation of the GRACE-REC TWS anomaly time series with (a) uninitialized,

(b) forecast year 1, and (c) forecast year 2MMMmTWS anomaly time series for the time span 1970–2010. Stippled

areas indicate significant correlation. Areas strongly affected by surface waters, groundwater abstraction, or

earthquakes are shaded in gray. (d) Percentage of land area with significantly positive and negative correlation as

function of forecast lead time for the global land area (blue) and the equatorial climate zone (red).
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later forecast years. This led us to the conclusion of a mTWS

forecast skill limited to about 2–3 years (section 3a). However,

for CMIP6 the shape of the correlation curve is not that dis-

tinctive: after a drop from forecast year 1 to 3 the correlations

rise again for forecast years 4 and 5 before dropping to about

the level of the CMIP5 correlations. This might be an indica-

tion for possible predictability beyond forecast year 3 in

CMIP6 decadal predictions, but as only three models are

evaluated here, the result is certainly not very robust. The

MMM Hist correlation of the CMIP6 simulations is

FIG. 6. Comparison of CMIP5 (blue) and CMIP6 (red) mTWS decadal hindcasts. (a),(c),(e) Correlation of the

globalmeanGRACE-RECTWS time series and the Init andHistmTWS time series as function of forecast time for

three different ESMs for the time span 1970–2010. (g) The MMM from the three models above together with the

1-sigma error boundaries. (b),(d),(f),(h) As in (a), (c), (e), and (g), but for RMSD. Green lines in (g) indicate the

mean spread of the ensemble members around the MMM.
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substantially higher than for CMIP5. Thus, in CMIP6, the Init

simulations are already inferior to the Hist simulations after

the second forecast year. Furthermore, for the later forecast

years the Init correlations do not—as in CMIP5—approach the

level of the Hist correlation but rather drop down to the

CMIP5 correlation level. When several other modeling groups

have finally published their decadal hindcast simulations, the

results for the MMM and thus the conclusions on decadal

prediction skills of CMIP6 regarding mTWS in general need to

be confirmed.

Regarding the error bounds of the MMM correlation and

RMSD curves, we note that the error boundaries do not no-

tably decrease from CMIP5 to CMIP6. Furthermore, the mean

overestimation of the RMSD by the model spread (green lines

in Fig. 6h) also rises from a factor of 1.49 for CMIP5 to a factor

of 1.60 for CMIP6. The reason might be that the increased

model complexity involved in CMIP6 is also reflected in larger

disagreements between model results and larger mean en-

semble spreads. An indication for an improved forecast reli-

ability in forecast years 2 and 3 in CMIP6 is the smaller spread

of CMIP6 compared to CMIP5 in these years, leading to a

convergence of model spread and RMSD. But the number of

ensemble members is probably still too small to act on the

assumption of a well-calibrated prediction system and to con-

clusively judge the prediction quality.

In Fig. 6 it is striking that, in contrast to CanESM and

MIROC (Figs. 6a–d), the MPI-ESM metrics for forecast years

1–3 are much improved from CMIP5 to CMIP6 (Figs. 6e,f).

The reason might be that for CMIP6 in the MPI-ESM a new

five-layer soil–hydrology scheme was implemented that al-

lowed for the separation of the soil into a top layer, root

zone, and deep soil layer with physically distinct processes

(Hagemann and Stacke 2015) while only a simple one-layer

scheme was employed in the CMIP5 version of the MPI-ESM.

This modification was already shown to improve surface tem-

peratures (Bunzel et al. 2018) and affect soil moisture memory

(Stacke and Hagemann 2016). Furthermore, the CMIP6

hindcasts are integrated with higher horizontal resolution than

the CMIP5 ones (0.98 vs 1.98). In contrast, for CanESM5 and

MIROC6 no substantial changes were made either in the land

surface component or in the spatial resolution compared to

their predecessors from CMIP5. This might be an indication

that incorporating more soil layers and a deeper soil depth in

coupled ESMs has a positive impact on the prediction skill of

decadal prediction regarding water storage–related variables.

4. Summary

We analyzed the forecast skill of decadal predictions from

five yearly-initialized CMIP5 coupled Earth system models

(Table 1) with respect to terrestrial water storage (TWS) re-

lated variables total soil moisture content (mrso) and surface

snow amount (snw). Wemade use of a global reconstruction of

climate-driven TWS changes (GRACE-REC; Humphrey and

Gudmundsson 2019) that is based on observations from the

satellite mission GRACE to carry out a skill assessment over

41 years in total (1970–2010). Skill was evaluated with respect

to different yearly forecast horizons. Thus, we created forecast

year time series from the yearly-initialized hindcasts (referred

to as Init simulations) for the ensemble means of the individual

models as well as for the multimodel mean (MMM) of the five

models. As a reference we used the uninitialized (Hist) ex-

periments (historical and RCP4.5 simulations) from the re-

spective models. Afterward, we computed yearly-averaged

anomaly time series (i.e., linear trend and bias removed) for

the time span 1970–2010 from Init, Hist, and GRACE-REC.

The skill assessment was carried out on global and regional

scales. We found that for the global land average of the MMM

and the majority of the individual models the Init simulations

outperform the Hist runs for the first three forecast years in

terms of correlation and RMSD. We also deduced that the use

of the MMM is preferable over individual models as the cor-

relation is highest (RMSD is lowest) for the MMM in the first

two forecast years and the general shape of the correlation

curve is most distinct (monotonically decaying for the first 3

years and approximating the Hist level afterward) whereas the

curves for the individual models are noisier. The maximum

time of 3 years for the predominance of Init over Hist simu-

lations is consistent with a study by Yuan and Zhu (2018), who

found TWS predictability to be maximal 3 years for 79% of the

land area. To demonstrate the actual forecast skill of the sec-

ond and third forecast year we showed that the MMM global

mean Init correlations for these years are also higher than

those obtained from a persistent forecast, thereby underlining

the added value of dynamic forecasts derived fromESMmodel

runs with respect to trivial forecasts. We also analyzed if the

ensemble spread around the MMM global mean is adequately

representing the prediction uncertainty by comparing it to the

RMSD between MMM and GRACE-REC anomalies. We

found that the model spread generally reflects the rise of the

RMSD with increasing forecast year, but overestimates it by a

factor of about 1.3. This might be due to the relatively small

ensemble size.

In the regional analysis we repeated the skill assessment for

time series averaged over different climate zones. While in

arid, temperate, and polar regions the results for the Init sim-

ulations are degraded in comparison to the global analysis, in

the equatorial climate zone much higher correlations and

smaller RMSDs were found. Even for forecast year 3, a clear

prediction skill at 28 grid cell scales was documented in the

equatorial climate zone. This is related to generally larger soil

depths and thus longer soil memories in these regions leading

to a longer-lasting influence of the initialization. From the 28

global maps, a general success of the initialization in forecast

year 1 was identified (38% of land area exhibits significantly

positive correlation, compared to 9% for the Hist runs).

However, a general regional prediction skill for TWS for lead

times longer than 2 years is not found in CMIP5.

We also assessed the forecast skill of decadal hindcasts al-

ready available for three CMIP6 models (Table 1) and their

MMM, and compared the results from those of the respective

CMIP5 models. The general level of prediction skill of the

MMM global average for the first three forecast years was

found to be similar for CMIP5 and CMIP6 from only three

models available so far. An improved reliability of CMIP6

in the early forecast years might be indicated by the smaller

mean ensemble spread compared to CMIP5. When looking at
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individual models, we noticed a clear improvement from

CMIP5 to CMIP6 for MPI-ESM only, which might be due to

the fact that in MPI-ESM a new five-layer soil–hydrology

schemewas implemented for CMIP6, whereas forMIROC and

CanESM no significant changes of the soil scheme were made.

This indicates a positive impact of a multilayer hydrology scheme

on the predictive skills of decadal simulations regarding TWS.

The current overlap time span between GRACE observa-

tions and CMIP5 decadal predictions is only 9 years, which is

too short for a robust skill assessment. Hence, a global recon-

struction of TWS extending back to 1970 has been used in this

study to demonstrate the potential value of satellite gravity

data for the assessment of decadal climate prediction. With

more hindcast experiments from CMIP6 and a growing data

record from GRACE-FO a direct comparison of satellite data

with the results fromESMexperiments at interannual to decadal

scales will be possible very soon. Since satellite gravimetry

sensesmass anomalies independently of its surface exposure and

physical condition, it is equally able to record changes in snow

storage, soil moisture, and deep groundwater, thereby providing

information about relative changes in the amount of available

water at large spatial scales on the globe equally well in both

tropical and polar climates.
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