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Abstract Coupled climate models participating in the CMIP5 (Coupled Model Intercomparison
Project Phase 5) exhibit a large intermodel spread in the representation of long-term trends in soil moisture
and snow in response to anthropogenic climate change. We evaluate long-term (January 1861 to December
2099) water storage trends from 21 CMIP5 models against observed trends in terrestrial water storage
(TWS) obtained from 14 years (April 2002 to August 2016) of the GRACE (Gravity Recovery And Climate
Experiment) satellite mission. This is complicated due to the incomplete representation of TWS in CMIP5
models and interannual climate variability masking long-term trends in observations. We thus evaluate
first the spread in projected trends among CMIP5 models and identify regions of broad model consensus.
Second, we assess the extent to which these projected trends are already present during the historical
period (January 1861 to August 2016) and thus potentially detectable in observational records available
today. Third, we quantify the degree to which 14-year tendencies can be expected to represent long-term
trends, finding that regional long-term trends start to emerge from interannual variations after just 14
years while stable global trend patterns are detectable after 30 years. We classify regions of strong model
consensus into areas where (1) climate-related TWS changes are supported by the direction of GRACE
trends, (2) mismatch of trends hints at possible model deficits, (3) the short observation time span and/or
anthropogenic influences prevent reliable conclusions about long-term wetting or drying. We thereby
demonstrate the value of satellite observations of water storage to further constrain the response of the
terrestrial water cycle to climate change.

1. Introduction
The terrestrial branch of the global water cycle is an important component of the Earth's coupled climate
system: Water available in the soil critically determines biomass production that effectively takes up carbon
dioxide from the atmosphere and thus constitutes the land cover and consequently also the albedo of the
Earth's surface. The availability of water at the surface influences the rate of evapotranspiration and thereby
the amount of latent heat absorbed by the atmosphere locally and advected to distant regions along with the
tropospheric winds; and water in the form of snow cover thermally isolates the soil from the air above it.
The accurate representation of the terrestrial water dynamics and its various feedbacks to the atmospheric
water, energy and carbon cycles is thus critically important for interactively coupled global numerical cli-
mate models that are used to infer information about the current state and the future evolution of the Earth's
climate conditions (Trenberth, 2010).

Due to their direct effect on the availability of freshwater resources, investigating climate change impacts
on the global water cycle is of great societal relevance. Changes in terrestrial water storage (TWS) might
reflect long-term wetting or drying in various regions of the world, and the identification of such regions is of
substantial importance for water resources management. However, coupled climate models used to predict
future climatic conditions still exhibit a spread in the representation of long-term trends in soil moisture and
other land water related variables (Guo & Dirmeyer, 2006; Figure 12.23 in Berg et al., 2017; Collins et al.,
2013; Yuan & Quiring, 2017).

Comparing the output of numerical models with observations is crucial to demonstrate their reliability and
to test predictive capacities, but measurements of water storage changes are difficult to obtain. A classical
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approach for the determination of TWS at basin scale is the integration of the water balance equation (pre-
cipitation minus evapotranspiration minus runoff), see Rodell et al. (2004). However, this is challenging
on a global scale, since streamflow measurements are sparse and evapotranspiration is generally difficult
to measure (Wartenburger et al., 2018). Especially, trends in water storage cannot be recovered well by this
method due to biases in the water flux observations (Hirschi & Seneviratne, 2017).

Complementary to conventional meteorologic observations of atmospheric water fluxes, the satellite mis-
sion Gravity Recovery And Climate Experiment (GRACE; Tapley et al., 2004) in operation from 2002 to 2017
allowed for the first time the observation of water storage changes with global coverage from space. By eval-
uating relative distance changes between two spacecraft at very low altitudes of 400–500 km, time variations
in the Earth's gravity field are mapped that can be unambiguously related to changes in TWS. Due to the
indirect observation concept, GRACE essentially senses water mass anomalies independently of their sur-
face exposure and thus integrates all mass changes vertically from the surface down to the deepest aquifers.
This unique capability of the gravimetric method makes GRACE highly complementary to alternative radio-
metric satellite techniques of soil moisture remote sensing that are only sensitive to changes in the top few
centimeters of soil (Dorigo et al., 2015). GRACE mission data have been used in various hydrometeorolog-
ical applications, for example, Famiglietti and Rodell (2013), and it is rated among the top five priorities of
the future Earth observation capacity by the most recent National Aeronautics and Space Administration
decadal survey (Committee on the Decadal Survey for Earth Science and Applications from Space et al.,
2018). The successor mission GRACE-FO (Follow On), launched in May 2018, is expected to continue this
important observational record over the next decades (Flechtner et al., 2016), which will facilitate the sep-
aration between interannual variability and long-term climatological trends in TWS. Because the limited
time span of GRACE data makes the identification of climate-related signals still challenging, this study
aims to investigate how GRACE TWS trends could (and should) be compared to model-derived trends.

TWS as observed with GRACE has already been used to validate both global hydrological models (Döll et al.,
2014; Eicker et al., 2014; Güntner, 2008; Syed et al., 2008) and land surface models (Scanlon et al., 2018;
Zhang et al., 2017) which are driven by a prescribed meteorological forcing. In this study, we focus on inter-
actively coupled Earth System Models (ESMs) participating in CMIP5 (Coupled Model Intercomparison
Project Phase 5, Taylor et al., 2011). Comparing GRACE trends with long-term coupled climate model pro-
jections is challenging in mainly two aspects: (i) In contrast to GRACE TWS (i.e., the full integrated water
column, including all water reservoirs), TWS in the models is reflected typically only by means of snow stor-
age and soil moisture. The representation of the latter critically depends on the depth of the soil column and
the number of vertical layers considered. In particular, current ESMs do not explicitly simulate groundwa-
ter storage changes. As groundwater-surface interactions play an important role in the global hydrological
cycle, this poses an additional source of uncertainty in long-term model projections of wetting and drying.
(ii) Coupled runs in CMIP5 starting from preindustrial conditions and extending over the whole historical
period until the present day are forced with temporally variable solar radiation, aerosols, CO2 concentra-
tions, and land use. Those experiments are thus expected to reproduce the climate variability in a statistical
sense only. As a result, different realizations of the interannual and decadal climate variability are superim-
posed over the climatological trends so that a direct comparison with the 14-year GRACE TWS time series
only has limited explanatory power. While a regional study for the Mississippi Basin (Freedman et al., 2014)
showed reasonably good agreement for the annual amplitude of GRACE data and a subset of CMIP5 models,
Fasullo et al. (2016) found the trends from historical CESM1-CAM5 runs compared to GRACE to be domi-
nated by internal variability rather than by the forced response. Different drivers of TWS trends observed by
GRACE were investigated by Rodell et al. (2018), who also made use of CMIP5 model precipitation projec-
tions to attribute wetting and drying tendencies in some regions to climate-driven precipitation changes. To
our knowledge, an extensive global comparison of soil moisture and snow trends modeled over more than
two centuries (in the following referred to as bicentennial) against GRACE observations has never been
conducted with an ensemble of models such as CMIP5.

In response to these challenges, we focus in this study in particular on the correspondence of bicentennial
trends in TWS as simulated by the majority of CMIP5 models and TWS tendencies as observed by GRACE
and investigate regions of agreement and disagreement on wetting or drying trends in models and satellite
observations.
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Figure 1. TWS trends from ITSG-Grace2018s (preliminary) for the time span April 2002 to August 2016 (without
Greenland, Svalbard, Gulf Coast of Alaska, and Antarctica). Stippling indicates regions with nonsignificant trends
(𝛼 = 0.05).

This paper is structured as follows: First, we compute global maps of TWS trends from GRACE data (section
2) and CMIP5 models (section 3) together with an evaluation of the variability among different models and
within historical and future time spans. We estimate the influence of the different time series lengths for
GRACE and models by means of two model studies using model TWS tendencies from time periods ranging
from 14 to more than 200 years (section 4). The TWS trend maps from GRACE and CMIP5 models are
subsequently compared (section 5). Next, we investigate hot spot and noncompliance regions of wetting and
drying trends regarding their uncertainty (section 6), which might be caused by model deficits or natural
interannual variability and human impacts affecting the GRACE-derived trends. Section 7 summarizes the
results and addresses future work.

2. TWS Trends From GRACE Data
To obtain a global grid of observed TWS trends we use the ITSG-Grace2018s trend Level 2 data (Mayer-Gürr
et al., 2018), which was obtained from estimating a long-term mean gravity field model together with linear
trend and annual cycle from all available GRACE Level 1B RL03 data. The ITSG-Grace2018s trend used here
is a preliminary version containing Level 1B data of the time span April 2002 to August 2016 (∼14 years). It
will be updated once the complete time series of Level 1B RL03 data (April 2002 to June 2017) is available.
However, for the trend only minor changes are expected by extending the time series by less than 1 year.

The spherical harmonic coefficients (Level 2) of the trend in gravitational potential are given up to degree
nmax = 120 and are postprocessed as follows: The effect of geocenter motion is taken into account by aug-
menting the GRACE data with the linear trends of degree 1 harmonic coefficients provided by Swenson et al.
(2008). The zonal Δc20 trend coefficient is replaced using a result from Satellite Laser Ranging (Cheng et al.,
2013). To reduce mass trends originating from glacial isostatic adjustment (GIA), we subtract a model from
A et al. (2013) and to mitigate the effect of correlated noise a DDK4 filter (Kusche, 2007) is applied. We
calculate the TWS trend on a 2◦ × 2◦ geographical grid (Figure 1) according to

tws(𝜆, 𝜃) = M
4𝜋R2𝜌w

nmax∑

n=1

n∑

m=−n

(2n + 1)
(1 + k′

n)
ΔcnmYnm(𝜆, 𝜃) (1)

where 𝜆 and 𝜃 denote the spherical coordinates, M and R are the mass and the radius of the Earth,
𝜌w = 1, 000 kg/m3 is the density of water, k′

n denote the Load Love Numbers (Lambeck, 1988), Δcnm
are the filtered spherical harmonic coefficients of the gravitational potential, and Ynm(𝜆, 𝜃) are the surface
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spherical harmonic functions. Corresponding standard deviations of the TWS trends are obtained
by variance propagation from realistic error assumptions provided with the Δcnm coefficients of the
ITSG-Grace2018s trend.

The significance of the trend can be tested with a parameter test. The estimated trend divided by its estimated
standard deviation is compared to the critical value of the normal distribution for a certain significance level
1 − 𝛼 which we set to 95% in this study. Generally, the reliability of trends from GRACE is high. Among
the solutions of different GRACE processing centers trends over the same time period are very similar
(Scanlon et al., 2018), even if a different representation (mascons instead of spherical harmonics) is chosen.
Thus, selecting another GRACE solution (e.g., from JPL or CSR) does not alter the findings of our study
(not shown).

GRACE-derived trends might not originate purely from TWS changes everywhere, as residual tectonic
effects from GIA (Caron et al., 2018), postseismic deformation after large earthquakes (Han et al., 2008,
2010), or residual atmospheric mass variability (Fagiolini et al., 2015) can overlay TWS trends. Furthermore,
leakage of signal into neighboring grid cells due to filtering and residual noise that could not be removed
during filtering might also distort TWS trends.

As the GRACE TWS trends are only calculated from 14 years of data, the results can be dominated by
low-frequency climate variability related to El Niño–Southern Oscillation (Ni et al., 2018; Phillips et al.,
2012), the solar cycle (Bhattacharyya & Narasimha, 2005), the quasi-biennial oscillation and other cou-
pled climate modes (Gray et al., 2018), and episodic events as volcanic eruptions (Iles et al., 2013), which
may either conceal the long-term trend or produce a spurious transient trend. Approaches to reduce these
interannual variabilities in the GRACE record are currently being discussed (e.g., Eicker et al., 2016).

3. TWS Trends From CMIP5 Model Data
As CMIP5 models do not provide a standard output variable for total water storage, we use the sum of total
soil moisture content (mrso) and surface snow amount (snw) as an approximation of it. In the remaining
part of the paper we refer to this TWS approximation as model TWS (mTWS). The mTWS differs in several
aspects from GRACE-derived TWS: Soil moisture layers in ESMs have a depth that can vary widely between
just a few and up to tens of meters depending on the model and thus does not necessarily capture the full soil
moisture content at every location. Furthermore, groundwater and surface water are not explicitly included
in mTWS as these states are generally not represented in CMIP5 models. However, a certain fraction of
these quantities might be implicitly included in total soil moisture as the transport to ocean and atmosphere
is limited and the water balance is largely closed by most of the models (Liepert & Lo, 2013). Moreover,
historical CMIP5 runs do not contain regional anthropogenic intervention other than land use changes in
their setup (e.g., groundwater depletion or dam building is not represented), whereas GRACE observations
include their consequences. The representation of mTWS differs from model to model due to different root
depths, number of soil layers, and model physics (Huang et al., 2016). Snw also exhibits large intermodel
differences in representation (Brutel-Vuilmet et al., 2013). We therefore note that mTWS of different models
might not be fully compatible.

After adding monthly mrso and snw for each model, we concatenate the corresponding mTWS simula-
tions of the historical runs (1850–2005) and the RCP8.5 scenarios (2006–2100) to calculate trends for time
spans that go beyond the year 2006. For those models, where more than one run is available, we calculate
the ensemble mean which we regard as the most robust realization for long-term mTWS trend estimates.
Afterward, the mTWS values are remapped to a common 2◦ × 2◦ geographical grid.

A bicentennial mTWS trend map (time span January 1861 to December 2099, i.e., earliest/latest common
date of all models for historical/RCP8.5 experiments) is calculated from the time series of mTWS grids for
each model. For each grid cell the linear trend is calculated by fitting a function

𝑓 (t) = a + b · t + c · cos(𝜔t) + d · sin(𝜔t) + e · cos(2𝜔t) + 𝑓 · sin(2𝜔t) (2)

with parameters for bias (a), linear trend (b), annual and semiannual cycle (c, d, e, f) to the time series by
means of least squares adjustment. The standard deviation of the trend is estimated from the postfit residu-
als. Note that we exclude the glaciated regions of Greenland, Svalbard, Gulf Coast of Alaska, and Antarctica,
since not all models properly represent glacier mass balance dynamics dominating TWS in those regions.

JENSEN ET AL. 9811
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Figure 2. Correlations of the bicentennial mTWS trend maps for 34 CMIP5 models.

In total 34 CMIP5 models provide at least one run for mrso and snw. However, as some of these 34 models are
either different versions of the same model or are runs with partly identical components (land surface and/or
atmosphere model), it cannot be assumed that each model produces a completely independent estimate for
the mrso and snw fields (Knutti et al., 2013). In order to obtain an unbiased multimodel average mTWS trend
map and a reliable conclusion about model consensus, we identify the independent models by comparing
the similarity of mTWS trend maps for all models. As a measure for the similarity of two maps we use the
Pearson product-moment correlation coefficient r2 calculated from the vectorized maps, giving every land
pixel of the 2◦ × 2◦ grid equal weight. As trend outliers in single pixels can distort the correlation coefficient
we apply a simple threshold to the mTWS trend maps, excluding absolute trend values above 23 mm/year.
This is the 2𝜎 boundary of the 14-year GRACE TWS trend (Figure 1), thus it is very unlikely that bicentennial
trends above these threshold are realistic.

The correlations of the bicentennial mTWS trend maps (after applying the 23 mm/year threshold) are cal-
culated for all 34 models and arranged in a matrix (Figure 2). Detailed information and references for the
models listed in Figure 2 are given, for example, in Flato et al. (2013) and are not reiterated here. As expected,
models that use common atmosphere or land surface components exhibit a very high correlation. In order
to only consider models that are independent and to justify the application of equal weight to each model
result, in the remaining part of the study we use only one instance from each group of models that are highly
correlated (r2 > 75%). In Figure 2 the models that are excluded due to this threshold are denoted in gray
font and the remaining 21 models are highlighted in bold font. The criteria for choosing a specific model
among highly correlated models was based on its estimated age (most recent publication), degree of special-
ization (most general), or spatial resolution (closest to 2◦ × 2◦). Generally, after excluding all but one from
the highly correlated models, the correlation among trend maps from different models is very low (mean
r2 = 10%, maximum r2 = 67%) and for some pairs of models it is even negative (minimum r2 = −55%). This
analysis demonstrates the large inhomogeneity among CMIP5 models regarding trends in mTWS.

In order to further investigate model spread we define different time spans (Table 1) for which we cal-
culate and discuss mTWS trend maps in the following. First, the 21 models that remain after excluding
highly correlated models, are used to calculate a median trend map for the bicentennial time span January
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Table 1
Notation for Different Time Spans That Are Investigated for mTWS
Trends

Time span Notation
Jan 1861 to Dec 2099 bicentennial trend
Jan 1861 to Aug 2016 historical trend
Sep 2016 to Dec 2099 RCP8.5 trend
Jan 1986 to Dec 2035 50a tendency
Jan 1996 to Dec 2025 30a tendency
Apr 2002 to Aug 2016 14a tendency

1861 to December 2099 (Figure 3a), that is, for each geographical grid cell the
median of the trends of all models is determined. We use the median instead
of the arithmetic unweighted mean because it is much less affected by outliers
and thus can be assumed to be a more robust estimate for the trend. How-
ever, to identify nonsignificant trends in the median map (stippled regions in
Figure 3a) we carry out error propagation for the arithmetic mean, because
this is not straightforward for the median. Figure 3a is not affected by a model
drift in mTWS, as trends from preindustrial control simulations (i.e., model
runs only forced with natural, nonevolving atmospheric concentrations) of
the same CMIP5 models were found to be an order of magnitude smaller and
thus are negligible (not shown). According to the 21 models, the largest trends
occur mainly in southern Europe and Turkey, in Central America and in the
west of North America, in the north of South America and in the Himalaya

region. The climatological trends derived here are in agreement with the results of a previous study (Berg et
al., 2017) that focused on total soil moisture, even though significant differences are present in high latitudes
since mTWS also includes snowpack.

To assess the reliability of the median mTWS trends, we compute the level of consensus of the 21 models,
that is, the number of models with the same bicentennial trend direction for a given grid cell (Figure 3b).
The higher the consensus, the higher the certainty that the agreement is not by chance, for example, if 15 or
more of 21 models agree on the sign, the probability that this is just chance is only 4% or less (Dirmeyer et
al., 2013). Hence, the higher the consensus in a grid cell, the more we can trust the direction of the trend in
this grid cell according to the models. In many regions high consensus corresponds to large trends and vice
versa. However, this is not valid everywhere, meaning that also the sign of small trends can be represented
by a majority of models (e.g., India) and inversely, there might be model disagreement about the direction
of large trends (e.g., Northern Russia). For the bicentennial mTWS trend, we find 39% of the global land
area to exhibit a drying (30%) or wetting trend (9%) that is supported by at least 71% (15 of 21) of the models.
These findings are not free of uncertainties as the consensus map (Figure 3b) might be affected by systematic
deficits in CMIP5 models, such as in particular the lack of groundwater storage in aquifers at different depth
and thus very different residence times (Pokhrel et al., 2014).

To investigate if mTWS trends as calculated for the bicentennial time span are in principle already detectable
in observational records available today, we compute (in addition to the bicentennial time span) mTWS
trends for a historical time span January 1861 to August 2016 (until the end of the GRACE time span;
Figure 4a). For comparison, also the mTWS trends for the RCP8.5 time span September 2016 to December
2099 are displayed (Figure 4b). Overall, we find a similar pattern for the historical and the RCP8.5 trend
(pattern correlation of 55%), though the historical trend has a much smaller magnitude (only about 20% of
RCP8.5). Furthermore, the portion of land area where the median trends are not significant (stippled areas,
95% confidence level) is larger for the historical time span than for the RCP8.5 time span. However, in 73%
of the land area the historical trend is already significant and in 68% it is in agreement with the RCP8.5 trend
map. In high-consensus regions (agreement of bicentennial trend sign in ≥71% of the models, Figure 3b) to
which we restrict the analysis in section 5 and 6, the area of agreement between significant historical and
RCP8.5 trends is 92%. This indicates that in most regions the current trends are set to continue in the same
direction and even increase in the future, thereby suggesting that the processes shaping the climate change
footprint on TWS are already acting today. The consensus among the CMIP5 models is generally lower for
the historical time span (Figure 4c) than for the RCP8.5 time span (Figure 4d), which is related to the fact
that stronger trends generally imply higher consensus and RCP8.5 is the scenario with the strongest climate
change signal. The patterns of the consensus maps are similar for all three time spans (bicentennial, his-
torical, and RCP8.5), thus we infer that regions of large model agreement are largely independent from the
selected time span (for centennial trends).

4. Influence of Observation Time Span
From Figures 3 and 4 it can be concluded that for centennial time spans a temporally stable pattern of drying
and wetting trends exists in the models. However, we cannot expect to readily find these trend patterns in
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Figure 3. (a) Median of bicentennial mTWS trend maps from 21 CMIP5 models (without Greenland, Svalbard, Gulf
Coast of Alaska, and Antarctica). Stippling indicates regions where the mean trend is not significantly different from
zero (𝛼 = 0.05). (b) Consensus map for bicentennial mTWS trends from 21 CMIP5 models. Red colors indicate that
≥#models agree on a negative (i.e., drying) trend, blue colors indicate that ≥#models agree on a positive
(i.e., wetting) trend.

a short time period of only 14 years for which GRACE observations are available. For short time periods,
interannual variations may be dominating the trend estimation in many regions of the world.

To estimate the influence of the observation time span on the expected agreement with the bicentennial
trend, we perform two model studies using tendency maps for different time spans calculated from the
CMIP5 models. In the first model study we investigate after which time span long-term climatic trends in
mTWS might be clearly distinguished from interannual variations. In the second model study we estimate
the degree to which even after long time spans the observed trends might still be in disagreement with the
long-term climatic trend. In contrast to the other sections of the paper, where we rely on the ensemble means,
for these model studies we only use one individual run (r1i1p1) per model in order to preserve interannual
variability. This is important as natural variations would largely average out by calculating ensemble means.
By using CMIP5 model output for simulating differently long observation time spans, we presume that
individual model runs represent natural variability realistically in terms of relative magnitude, frequency,
and duration.

JENSEN ET AL. 9814
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Figure 4. (top) Median of mTWS trend maps from 21 CMIP5 models for (a) historical (January 1861 to August 2016) and (b) RCP8.5 (September 2016 to
December 2099) time span. Stippling indicates regions where the mean trend is not significantly different from zero (𝛼 = 0.05). Please note the different color
scales in (a) and (b). (bottom) Consensus maps for bicentennial mTWS trends from 21 CMIP5 models for (c) historical and (d) RCP8.5 time span.

For the first study we fit trends in a least squares sense for time spans of different lengths ranging from
14 to 100 years in steps of 5 years with the center year 2010. Examples for tendency maps obtained for
the 50a, 30a, and 14a time periods are given in Figure 5. The median tendency maps for all 18 time spans
are each correlated to the bicentennial median trend map (Figure 5a). For the 14a observation period the
global correlation is only 23%, but with increasing time span it asymptotically approaches 100% (blue curve
in Figure 5a). After the 30a time span the global correlation is 57% which is the same order of similarity
that we find for the historical and RCP8.5 time spans (55%). Thus we conclude that around 30 years of
TWS observations would be the minimum time to globally obtain a TWS trend comparable to long-term
model results. However, even though the agreement between trend patterns might be low at 14a globally,
this might not be the case locally, for instance, when only considering regions that exhibit strong model
agreement. When calculating the correlation of the 14a tendency and the bicentennial trend only for grid
cells with a model consensus of ≥71%, the correlation coefficient increases to 39% (red curve in Figure 5a),
when additionally excluding nonsignificant grid cells, it increases to 52% (yellow curve in Figure 5a).

In this model study we evaluate the (global) spatial pattern correlation which only contains limited infor-
mation about the agreement of trends for individual grid cells. This means that though this experiment
brings out what to expect from the similarity of the spatial patterns, it does not provide the likelihood for a
local mTWS tendency computed from a certain time span to actually match the bicentennial trend in that
grid cell. As we are interested in regions where 14a GRACE TWS tendencies agree with bicentennial mTWS
model trends and want to rate the results with respect to what to expect from this short time span, we per-
form a second model study: For each of the 21 CMIP5 models we cut 22 slices of 14a mTWS data with a
distance of 5 years (centered around the year 1970) and estimate 22 14a tendencies. For each grid cell the
fraction of tendencies that agree or disagree (in terms of sign) with the bicentennial mTWS trend from that
particular model is calculated. Subsequently, the global mean of all fractions and all models is computed.
This procedure is repeated for different time spans from 1 to 100 years in steps of 5 years (Figure 6). Accord-
ing to the models the probability that a 14a tendency is in agreement with the long-term trend is on average
53%, which is slightly better than random chance. Even after a century there is still a chance of 27% that
an individual tendency does not match the bicentennial trend even though the global pattern correlation is
already high with 87%. This indicates that there is natural variability in the models even over long time peri-
ods of 100 years and more, which Laepple and Huybers (2014) found to be caused by sea surface temperature
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Figure 5. (a) Correlation of the mTWS tendency maps for different time spans (center year 2010) with the bicentennial mTWS trend map. (b–d) Median of
mTWS tendency maps from 21 CMIP5 models for (b) 50a time span, (c) 30a time span, and (d) 14a time span. Each time span is centered around the year 2010.
Note the different color scales due to larger variability for shorter time spans. Stippling indicates regions with nonsignificant trends (𝛼 = 0.05).
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Figure 6. Proportion of grid cells from mTWS tendency maps for different time spans in agreement and disagreement
with the direction of the bicentennial mTWS trend. Stippled line indicates 14 years.

variability on these time scales. However, when taking into account the model spread, we conclude that
after about 14 years (stippled line in Figure 6) the two curves are just starting to be clearly distinguishable,
that is, an agreement with the long-term trend can be significantly considered to being not just by chance
any more. This is an indication that it is possible—at least locally—to distinguish long-term climate-driven
TWS trends from interannual variations even in short observation time series and thus a comparison of 14a
tendencies from GRACE to bicentennial model trends is reasonable already today.

5. Comparison of CMIP5 mTWS and GRACE TWS Trends
The two model studies in section 4 indicate that when comparing TWS tendencies from a 14a observation
period to bicentennial mTWS trends we cannot expect too much agreement: a fairly low global pattern corre-
lation and a probability of agreement only slightly above 50%. However, these model studies represent only
the global mean and according to Figure 6 after 14 years we are starting to be able to clearly identify regions
of long-term wetting and drying. We thus compare the TWS trends derived from GRACE observations for
the 14a time period (Figure 1) to the bicentennial median mTWS trend (Figure 3a).

We note that the magnitude of the TWS trend from GRACE is substantially larger than the bicentennial
median mTWS trend. One reason for this is that generally interannual TWS trends (as seen from 14 years of
GRACE) exhibit a larger magnitude than bicentennial trends mostly unaffected by low-frequency climate
variability. This can, for example, be seen from the trends of the median 14a tendency maps from the CMIP5
models (Figure 5d), which are already much larger than the median bicentennial trends. Individual models
even exhibit a larger 14a tendency range than such maps where trend magnitudes are dampened due to
the median calculation. In addition, TWS and mTWS do not represent the same physical entity everywhere
as described in sections 2 and 3 and mTWS might have a lower amplitude as soil moisture depth is often
limited. Recent results by Scanlon et al. (2018) show that also in off-line global hydrological models and
land surface models TWS trends are generally of smaller magnitude compared to the observed GRACE
trends. This indicates that even high-resolution uncoupled models driven with realistic atmospheric forcings
still have difficulties to simulate realistic TWS trend magnitudes. We also note that agreement between
hydrological models and GRACE could be improved by considering groundwater storage in the models
(Pokhrel et al., 2013), which is entirely omitted in all CMIP5 models considered here.

As expected, the correlation between the global patterns of the 14a TWS tendency from GRACE and the
bicentennial median mTWS trend is low (r2 = 20%, blue dot in Figure 5a), but it largely meets the correlation
expected from the model study where we compared the 14a median mTWS tendency to the bicentennial
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Figure 7. Regions where at least 71% of CMIP5 models show the same direction of bicentennial mTWS trend,
distinguished into regions where the TWS trend from GRACE has the same or opposite direction. Stippling indicates
regions with nonsignificant GRACE trends (𝛼 = 0.05).

median mTWS trends (r2 = 23%, see section 4). When calculating the correlation only for grid cells with
a model consensus of ≥71%, the correlation coefficient for GRACE increases to 30% (red dot in Figure 5a),
which is slightly lower than expected from the model study (r2 = 39%) but largely within the model spread.
After excluding nonsignificant GRACE trends the correlation further rises to 32%, which is, compared to the
model study, in the middle of the model spread, but lower than the median (r2 = 52%). The reason for this
is likely due to the different number of nonsignificant trend grid cells for GRACE and for the model median
(compare Figure 1 and Figure 5d).

In Figure 7 areas are displayed in red where at least 71% (15 of 21) of the models show a negative bicen-
tennial trend direction (Figure 3). A grid cell is marked in dark red if at the same location the trend from
GRACE (Figure 1) exhibits a negative sign as well, or in light red if the trend from GRACE has the opposite
(i.e., positive) sign. Analogously, positive high-consensus model trends are marked in blue; dark blue where
GRACE has the same (positive) sign and light blue where GRACE has the opposite (negative) sign. Dark red
or dark blue areas in Figure 7 indicate hot spot regions where trends in GRACE data may already be related
to climate change signals because the majority of CMIP5 models supports this trend (at least regarding its
sign) on the bicentennial time scale. According to Figure 6, hot spot regions of drying trends are mainly the
region around the Mediterranean Sea, southwestern United States, the southern tip of South America, and
the Himalaya region.

Few wetting trends are identified as hot spots, potentially in South America, Central Africa, Central and
North Asia, and India. This is quite consistent with the bicentennial mTWS trend map (Figure 3a), which is
dominated by negative trends (66% of trends are negative, 34% positive, global mean -0.04 mm/year, exclud-
ing Greenland, Alaska, and Antarctica). A reason for dominating drying trends in CMIP5 models might be
that the models have a limited ability to capture anomalously high water storage. In most models that do
not include groundwater, rivers, lakes, and wetlands, water that exceeds the soil moisture storage capacity
is allocated to surface runoff and does not reenter the land surface scheme. In addition, an underestimation
of persistence times of water in the soil might prevent the simulation of high accumulations of water. Thus,
models tend to simulate drying trends more easily than wetting trends.

Besides the dark red and blue areas there are several regions of opposite signs between 14a GRACE TWS
tendencies and bicentennial mTWS model trends (light areas in Figure 7). Major regions of disagreement
are located in northeastern Canada, Fennoscandia, southeastern China, southern Africa, and central South
America. The proportion of high-consensus areas agreeing with GRACE versus those disagreeing with
GRACE is 49% to 51%. When not restricting to high-consensus regions but calculating the proportion glob-
ally it is 50% versus 50%. From the second model study in section 4 we obtained a higher percentage of
agreement of about 53%, but this number is estimated by comparing each 14a model tendency map to the
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Figure 8. Regions where at least 71% of CMIP5 models show the same direction of bicentennial mTWS trend,
distinguished into regions where the TWS trend from GRACE has the same (green color) or opposite (violet color)
direction. Regions affected by interannual variability (I), human impact (H), or glacial isostatic adjustment (G) are
outlined by orange polygons and shaded in light green/violet. Stippling indicates regions with nonsignificant GRACE
trends (𝛼 = 0.05).

bicentennial trend map from the same model. As we do not have a bicentennial reference for GRACE but
compare to the model median instead, it is expected that the match is not at the same level. Furthermore,
results from the model study might be too optimistic if modeled interannual variability is lower than in real-
ity. In addition, the results from section 4 are not directly comparable to GRACE as human impact such as
dam building and groundwater abstraction is not reflected in the model median which further affects the
level of agreement. From the low level of agreement between modeled and observed TWS trends we con-
clude that in many regions the influence of interannual variations in the 14a time span is still dominant at
this stage and thus the comparison to long-term modeled trends is affected by large uncertainties. However,
the analysis of the existing hot spot and noncompliance regions in Figure 7 can give valuable information
on potential climate-related wetting and drying as well as indications for possible model shortcomings and
can be the focus of future investigations.

6. Uncertainty Analysis
Due to interannual variability in the short GRACE observation time span and human impacts that are not
considered by the models, we cannot assume the same level of certainty for the results presented in section
5 in every region. In order to identify regions where climate-related wetting or drying trends may be overlaid
by interannual variability (I) or human impact (H) we access a study by Rodell et al. (2018), who attribute
the TWS trends from GRACE for April 2002 to March 2016 to their different dominating origins for 34
major basins. The regions where I or H is present in GRACE TWS trends according to Rodell et al. (2018)
are outlined as orange polygons in Figure 8. Within these orange polygons the results from Figure 7 about
agreement/disagreement have to be regarded as uncertain due to I/H effects. In addition, we marked regions
affected by glacial isostatic adjustment (GIA; G) as regions possibly not comparable with mTWS from ESMs
as residual GIA effects in GRACE might remain in the trend even after removing a state-of-the-art GIA
model. There might be other regions affected by I/H/G that are wrongly not considered as uncertain because
they are not accounted for by Rodell et al. (2018) who focused on the 34 study regions with the most promi-
nent trend signals in GRACE. Furthermore, there might be additional regions where mTWS trends from
CMIP5 models are systematically wrong—for example, due to missing groundwater and deeper soil layers,
but these regions are also not explicitly identified and marked as uncertain here.

By means of the orange polygons in Figure 8 we can distinguish the hot spot and noncompliance regions
(see Figure 7) into four categories:
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1. Same direction of model majority and GRACE trend, and no indication for I/H/G (dark green). In these
regions we assume the climate-related wetting or drying simulated by the models to be confirmed by
observations.

2. Same direction, but indication for I/H/G (light green). Here we do not know at this time if a possible under-
lying climatic trend has the same or opposite direction as modeled trends, thus we mark these regions as
uncertain. By extending the observation record it might turn out in the future that the current match in
some of these regions is only chance due to I/H/G effects counteracting the long-term trend.

3. Opposite direction, and no indication for I/H/G (dark violet). In these regions we have no reason to assume
that the direction of the 14a tendency from observations differs from the real long-term climate trend, thus
there might be deficits in CMIP5 models leading to a mismatch. Of course, also other I/H/G effects that
were not yet identified might be the reason for noncompliance.

4. Opposite direction, but indication for I/H/G (light violet). As in Category 2, we do not know the direction
of a possible underlying climatic trend, thus consider these regions as uncertain. The current mismatch
might be only chance due to I/H/G effects dominating the 14a GRACE trends and in the long term these
regions might turn out to be agreement regions.

In Category 1, where observations already today confirm what a majority of models predict for the long-term,
mainly three larger regions remain: drying conditions in southwestern United States/Mexico and around the
Mediterranean Sea (central southern Europe and Turkey), and wetting conditions in Central Asia (indicated
by a cluster of dark green grid cells). These regions we regard as hot spot regions of drying and wetting that
can already today be attributed to climate change with the help of GRACE.

Category 2 indicates regions where potential climate signals are overlaid by I/H/G effects that might be the
cause for the current agreement. However, in some regions it is quite likely that the long-term trend has
the same direction as the I/H/G effects, for example, the light green spots in central southern United States
and the Middle East (i.e., Syria, Iraq, and Iran), where relatively large connected regions of agreement are
adjacent to Category 1 regions. According to Rodell et al. (2018) in both regions the large negative TWS
trends seem to be due to a combination of drought and enhanced groundwater depletion. Additionally, in
the Middle East dam building in Turkey further intensifies the lack of water (Voss et al., 2013). Also at
parts of the Mediterranean coast in northern Africa models and GRACE see a common drying that might
be connected to the long-term drying conditions in southern Europe, even though the currently observed
trend is assumed to be dominated by groundwater abstraction (Döll et al., 2014). Another location where
I/H/G effects might enhance a common long-term trend is the light green spot in India. Here, possibly
climate-related precipitation increase is overlaid by human impact in form of a groundwater policy change
that is reflected in overall wetting conditions (Bhanja et al., 2017).

In Category 3, a mismatch of model majority and GRACE is unlikely to be due to I/H/G, thus these regions
indicate possible systematical errors in CMIP5 models. For example, CMIP5 models were found to underes-
timate summer precipitation over southeastern China (Chen & Frauenfeld, 2014), which might explain the
negative soil moisture trend not supported by GRACE. Furthermore, systematic rainfall biases in CMIP5
models over southern Africa were identified by Munday and Washington (2018), another possible reason for
noncompliance with GRACE. However, this needs to be further investigated, as according to Munday and
Washington (2018) rainfall is largely overestimated whereas soil moisture is simulated to decrease. Large
connected regions of noncompliance in western and northeastern Europe are likely affected by interannual
variations. As the apparent positive TWS trends seen by GRACE are very small here (see Figure 1), hardly
significant, and dominated by the annual cycle they were not accounted for by Rodell et al. (2018). The same
holds for a dark violet region in northern South America.

Category 4 denotes regions affected by I/H/G that are not in agreement with long-term predicted trends. We
consider these regions as uncertain as possible climate signals masked by I/H/G might actually agree with
model trends. Large Category 4 areas are the GIA-affected regions Fennoscandia and northeastern Canada
where the uncertainty from the applied GIA model might be dominating the GRACE trend. In the Amazon
region in central South America a recovery from a drought in the early GRACE period is responsible for
an overall wetting trend in GRACE. However, the mismatch could also result from model deficits due to
missing groundwater. Considering groundwater buffering effects in CMIP5 models causes a shift in the
evapotranspiration regime resulting in much less drying trends in the Amazon region (Pokhrel et al., 2014).
In southern Africa the Category 4 region is associated with interannual variability, a progression from dry
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to wet during the GRACE period. The light violet spot in southeastern China can be connected to the Three
Gorges Dam reservoir filling that models do not capture. However, it is not clear to what extent also model
deficits in southeastern China and southern Africa are responsible for this mismatch as these are adjacent
to Category 3 regions.

7. Conclusions
We analyzed in this study long-term trends in TWS derived from a selection of 21 coupled climate mod-
els stored in the CMIP5 archive and compared them to satellite observed TWS trends from 14 years (April
2002 to August 2016) of GRACE data. We found a large disagreement among the bicentennial (January
1861 to December 2099) TWS trends (sum of mrso and snw) from different models: the mean correlation
among individual models is only 10%, which reflects the still high uncertainties in TWS variability simu-
lated by present-day global coupled climate models. While a significant part of intermodel variation might
result from the different atmosphere components, differences in land surface parameterization, particularly
the soil moisture and snow storage capacities, are likely to add to this. We nevertheless identified several
regions of high model consensus regarding the direction of the trend on which we focused for the compar-
ison with GRACE-derived TWS. Furthermore, we found a large agreement between modeled TWS trends
for the historical (January 1861 to August 2016) and the RCP8.5 (September 2016 to December 2099) time
span, indicating that long-term TWS trends are already emerging in present time and thus can be expected
to be contained in observational records available today.

By computing model TWS tendencies for differently long time spans (from 14 to 100 years) and comparing
them to the bicentennial trend map, we assessed the influence of interannual variations on the degree of
agreement between long-term and short-term trends. For the global pattern correlation we concluded that
a time span of 30 years or more would be sufficient to globally distinguish interannual climate variability
in TWS from long-term climate trends. However, for even 14 years we obtained a global correlation of 23%
with the bicentennial TWS trend, which regionally is substantially higher, for instance, when limiting to
significant trends in regions of strong model consensus only (52%). When estimating the fraction of grid
cells with the same direction of the trend for the bicentennial and different shorter time spans we found
that after 14 years the proportion is 53% agreement versus 47% disagreement, and even after a century there
is still a substantial probability of disagreement (27%). We identified 14 years as the minimum observation
time span required to distinguish long-term trends from interannual variations, with a (global) probability
that is better than just chance.

By comparing the bicentennial modeled median TWS trend map against the TWS trend map obtained from
GRACE data over the period April 2002 to August 2016, we found a similar global correlation (20%) as
we expected from the model study. Focusing on regions of strong model consensus, we identified hot spot
regions where modeled TWS trends have the same direction as the GRACE TWS trend. Drying hot spots were
mainly found in the region around the Mediterranean Sea, the west coast of North America, the southern
tip of South America, and the Himalaya region. Wetting hot spots are sparse and only found for small areas
in South America, Central Africa, Central and North Asia, and India. The largest regions of noncompliance
between trends from models and GRACE are located in northeastern Canada, Fennoscandia, southeastern
China, southern Africa, and central South America. In total, the proportion of regions in agreement versus
regions in disagreement in high model consensus regions is 49% versus 51%, which indicates that the 14-year
GRACE time series is in many regions still dominated by interannual variations.

We further investigated the existing hot spot and noncompliance regions regarding possible natural inter-
annual variability or human impact in order to classify the results regionally. In this classification, 36% of
the high-consensus area was marked as uncertain and thus remains undetermined at this time if and how
much it is affected by climate change. In the other 64% of the high-consensus area the climate signal was
assumed to dominate the TWS trends. Within these 64% the proportion of agreement versus disagreement
areas is 49% versus 51%, which is the same proportion as in the entire high-consensus area without uncer-
tainty assessment. From this we conclude, that in half of the area marked as certain either model deficits
or unidentified interannual variability in observations cause disagreement. This is consistent with our find-
ings from the model study that revealed a large influence of interannual variations on TWS trends even after
long time spans.
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Nevertheless, from the GRACE record available today, the classification leads to the identification of hot
spot regions in southern United States/Mexico, central southern Europe, and central Asia, where GRACE
confirms modeled long-term drying or wetting trends already today. In some regions, for example, in south-
eastern China, the Amazon region, and in southern Africa the results hint at possible model deficits,
for example, due to missing groundwater modeling. Furthermore, we identified regions where mismatch
of models and observations might be due to interannual variations or other effects (e.g., dam building,
groundwater withdrawal, glacial isostatic adjustment) in GRACE that are not included in the CMIP5 models.

As the time series of GRACE data will soon be extended with new observations from the GRACE-FO mis-
sion launched in May 2018, observed TWS trends are expected to become even more representative for
the long-term climate response. At the same time, climate model outputs from the upcoming CMIP6 will
include new model versions with altered representations of soil moisture-related variables, which might
either improve or degrade the model consensus depending on the impact of new parameterizations and
the effect of a higher degree of model freedom and complexity. Comparisons between observed and mod-
eled TWS trends as presented in this paper will thus remain of high relevance for future climate model
assessments.
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