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1 In this research setup, forecasting with
real-world data sets serves as a tool for
technical infrastructure management,
similarly to business forecasting.
Pursuing forecasting methods forward
would require standard data sets
known from forecasting competitions
(e.g. Kaggle, M4).

Summary

This work explores the possibilities of forecasting German gas im-
ports and German gas consumption in detail by:

• Identifying proper terminology, with initial thoughts on the status
quo of forecasting, using analogies with music (section 3.1),

• Understanding forecasting models based on statistics and machine
learning (section 3.2),

• Applying domain knowledge while constructing data sets (data ac-
quisition)1 - various models have been tested on low resolution data
sets (monthly and yearly data). In classical forecasting, forecasts are
conducted at company level (e.g. electricity load forecasting) for a
short-term period fulfilling the requirement of profit maximization.
In contrast, this work’s forecasts spatially cover 1) all import nodes
into Germany, 2) gas consumption in Germany with the focus on
energy security.

• Examining various notions of complexity in relation to forecasting

Novelty in methodology

• Considering infrastructure as the upper limit for the forecasting
model (section 4.1)

• Testing models for ex post forecasting of gas imports into Germany
(section 4.2)

• Testing models for ex post forecasting of gas consumption in Ger-
many (section 4.3). Producing an ex ante forecast by answering
“what will be the future gas consumption in Germany in next ten years”
would cause the forecasting error to increase dramatically due to the
uncertainty of future input values, such as population (lower risk)
or, weather (higher uncertainty), which would lead to prediction
intervals being too wide to make any statement about the future
imports or consumption.

• Applying complexity measures such as approximate entropy ApEn
and sample entropy to two self-constructed real-world data sets on
gas imports to Germany and gas consumption in Germany (section
3.3)

• Section 3.1 - (a previously published conference paper) represents
the creative part of this work carried out at the beginning of the



energy forecasting. focus: natural gas 14

research in 2018-2019. This component suggests analogies between
forecasting and music.
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2 In diesem Setup wurde die Vorhersage
mit Realwelt-Datensätzen (Monats- und
Jahresdaten) vorgenommen. Realwelt-
Datensätze dienen als Werkzeug für die
Prognoseerstellung im Bereich Technis-
ches Infrastrukturmanagement, ähnlich
wie bei Geschäftsprognosen. Um die
Prognosemethoden weiterzuentwickeln,
werden Standarddatensätze benötigt,
die aus Prognosewettbewerben bekannt
sind z.B. Kaggle, M4.

Zusammenfassung

Diese Arbeit untersucht die Möglichkeiten zur Prognose von
Deutschen Gasimporten sowie des Gasverbrauchs in Deutschland im
Detail, wie folgt:

• Identifikation klarer Terminologie, mit ersten Gedanken zum Status
Quo der Prognosetechnik (Abschnitt 3.1)

• Erweiterung des Verständnisses von Prognosemodellen, die aus den
Themenbereichen der Statistik und des maschinellen Lernens stam-
men (Abschnitt 3.2)

• Anwendung von Fachwissen bei der Konstruktion von Datensätzen
(Data acquisition)2 - verschiedene Modelle wurden auf niedrig auf-
gelösten Daten getestet. Bei der klassischen Vorgehensweise wer-
den Prognosen auf Unternehmensebene (z.B. Stromlastprognose)
für einen kurzfristigen Zeitraum durchgeführt, der die Anforderung
der Gewinnmaximierung erfüllt. Im Gegensatz dazu umfassen in
diesem Werk präsentierte Prognosen räumlich 1) alle Importknoten-
punkte nach Deutschland und 2) den Gasverbrauch in Deutschland
mit dem Fokus auf die Energiesicherheit.

• Untersuchung verschiedener Begriffe von Komplexität in Bezug auf
Prognosen

Neuerungen in der Methodik

• Betrachtung der Infrastrukturkapazität als Obergrenze für das Prog-
nosemodell (Abschnitt 4.1)

• Testen von Modellen für die Ex-post-Prognose von Gasimporten
nach Deutschland (Abschnitt 4.2)

• Testen von Modellen für die Ex-post-Prognose des Gasverbrauchs
in Deutschland (Abschnitt 4.3). Erstellung von Ex-Ante-Prognosen
durch Beantwortung der Frage: "Wie hoch wird der zukünftige
Gasverbrauch in Deutschland in den nächsten zehn Jahren sein?"
würde dazu führen, dass der Prognosefehler aufgrund der Unsicher-
heit der zukünftigen Werte von Inputs wie Bevölkerung (geringeres
Risiko) oder Wetter (höhere Unsicherheit) dramatisch ansteigt. Da-
durch würden die Vorhersageintervalle zu groß, um eine zutref-
fende Aussage über die zukünftigen Importe oder den Verbrauch
zu treffen.
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Abschnitt 3.1 steht für den
kreativen Teil der Arbeit zu Be-
ginn der Forschung (2018-2019)

und erstellt Analogien zwis-
chen Prognosen und Musik.

• Die Anwendung von Komplexitätsmaßen wie der ungefähren En-
tropie (ApEn) und der Probenentropie auf zwei selbst konstruierte
Realwelt-Datensätze zu Gasimporten nach Deutschland und Gasver-
brauch in Deutschland (Abschnitt 3.3)
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Preface

While writing, statements and expressions with lower information
value were left out to keep this thesis compact with respect to the
reader’s time.

My personal aim was to continue with this research topic only if it
still interested me. To my surprise, I enjoyed the process until the last
typed sentence. This one.





1 In further statements, we refer to gas
only, omitting an adjective natural.

2 Merkel, G., Povinelli, R., and Brown,
R. (2018). Short term load forecasting of
natural gas with deep neural network
regression. Energies, 11(8)
3 Tamba, J. G., Essiane, S. N., Sapnken,
E. F., Koffi, F. D., Nsouandélé, J. L.,
Soldo, B., and Njomo Donatien (2018).
Forecasting natural gas: A literature
survey. International Journal of Energy
Economics and Policy, (8(3)):216–249

4 Liu, S., editor (2011). Proceedings of
2011 IEEE International Conference on
Grey Systems and Intelligent Services
(GSIS) with the 15th WOSC International
Congress on Cybernetics and Systems,
Nanjing, China, 15 - 18 September 2011,
Piscataway, NJ. IEEE

2
Introduction

Gas forecasting
1 covers the forecasting of gas demand of a city or a

country, gas prices, and gas imports. The history of forecasting meth-
ods starts with classical mathematical relationship models based on
statistics (e.g.linear regression, autoregressive integrated moving aver-
age) and ranges to artificial intelligence (e.g. artificial neural network
(ANN), deep neural networks). The overview of the latter methods is
provided by Merkel et al. (2018),2 whereas Tamba et al. (2018)3 con-
ducted a literature survey on gas forecasting. Literature on forecasting
methods is immense. For grey system theory in China alone, more
than 50, 000 papers were retrieved from academic periodical databases
covering the period from 1982 (the date of the first publication on this
topic) to 2010 (Liu (2011)).4 Therefore, instead of conducting another
literature survey, this work captures the essential idea of the most com-
mon gas forecasting methods along with examples from literature.

The theory chapter 1) examines energy forecasting and energy
modelling, 2) provides theoretical background to understand the meth-
ods used in the second section, and 3) discusses various notions of
complexity and their eventual use for forecasting. Alternative ap-
proaches to the topic would cover: 1) earth science and perspectives on
climate change and energy scarcity; 2) a purely economic perspective
on imports and exports of energy resources, as well as incentives and
sanctions of governments; and 3) energy security perspective from an
International Relations (IR) point of view.

The experimental chapter applies models to self-constructed data
sets, and forecasts gas imports into Germany and gas consumption
at the country level. Models are understood as tools used in energy
engineering and policy making but they have not become the object of
the research per se. If this work intended to introduce new methods
for energy forecasting, this work would use standard data sets which
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5 Franco, A. and Fantozzi, F. (2015).
Analysis and clustering of natural
gas consumption data for thermal
energy use forecasting. Journal of

Physics: Conference Series, 655:012020

6 Examples for ML models: sup-
port vector machine models, de-
cision trees, artificial neural net-
works, nonlinear programming.

7 Examples for statistical models: au-
toregressive integrated moving average,

linear regression, logistic regression.

would enable the comparison of the models’ performance.

2.1 Research questions

• RQ1. What are current approaches to predict gas imports and gas
consumption at the country level? What is the impact of the domain
knowledge of the gas sector on forecasting?

Gas consumption at country level depends on the amount of
gas used to cover residential heat demand as well as on the energy
intensiveness of industry. Models may include this type of domain
knowledge or work with time series methods. As residential heat
demand is correlated with weather, the accuracy of weather fore-
casts influences the accuracy of forecasting gas load (Franco and
Fantozzi (2015)).5

Gas imports, on the other hand, are more related to contracts
among exporting and importing countries and, in the long run, on
the environmental policies of gas use in future decades.

Regarding current approaches, the forecasting community compares
machine learning methods6 with statistical methods7 in terms of
accuracy criteria. This work does not contribute to this debate as
both terms "statistical" and "machine learning" are ill-defined. Here,
structured and unstructured models will be discussed.

To understand how forecasting methods work, a few mod-
els will be tested on two self-constructed data sets for German gas
imports and German gas consumption. The focus lies in construct-
ing data sets and understanding current models instead of develop-
ing their more complex versions.

• RQ2. Is there any relation between the complexity of the data set,
forecasting models and the process modelled (gas flows) to the ac-
curacy of forecasts?

As for the complexity of a data set, a few measures such as
the Sample Entropy will be tested on the above-mentioned data sets.
All data sets represent just a sample providing incomplete informa-
tion on the process forecasted; thus there is the inherent uncertainty
about including the most representative variables that influence the
output.
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8 Over-parametrized models will
capture not only essential information
from the data set but also noise (Pelikán
(2014)).

9 Makridakis, S. (1995). Forecasting
accuracy and system complexity.
RAIRO - Operations Research - Recherche
Opérationnelle, 29(3):259–283. http:

//www.numdam.org/item/RO_1995__29_

3_259_0/

"A forecasting model (predictive model,
autoregressive model) is a software-
implemented model of a system,
process, or phenomenon, usable to
forecast a value, output, or outcome
expected from the system, process, or
phenomenon." (Baughman et al. (1988)).

10 Intra-day and day-ahead forecasts
assist in scheduling partially flexible
conventional generation (i.e. coal power
plants, gas power plants).

There is no clear distinction between simple and complex
models. The organizers of the M3 forecasting competition listed,
among others, naïve models and exponential smoothing models as
examples of simple models (Green and Armstrong (2015)). Com-
plexity of the models will be expressed in various ways; for exam-
ple in the computational time required for the model to be run, in
the number of parameters8 and degrees of freedom.

Complexity of the process being modelled increases with time,
therefore there are limited possibilities to forecast for a long-term
horizon. The essence of the process is also crucial; forecasting the
behaviour of economic systems cannot outperform the performance
of forecasts for other system with chaotic properties, such as mete-
orological ones (Makridakis (1995)).9

2.2 What is forecasting?

Forecasting covers methods for producing forecasts by using his-
torical data to make predictions and to determine trends. This rel-
atively new discipline seeks to gain independence from the fields of
statistics and machine learning, although the first generation of fore-
casters arose from statisticians and econometricians.

In renewable energy forecasting, forecasts of solar radiation
and wind speeds are used to optimize forecasts for electricity produc-
tion from renewable energy sources. These natural phenomena affect
output to a high degree and are the main source of uncertainty (when
it comes to renewable energy production).

Predictions, meaning the outcome of the forecasting, sup-
port company decisions on daily operations10 (e.g. fuel storage, wood
pellet bunkers), strategic decisions on investments and more. Al-
though energy forecasting is regarded as an academic sub-discipline,
its potential to impact decisions in the energy sector is expected to
grow.

2.3 Scenario modelling

Scenario modelling is a tool for governments’ decision-makers to
introduce policies regarding climate change, for example. Often, a goal

http://www.numdam.org/item/RO_1995__29_3_259_0/
http://www.numdam.org/item/RO_1995__29_3_259_0/
http://www.numdam.org/item/RO_1995__29_3_259_0/
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11 In German, Deutsches Zentrum
für Luft und Raumfahrt, DLR.

12 Friedrichs, J. (2013). The future is
not what it used to be: Climate Change

and Energy Scarcity. MIT Press, Cam-
bridge, Mass. ISBN 9780262019248

(e.g. the share of renewable energy in a system) is already defined
and research questions relate to options for achieving the goal; e.g.
how many megawatts of capacity and which type of installed plant is
needed to produce almost all electricity from renewable energy sources
in 2050? To answer such a question, techno-economic optimization
models are used, for example the REMIX-Europe Model of German
Aerospace Center.11 This model optimizes capacity, applying a min-
imum cost function for electricity production under the condition of
100% renewable electricity.

Until now, well-known modelling scenarios have underestimated
the growth of renewable energy in developed countries and overesti-
mated gas consumption in developing countries. Thus, energy policies
have been based on assumptions that have not come true. Installed
capacity (and electricity production) for wind and solar had to be ad-
justed upwards in retrospect for almost every forecasting report. This
fact hardly surprises anyone, unless the boom of forecasting and mod-
elling methods is taken into consideration. Friedrichs (2013)12 offers a
few reasons for such a development within bodies serving as author-
ities for estimating energy supply: the International Energy Agency
(IEA), the US-Energy Information Administration (EIA), and private
entities such as BP and Shell. As for the IEA, the majority of staff
have a background in economics and a strong belief in the capability
of market forces to reach the optimum balance of supply and demand.
Hence, “until 2008 the standard practice of the IEA has been to extrapolate
trends in energy demand, and simply to assume that future demand will be
met via the market mechanism” (Friedrichs (2013)).

Scenario modelling is compared to forecasting in the theoretical sec-
tion, but not further explored.

2.4 Why complexity?

Complexity as a term stands for distinct concepts in forecasting,
mathematics and information theories; the same statement can also
be applied to entropy. Someone considering a career path in science
spends years studying one singular concept of complexity or entropy;
yet there is no reason that would force them to crosscheck their re-
search object with other disciplines. As a result, the same concept has
a different name across various disciplines, or the concepts of the same
name mean different things, as will be shown for complexity and en-
tropy. A holistic explanation of these research phenomena is yet to
come, as was the case with physics around the end of the 19th century.
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13 Green, K. C. and Armstrong, J. S.
(2015). Simple versus complex forecast-
ing: The evidence. Journal of Business
Research, 68(8):1678–1685

Forecasting models have become increasingly complex, al-
though accuracy has hardly increased. Still, simplicity repels and com-
plexity lures because "researchers are aware that they can advance their
careers by writing in a complex way" (Green and Armstrong (2015)).13

This effort is rewarded by highly-ranked journals that favour com-
plexity over interpretability. However, besides efforts in academia, the
primary goal of forecasting is to produce forecasts that support a de-
cision-making process.

In the modelling section, models labelled as simple, such as a re-
gression, have been included to check whether the argument by Green
and Armstrong (2015) that “most simple methods are more accurate than
complex methods” remains valid in this research.

2.5 Scope

This work explores capabilities of statistical and machine learning
forecasting for the energy sector and their relation to complexity. This
work also aims to provide methodological and linguistic clarity on
forecasting and scenario modelling, especially for the energy sector.

The challenge of this thesis was to investigate three unrelated
fields of science; understanding the research jargon of institutions such
as the School of Management, or the Department of Econometrics and
Business Statistics, and combining the acquired knowledge with en-
ergy engineering. For this reason, definitions have been included as
margin notes.





1 Hong, T. (06/30/2014). Global energy
forecasting competition. past, present
and future. https://forecasters.org/
wp-content/uploads/gravity_forms/

7-2a51b93047891f1ec3608bdbd77ca58d/

2014/07/HONG_TAO_ISF2014.pdf Last
accessed 2020-12-20

2 The first version of this chapter has
been published in Grajcar (2019).

Grajcar, M. (2019). Energy Fore-
casting vs Energy Modelling. jazz
improvisation vs Symphony. http:

//cyseni.com/archives/proceedings/

Proceedings_of_CYSENI_2019.pdf Last
accessed 2020-12-20

3 Lindley, D. V. (2001). The philos-
ophy of statistics. Journal of the
Royal Statistical Society: Series D (The
Statistician), 49(3):293–337. https:

//doi.org/10.1111/1467-9884.00238

4 Zhang, W. and Yang, J. (2015). Fore-
casting natural gas consumption in
China by Bayesian Model Averaging.
Energy Reports, 1:216–220. https://doi.
org/10.1016/j.egyr.2015.11.001

3
Theoretical Background

3.1 Energy forecasting vs energy modelling

Introduction

Dr. Tao Hong pointed out four main issues in energy forecasting
in his speech on the Global Forecasting Competition in 2014 (Hong
(2014))1: impractical research, lack of benchmarking data, a hard-to-
reproduce process, and limited educational programmes and courses.
Here,2 this research addresses the first issue - impractical research -
since energy forecasters devote their efforts to describing a methodol-
ogy setup, leaving the interpretation of results aside. Impractical re-
search relates to the broader problem described back in 2000 by David
J. Hand in his comment to Lindley (2001)3:

"The focus (in statistical journals) seems to be increasingly on narrow
technical advance into increasingly specialized areas, with greater merit being
awarded to work which is more abstract and more divorced from the realities
of data."

First, the relationship between energy forecasting and energy mod-
elling is discussed in theory by introducing an analogy with music
and by exploring energy models applied to gas forecasting. Most en-
ergy models are rooted in econometric theory and statistics, therefore
a missing piece - the social sciences - is discussed with regard to the
energy model results.

Although far from perfect, forecasting models find regular use
in policy making and in amending strategies to secure the energy sup-
ply of a country or supra-region, as recognised by Zhang and Yang
(2015).4 Energy forecasting encompasses making predictions for gas
and electric load, prices, electricity generation from weather-depen-
dent sources, etc. The term energy determines the use of forecasting

https://forecasters.org/wp-content/uploads/gravity_forms/7-2a51b93047891f1ec3608bdbd77ca58d/2014/07/HONG_TAO_ISF2014.pdf
https://forecasters.org/wp-content/uploads/gravity_forms/7-2a51b93047891f1ec3608bdbd77ca58d/2014/07/HONG_TAO_ISF2014.pdf
https://forecasters.org/wp-content/uploads/gravity_forms/7-2a51b93047891f1ec3608bdbd77ca58d/2014/07/HONG_TAO_ISF2014.pdf
https://forecasters.org/wp-content/uploads/gravity_forms/7-2a51b93047891f1ec3608bdbd77ca58d/2014/07/HONG_TAO_ISF2014.pdf
http://cyseni.com/archives/proceedings/Proceedings_of_CYSENI_2019.pdf
http://cyseni.com/archives/proceedings/Proceedings_of_CYSENI_2019.pdf
http://cyseni.com/archives/proceedings/Proceedings_of_CYSENI_2019.pdf
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1016/j.egyr.2015.11.001
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5 Makridakis et al. (1998), one of the
world’s leading experts on forecasting,

pleads for a special attitude for long-
term forecasts; “When forecasting the

long-term, a less formal approach is often
better. This can involve identifying and

extrapolating mega trends going back in
time, using analogies, and constructing

scenarios to consider future possibilities.”
6 Rules of fuzzy logic depend on

maxima and minima, in contrast to
sums and products of the rules of the
probability calculus (Lindley (2001)).

7 Ascher, W. (1978). Forecasting: An
appraisal for policy makers and plan-

ners. Johns Hopkins University
Pr, Baltimore. ISBN 0801820359

8 Overholt, W. H. (2000). Forecasting:
An Appraisal for Policymakers and

Planners. Policy Sciences, 33(1):101–106

methods in the respective field of interest only; the same method may
be used for various study objects: output growth, exchange rate, or
inflation, to mention a few.

To analyse current trends in energy forecasting and modelling
in relation to the energy sector, examples were chosen according to
these criteria:

• The subjects of energy forecasting and modelling are relevant for
the future security of supply of a respective country or region. From
this perspective, long-term forecasting5 is of higher importance than
short-term or medium-term forecasting.

• A method used represents a current trend in energy forecasting.

Dropping the necessity of a deep understanding of energy pro-
cesses has been regarded as a great advantage of new models such
as neural networks and fuzzy logic,6 and has led to a boom in pub-
lished research articles. However, most analysts view oil/gas prices
or demand as just one out of many research objects to validate their
forecasting methodologies – without being genuinely interested in the
implications of their research for the energy sector. In line with the
nature of forecasting, analysts typically spend 95% of their articles on
methodology setup.

Accuracy does not have to be the highest goal when produc-
ing forecasts (Ascher (1978)7, Overholt (2000)).8 Ordered by public in-
stitutions, forecasts set the mood for a decade by predicting the share
of renewable energy in the energy mix, making distinctions between
smart grids and traditional grids and promoting e.g. Sektorkopplung in
Germany. Expressions such as these in italics represent, in chronolog-
ical order, trendy words that have entered the virtual space of public
debates on energy. One plays around with phrases such as economet-
ric methods, neural networks and fuzzy logic in a similar fashion in en-
ergy forecasting. The explosion of published articles has the unspoken
intention of enhancing the prestige of forecasters and capturing the
attention of the public or academia.

3.1.1 Energy forecasting - examples

Traditionally, energy forecasting has been based on two approaches:
on the extrapolation of historical data to predict the future, and on
modelling (simulation). The first group of methods deals with the
concept of curve fitting, e.g. using multiple regression to fit a polyno-
mial function to a series of data points. The more polynomials that are
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ARIMA - Auto-Regressive Integrated
Moving Average Model, presented by
George Box and Gwilym Jenkins in the
1970s.
9 Hong, W. S. (2013). Intelligent energy
demand forecasting, volume 10 of Lecture
notes in energy. Springer, London
and Heidelberg and New York and
Dordrecht. ISBN 9781447149682

White noise is (statistically) time re-
versible (i.e. invariant under time
reversal): "...if one listens to temporal
white noise and subsequently to the
same signal after time reversal, it is not
possible to distinguish not only which
is which, but also whether they sound
different."(González-Espinoza et al.
(2020)).
10 Rácz, L. and Németh, B. (2018).
Investigation of dynamic electricity
line rating based on neural networks.
Energetika, 64(2)

11 Pj - Joule heating (J)
Ps - solar heating (J)
Pc - convective cooling
Pr - radiative cooling

chosen, the smaller the fitting error. However, the fitting (training) er-
ror is neither the main criterion of forecast quality, nor a good estimate
of the test error.

From a few dozen models, this work presents the easiest explana-
tion of the logic behind the ARIMA model. Hong (2013)9 explained
the autoregressive process applied to forecasting the electric load as:
"the current value of electric load is often expressed as linear combination of
previous actual electric load values and with a random noise." In the model-
fitting process, analysts try to fit their model to the data until residuals
become white noise and forecasts look reasonable. Similarly, opera-
tional staff at energy production sites adjust their predictions (i.e. re-
gression model outcomes) based on their knowledge of the plant. On
a countrywide’ scale this would be impossible to do.

In theory, if the process (e.g. the future development of fuel con-
sumption in a region, available electricity capacity of a transmission
system) is not known, but various measurements, observations, and
samples exist, one may accept neural networks as a suitable tool for
energy forecasting or modelling. Rácz and Németh (2018)10 applied
neural networks this way, using a method called dynamic line rating
when predicting the maximum transmission capacity of the electricity
grid. Theoretical conditions were fulfilled; the process is only partially
known; the standard models are based on a simplified heat equation
neglecting, e.g. electromagnetic phenomena:11

Pj + Ps = Pc + Pr (3.1.1)

The above-mentioned measurements exist in the form of data for
solar radiation, wind speed, and ambient temperatures of previous
years and values of currents represented by the current and the tem-
perature of the transmission line. The model examined above-ground
lines with the maximum permissible temperature of 40◦C due to the
limitation of sag. Based on their results, the neural network calculated
the temperature of the wire with an error of under 7%; this rate equals
a maximum temperature difference of 2◦C, which roughly coincides
with the sensors’ accuracy (Rácz and Németh (2018)). Answering the
question of maximum transmission capacity for a new technology of
installing lines underground would require a more complex model.

3.1.2 Energy modelling - examples

To illustrate the main idea, this work presents a typical mod-
elling task in the energy sector: the contribution of energy system
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12 Lund, H., Arler, F., Østergaard, P.,
Hvelplund, F., Connolly, D., Math-

iesen, B., and Karnøe, P. (2017). Sim-
ulation versus optimisation: The-

oretical positions in energy sys-
tem modelling. Energies, 10(7):840.

https://doi.org/10.3390/en10070840

As for forecasting, "the past mat-
ters" either equally as in simple

moving average models or func-
tions assign exponentially decreas-

ing weights over time as in exponen-
tial smoothing models (figure 3.1).

13 Fragkos, P., Kouvaritakis, N., and
Capros, P. (2015). Incorporating uncer-

tainty into world energy modelling: the
PROMETHEUS model. Environmental

Modeling & Assessment, 20(5):549–569

14 In a deterministic version,
all equation parameters are

set at their mean versions.

modelling to the transition towards renewable energy sources. Lund
et al. (2017)12 based this research question on two basic archetypes:
simulation vs optimization of national energy models. While the opti-
mization approach sets a pre-determined goal (e.g. the lowest energy
consumption or the highest reduction of carbon dioxide emissions)
and searches for the lowest-cost path possible to achieve it, simula-
tion models create various scenarios for the future (figure 3.1). These
scenarios take into account future technological options, fuel prices,
and implemented policies. For example, they 1) test the resilience
of technical infrastructure with hypothesized shocks, 2) show a path
for achieving a low carbon energy future, or 3) test the hypothesis of
countries’ mitigation of gas import dependency on exporting countries
through energy efficiency and renewable energy policies.

Simply put, their role is definitely not to predict.

Figure 3.1: Energy forecasting vs en-
ergy modelling. Four layers in the
model setup depict gas sector, en-

ergy sector of a country, economy of
a country and the world economy.

To conclude, energy models cannot promise more than the repre-
sentation of an energy sector in a macroeconomic model or of an entire
national, regional, or global economy. Their outcome is a projection of
various scenarios without probability distributions, as shown by Lund
et al. (2017)’s exemplary research and in table 3.1. Strictly speaking,
these cannot be labelled as forecasts. Fragkos et al. (2015)13 attempted
to solve this problem by integrating uncertainty into world energy
modelling by using the PROMETHEUS Model. This hybrid model
combines structural considerations (including expert judgement) with
a time-series analysis to provide patterns of variation over time. Its
deterministic version14 has been extensively used in studies by the Eu-

https://doi.org/10.3390/en10070840
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15 Shortly after, the district heating sec-
tor introduced its own Heat Roadmap
of Europe because the EU Energy
Roadmap 2050 anticipated the massive
use of electricity in the heating sector.

16 In other jazz genres, most of im-
provisations follow more or less strict
rules. Some rules are even related to
the physique of a player and the used
instrument.

17 As an exception, Dreborg (2004) in
his dissertation distinguishes modelling
and forecasting with his own termi-
nology; forecasts are called "predictive
approaches without a formal model of
the system of interest."

In energy forecasting, models equal
methods; in energy modelling - there
is one energy model with the function
of minimizing costs or maximizing
welfare.

ropean Commission, such as the EU Energy Roadmap 2050.15

3.1.3 Analogy with music: An idea experiment

At first glance, jazz piano seems like a spontaneous activity: A pi-
anist is simply listening to jazz music in the background and a listener
never knows what the final musical experience will be like. Likewise,
those not familiar with computer science and statistics at a professional
level (which even includes some energy experts and policy makers)
may have the same impression when trying to understand forecasting
methods. As a consequence, forecasts lack plausibility. The analogy
with jazz improvisation works for the process of forecasting, but not
for the outcome.

Upon closer inspection of jazz improvisation, one starts to
question the aspect of improvisation in a performance - since there are
certain rules (e.g. adapting to a rhythm, never playing the same note
in a row, etc.) which guide a jazz pianist when improvising.

These rules are analogous to formulas in the classical Hubbert model,
statistical methods and neural networks. An overview of these meth-
ods is given in figure 3.2. In free jazz16, the more experienced the
jazz pianist becomes, the fewer rules are applied, with the exception
of one: feeling the music. The higher one climbs the ladder in fig-
ure 3.2, the more the music loses structure, while gaining mastery in
becoming unpredictable. The same tendency is noticed in the develop-
ment of forecasting methodology: from rather rigid methods to the
soft computing trying to mimic intelligence. Thus, hidden layers in
neural networks or transforming linguistically expressed knowledge
(mirroring imprecise and uncertain human thinking) into workable al-
gorithms (fuzzy logic) are placed higher up the ladder, although not
achieving climax - a paradigm change to come. Single methods such
as the Hubbert Curve Model or statistical models are being replaced
by hybrid methods such as the Bayesian Model Averaging (Zhang and
Yang (2015)) or the combination of the Autoregressive Moving Average
(ARMA) method with genetic algorithms (Ervural et al. (2016)).

The fact that most researchers
17 do not distinguish between

energy forecasting and energy modelling is comparable to a situation
when one listening to jazz music or a symphony refers to the activity
as listening to the music. The reasons are as follows:

• The capability of making distinctions is related to intelligence and
the understanding of the issue thanks to having been exposed to them



energy forecasting. focus: natural gas 30

Energy forecasting Energy Modelling
Character (mostly) stochastic (mostly) deterministic
Examples of meth-
ods

a) econometric methods based
on input-output coefficients
b) added load methods con-
sidering additions and de-
ductions to gas demand due
to new connections and effi-
ciency improvements

Optimisation based on maximising total sur-
plus or minimising total costs for gas infras-
tructure

Statistics- exoge-
nous data

Forecast load: weather vari-
ables (temperature and hu-
midity), heating and cool-
ing degree days, temperature-
humidity index

Gas consumption (as a result of optimisation,
it could be endogenous, too), price of gas and
of alternative fuels for taking into account fuel-
switch effects, supply constraints (e.g. pipeline
capacities), existing technology stock.

Demand functions (Mostly) weather responsive
especially for short-term fore-
casting.

Price responsive, energy policies responsive

Human behaviour Implicitly in the historical data Researchers’ own assumptions or assumptions
taken from the official national models (e.g. en-
ergy scenarios from the UK Energy Research
Centre’s UK Energy 2050 project)

Geographical cover-
age

Irrelevant (mostly at city or
state level)
“Trading can take place
anywhere with an internet
connection.”

a) global e.g. Shell global energy model from
1974, World gas model; PROMETHEUS
b) regional, national
c) supranational, e.g. European Gas Market
Model

Outcome Prediction (point, interval,
density)

a) energy projection as a function of energy
policies applied
b) projection scenario (set of assumptions on
key inputs) without a probability distribution

Evaluation of the
outcome

Root Mean Squared Error
(RMSE)
Mean Absolute Percentage Er-
ror (MAPE)
Weighted Mean Absolute Per-
centage Error (WMAPE)

No general evaluation standard

Client/ contracting
body

Private Sector. Academia. Public sector: federal agencies, ministries,
academia.

Table 3.1: Energy forecasting vs. energy
modelling with a focus on the gas
sector
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Figure 3.2: Parallels between steps for
learning jazz piano improvisation and
developing new methods for energy
forecasting. Sources: Maria Greitzer
(analogy), Oliver Prehn (10 Steps in
Piano Jazz Improvisation Prehn (2018)),
Comfort Mosha (Illustration).

18 Cage, J. (1952). 4’33 Piano solo
arrangement. First movement. https:

//musescore.com/user/5832946/

scores/1559096 Last accessed 2020-07-
26

before.

• Sharp thinking in mathematical terms cannot be applied to the lan-
guage used.

3.1.4 Interdisciplinary Aspects

Statistical learning models dominate the current practices in
energy forecasting and modelling. The influence of the social sciences
on forecasting practices is illustrated in an analogy to a piano arrange-
ment in figure 3.3.18

Figure 3.3: Illustration of the role of
social science in energy forecasting.
Source: Music note for 4´33 Piano
solo arrangement, First movement.
Composed by John Cage.

https://musescore.com/user/5832946/scores/1559096
https://musescore.com/user/5832946/scores/1559096
https://musescore.com/user/5832946/scores/1559096
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19 Sovacool, B. K., Ryan, S. E., Stern,
P. C., Janda, K., Rochlin, G., Spreng,

D., Pasqualetti, M. J., Wilhite, H., and
Lutzenhiser, L. (2015). Integrating

social science in energy research. En-
ergy Research & Social Science, 6:95–99

20 Jefferson, M. (2016). Energy re-
alities or modelling: Which is more

useful in a world of internal con-
tradictions? Energy Research & So-
cial Science, 22:1–6. https://doi.

org/10.1016/j.erss.2016.08.006
21 Articles of this kind are to be found

in Journals such as Energy Research
and Social Science, or Energy Policy.

22 Shaikh, F. and Ji, Q. (2016). Fore-
casting natural gas demand in

China: Logistic modelling analy-
sis. International Journal of Electri-

cal Power & Energy Systems, 77:25–32

23 DNV-GL (2019). Energy Tran-
sition Outlook. Oil and Gas Fore-

cast 2050. https://eto.dnv.com/

2017/oilgas Last accessed 2021-03-26

24 System dynamics is a branch of sys-
tems theory (a way to see the whole

as the collection of its interacting
parts) "that recognises the role of

positive and negative feedback, in
which systems can spin out of con-

trol, as in virtuous or vicious cycles,
and in which systems can be kept

within bounds, respectively." (Bale
et al. (2015)). Wang et al. (2019) con-

siders DNV GL the only one major
energy institute that does not conduct

a demand-driven analysis, meaning
assuming that gas resources will au-
tomatically meet the future demand.

25 Fragkos, P., Kouvaritakis, N., and
Capros, P. (2015). Incorporating uncer-

tainty into world energy modelling: the
PROMETHEUS model. Environmental

Modeling & Assessment, 20(5):549–569

Because of the consequences of the status quo shown in figure
3.3, Sovacool et al. (2015)19 suggested a program-centred approach to
the energy field instead of the technology-centred approach to encour-
age interdisciplinary depth. Although this direction is already notice-
able in the calls for research projects of national institutions in Ger-
many, energy forecasting and modelling has not been reached by this
trend yet. What is needed is shifting the attention from questions such
as “how to demonstrate that neural networks are the right tool for prediction
of gas demand in Germany in 2030” to “how high will the gas peak demand
be in Germany in 2030?”

Regarding interdisciplinary aspects, International Energy Re-
lations discuss energy supply security and the reliability of energy
models. Jefferson (2016)20 calls the discipline International Political
Economy of Energy21 having its roots in the 1970s as a product of the
OPEC crisis. Gas crises in Europe in 2009 and 2014 had fewer effects
on energy policies in Europe, but initiated interest in energy models’
setup for testing the availability of gas in Europe or the level of de-
pendency on imports to name few. Studies were mostly conducted for
vulnerable countries in Central and South-Eastern Europe and for the
United Kingdom.

Interdisciplinary interdependencies influence the outcome of
energy modelling as the following example shows. China’s gas re-
serves are overestimated due to differences in Chinese and interna-
tionally accepted definitions of gas resources (i.e. gas estimates in
the ground) and reserves (i.e. gas produced with current prices and
technology) (Shaikh and Ji (2016)).22 Changed data of the BP, the US
Department of Energy or the IEA serve as inputs in energy models
and stimulate discussions of Peak Demand instead of Peak Oil. Some
global energy models already included the concept of Peak Demand,
e.g. DNV GL already forecasted an oil demand peak for 2023 and
gas demand peak for 2035 in their Energy Transition Outlook in 2018
DNV-GL (2019).23 DNV GL characterizes their model as system dy-
namic modelling of the world energy system.24 Continuation of cur-
rent technology trends is assumed with one exception being the in-
creased use of hydrogen for energy purposes. Other global energy
models follow expectations regarding the use of hydrogen, too. For
example Prometheus (in Fragkos et al. (2015))25 identifies 18 hydrogen
production technologies in a separate hydrogen module.

For the latest list of global gas demand scenarios from IEA, BP,
ExxonMobil, Equinor, DNV GL, EIA, and Shell, see Bradshaw and
Boersma (2020).

https://doi.org/10.1016/j.erss.2016.08.006
https://doi.org/10.1016/j.erss.2016.08.006
https://eto.dnv.com/2017/oilgas
https://eto.dnv.com/2017/oilgas
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26 The base load covers other usages of
gas without direct dependence on the
temperature, especially in the industry
sector.

27 Analysts do recognize shortcomings
of their methods when the values
violate economic theory (i.e. logic
of the models) or common sense.
This is usually solved by arbitrary
interventions or simply by ignoring
these values.

3.1.5 Conclusion

Most papers follow the same structure:

1. A short reasoning for choosing gas forecasting as the research ob-
ject, e.g. the rapid growth of gas consumption in a country, or a
relevance of the precise forecasting for economic progress;

2. A description of the research methodology used as well as alterna-
tive methods;

3. Proof that the chosen methodology outperforms other methods in
terms of MAPE and RMSE, or by naming novel qualities of a sug-
gested method (e.g. dynamic, adaptive).

There are some peculiarities of forecasting gas demand when
compared to oil or electricity demand forecasting. Short-term gas load
(consumption) is divided into heat load, dependent mostly on outdoor
temperature and base load.26 The relation between heat load and tem-
perature is linear within a certain range of temperatures as shown e.g.
in Merkel et al. (2018) for several Midwestern US operating areas or in
Franco and Fantozzi (2015) for temperatures below 15◦C in Italy. Most
forecasters treat the whole gas demand as a temperature-dependent
output.

Research on gas modelling contributes rather to the methodology
development27 than to the further knowledge gain for the gas sector.
If planners followed forecasts from 2015, China for example would be
dealing with a remarkable oversupply of gas right now. However, it
is the underestimation of gas consumption that can threaten the econ-
omy and the welfare of the population.

As for energy security, the impact of research projects is hardly
measurable as policy makers form their policies in line with studies
assigned by ministries. Research projects become secondary literature
for them.
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28 Training error and its rela-
tion to complexity is described

in the section on complexity.

29 Lindley, D. V. (2001). The phi-
losophy of statistics. Journal of the

Royal Statistical Society: Series D (The
Statistician), 49(3):293–337. https://

doi.org/10.1111/1467-9884.00238

30 Response variables (statistics)
and outputs (machine learning)

are considered as synonyms.
31 A model can be understood as

"a smooth, low-order polynomial
curve fitted to a cloud of points on a
plane" as in Zellner et al. (2002).
Zellner, A., Keuzenkamp, H. A.,

and McAleer, M. (2002). Simplic-
ity, inference and modeling: Keep-

ing it sophisticatedly simple. Cam-
bridge University Press, Cambridge

and New York. ISBN 0521803616

For parametric models, there is an as-
sumption of uncertainty following a
given probability distribution, this is

not the case for non-parametric models.

3.2 Related work

This section reviews literature on gas forecasting with an empha-
sis on the essential idea of forecasting methods and accuracy criteria.
The criteria measure the out-of-sample (or test) error, i.e. the predic-
tion error over an independent test sample. Formally, y denotes the
output (a target variable), X the vector of inputs and f̂ (x) the predic-
tion model from a training data set τ. The loss function is denoted by
L(y, f̂ (X)) (Hastie et al. (2009)). Typical loss functions work with ab-
solute or squared values. For the test error Errτ

28 for a fixed training
set τ we have

Errτ = E[L(y, f̂ (X))|τ] (3.2.1)

In simpler terms, a forecast error is defined as

Err = y− f̂ (X) (3.2.2)

3.2.1 Forecasting assumptions

Lindley (2001)29
stated that:

”a model is merely your reflection of reality and, like probability, it de-
scribes neither you nor the world, but only a relationship between you and
that world.” This work adds a simplified reflection. All forecasting meth-
ods are based on the assumption of underlying relationships among
multiple variables, and their discovery assists the estimation of the
response variable30 in the future. Moreover, it is assumed that data
quality is sufficient and representative of a research object. Addition-
ally, if the model31 predicts accurately in one forecasting period, it
will also produce accurate forecasts in further periods. Besides these
implicit assumptions, a few more premises set the trend in forecasting
and change almost every two decades. In the second half of the 20th

century, statisticians believed there could be one superior model that
fit almost all forecasting problems. Supposedly, it was just a matter of
time before it was found.

Regarding complexity, data scientists take clashing positions; ei-
ther they assume that “more sophisticated models lead to increases in the
prediction accuracy” or “simple models predict at least as accurate as complex
models and in most cases, they outperform complex models”. The definition
of a model sophistication has not been defined in the classical literature
on forecasting; non-parametric non-linear models are perceived to be
complex. Kaposty et al. (2020) describes more complex methods as
models able to take more information into consideration.

https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1111/1467-9884.00238
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In the persistence model, forecast
equals the latest observation in time
series.

32 Kuhn, M. and Johnson, K. (2016).
Applied predictive modeling. Springer,
New York, Corrected 5th printing
edition. ISBN 978-1-4614-6849-3

The forecasting criteria below are
mostly used for measuring accuracy
of univariate time series forecasts, i.e.
forecasts for time series that consists
of single scalar observations measured
sequentially over equal time steps.

Automatic forecasting software may
be set to exclude models with results
exceeding 50 per cent in MAPE (Katz
(2020)).

33 Makridakis, S. (1993). Accuracy
measures: theoretical and practical con-
cerns. International Journal of Forecasting,
9(4):527–529. https://doi.org/10.

1016/0169-2070(93)90079-3

3.2.2 Accuracy criteria

Depending on the task, the accuracy is computed by comparing
forecasts to their real values with the aid of commonly used forecast
measures as described in the subsection below or - for model selection
- to a benchmark model that is usually a persistence model or the
mean of previous values. Let rt denote the relative error, then

rt = et/et∗ (3.2.3)

where et means the forecast error of a model compared and et∗ the
forecast error of the benchmark method (Hyndman and Koehler (2006)).

Although overlooked in the literature, Kuhn and Johnson
(2016)32 in their textbook Applied Predictive Modelling discuss the up-
per bound of the accuracy related to the response variable. Systematic
error is an inevitable part of any error and includes measurements,
summing and reporting final values. As for a self-constructed data set
for forecasting gas imports to Germany, imperfections include mea-
surements of amount of gas transported at import nodes, reporting
issues and changes in the methodology of calculations.

Forecasting criteria

a) Mean absolute percentage error (MAPE) is a scale-indepen-
dent measure used for the comparison of models for forecasting
variables with different mean value; with the range of 1-10 (highly
accurate), 10-30 (good forecast) and above 50 (inaccurate forecast).

MAPE =
1
n

n

∑
t=1

∣∣∣∣ et

yt

∣∣∣∣ (3.2.4)

where n is the number of data points, yt the actual value and et

the difference between an actual value yt and the predicted value ŷt.
Since this measure penalises positive errors more than negative ones;
Makridakis (1993)33 suggested a symmetric mean absolute percent-
age error:

sMAPE = mean(200|yt − ŷt|/(yt + ŷt)) (3.2.5)

sMAPE criterion can take negative values and it is also not fully
symmetric (Hyndman and Koehler (2006)).

b) Root mean square error (RMSE) is used in linear models, e.g.
for electricity production from wind power plants based on meteo-
rological models, as its minimization (a quadratic problem) can be

https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1016/0169-2070(93)90079-3
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Gradient descent is a generic ap-
proach to minimizing in-sample er-

ror R(θ) in neural networks. Neu-
ral networks with no hidden layer
are actually linear multinomial re-

gression models (Hastie et al. (2009)).
34 Rieck, B. A. (2017). Persistent Ho-

mology in Multivariate Data Visualiza-
tion. PhD thesis, Heidelberg Uni-

versity Library. http://archiv.ub.

uni-heidelberg.de/volltextserver/

22914/1/Dissertation.pdf

Last accessed 2021-04-13

35 Browell, J. (2015). Spatio-tempo-
ral prediction of wind fields. PhD
thesis, University of Strathclyde.
http://oleg.lib.strath.ac.uk:

80/R/?func=dbin-jump-full&object_

id=25822 Last accessed 2020-12-20

36 Pelikán, E. (2014). Forecasting of
processes in complex systems for real-
world problems. Tutorial. Neural Net-

work World, 24(6):567–589. http://www.

nnw.cz/doi/2014/NNW.2014.24.032.pdf

solved by differentiation or iteratively by gradient descent (Brow-
ell (2015)). Aggregation and the mean calculation mask the be-
haviour of various models; scatter plots display the insensitivity
of the RMSE (as an aggregate number) as shown in Rieck (2017).34

Besides practice in forecasting, the RMSE is also used as a quality
measure for dimensionality reduction methods.

RMSE =

√
1
n

n

∑
t=1

e2
t (3.2.6)

c) Mean absolute error (MAE) measures the mean absolute dif-
ference between the predicted and observed values. The error is
representative in situations where “the economic cost of a forecast er-
ror is proportional to the magnitude of the error, as opposed to its square”
(Browell (2015)).35 However, for this case, no real example from the
energy sector was found. The mean absolute error is also used for
expressing the forecast error in relation to other errors.

MAE =
1
n

n

∑
t=1
|et| (3.2.7)

d) Mean square error (MSE), as every error, could be decomposed
into a bias term and variance. The bias is the consistent offset of the
forecast, the variance represents the variation of the forecast error
around its mean.

MSE =
1
n

n

∑
t=1

e2
t (3.2.8)

Both, MAE and MSE are generalized by the Minkowski objective
function with the exponent R (Pelikán (2014)).36 For R = 1 the
MAE is computed, for R = 2 it is the MSE. All three errors (RMSE,
MAE and MSE) are scale-dependent and sensitive to outliers.

LM =
1
n

n

∑
t=1

eR
t (3.2.9)

e) The coefficient of determination R2 measures the propor-
tion of the variance that can be explained by the model. There
are many ways to compute R2: one of them, correlation coefficient,
measures how well the predicted and real (measured) values are
correlated. The most used form of the coefficient is Pearson’s corre-
lation coefficient r.

http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://www.nnw.cz/doi/2014/NNW.2014.24.032.pdf
http://www.nnw.cz/doi/2014/NNW.2014.24.032.pdf
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37 Busse, S., Helmholz, P., and Wein-
mann, M. (2012). Forecasting day ahead
spot price movements of natural gas
- an analysis of potential influence
factors on basis of a NARX neural
network. Multikonferenz Wirtschaftsin-
formatik 2012 - Tagungsband der MKWI
2012. https://publikationsserver.

tu-braunschweig.de/servlets/

MCRFileNodeServlet/dbbs_derivate_

00027726/Beitrag299.pdf Last ac-
cessed 2021-04-14

38 Petropoulos, F., Hyndman, R. J.,
and Bergmeir, C. (2018). Exploring
the sources of uncertainty: Why does
bagging for time series forecasting
work? European Journal of Operational
Research, 268(2):545–554

39 Data points (cases) with a long
distance to all other cases.

40 Ghalehkhondabi, I., Ardjmand, E.,
Weckman, G. R., and Young, W. A.
(2017). An overview of energy demand
forecasting methods published in
2005–2015. Energy Systems, 8:411–447.
10.1007/s12667-016-0203-y

r =
n ∑ XY− (∑ X ∑ Y)√

[n ∑ x2 − (∑ x2)][n ∑ y2 − (∑ y2)]
(3.2.10)

where n denotes number of observations in the regression equation,
X the mean of the independent variable of the regression equation
and Y the mean of the response variable (output). As follows from
the formula, the correlation coefficient does not provide any infor-
mation on systematic over- and underpredictions of a model.

f) "Hit ratio" reflects the proportion of successful forecasts, defined
by the match of their algebraic sign (e.g. a percentage change of
gas price compared to its previous value) to the true value. It is
rare to find the measure hit ratio in energy forecasting; for example
Busse et al. (2012)37 used it for measuring accuracy in gas spot price
forecasting.

hitratio =
f orecasts− errorcount

f orecasts
(3.2.11)

Alternative accuracy measures include the MASE, the scaled
variant of the mean absolute error (MAE), proposed by Hyndman and
Kochler, where the scaling is equal to the MAE of the seasonal ran-
dom walk for the in-sample data38 or the overall weighted average
(OWA) of chosen accuracy measures. Here, outliers39 are less penal-
ized than in the case of RMSE where the deviation from the actual
value is squared.

3.2.3 The essential idea of methods

Studying forecasting literature of the last 20 years, it is hard to
ignore the number of studies devoted to China or Turkey. It is spec-
ulated that this is due to their rapidly increasing gas demand due to
population increase (Turkey) or high economic expectations in the last
decade (China). The paradox lies in the realization that most forecast-
ing methods work best under stable business as usual conditions.

Second, the setup of every study with its forecasting models is unique
in almost all criteria:

a) Training and test data sets in terms of their size and quality.

b) Goal of forecasting and various time horizons. Authors of reviews
choose arbitrary division lines; Ghalehkhondabi et al. (2017)40 un-
derstand short-term forecasting as forecasting up to a month, mid-
term forecasting up to five years and long-term forecasting from five

https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
10.1007/s12667-016-0203-y
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41 For example, day-ahead electricity
price forecasts in Gianfreda et al. (2020).

"Reference Scenario" - the con-
tinuation of already applied poli-

cies, "New Policy Scenario" - re-
flecting the change in policies.

42 Browell, J. (2015). Spatio-tempo-
ral prediction of wind fields. PhD
thesis, University of Strathclyde.
http://oleg.lib.strath.ac.uk:

80/R/?func=dbin-jump-full&object_

id=25822 Last accessed 2020-12-20

43 Botev, L. and Johnson, P. (2020).
Applications of statistical process

control in the management of unac-
counted for gas. Journal of Natural

Gas Science and Engineering, 76:103194

to 20 years. Debnath and Mourshed (2018) define a short-term hori-
zon as up to three years, medium-term from three to fifteen years
and the long-term as over fifteen years. The short-term forecasts in
the energy sector are the matter of interest for energy traders41 and
distributors of electricity; therefore, in the electricity load forecasting,
the short-term period covers less than one hour and long-term more
than one-year.

Above 20 years, either a long-term forecast estimate e.g. the re-
turn on investment into the technology (new gas turbines, wind
power turbines) or the whole energy sector, economy or global econ-
omy are modelled by applying the function of the minimal cost of
produced and/or distributed energy, published by the IEA, the US
EIA and others. Since governments partly control the outcome of
demand of energy carriers, the IEA and other organizations pub-
lish projections under Scenarios. Geographical coverage affects the
choice of a forecasting horizon and required accuracy: the higher
the level (district, city, country, global), the higher the tendency to
forecast long-term and the lower accuracy is expected given the un-
certainty of the input information.

In case studies, the length of forecast horizons depends on the
characteristics of the object’s field. Table 3.2 contains forecast hori-
zons, common temporal resolutions and decisions relevant for wind
energy from the dissertation of Browell (2015).42 Two more columns
have been added to show if and how forecasts could be applicable
for energy networks: district heating (DH) network with the spa-
tial boundary of a city and a gas transmission network with nodes
at the countries’ borders. Whereas the wind power plant opera-
tors balance their electricity supply in the very-short-term, district
heating operators can have up to a few hours to react to changes
in demand due to system latency. In large networks at city level,
there is a time lag of up to 12 hours for delivering heat from a sup-
plier to the final consumer. Predicting hourly heat demand depends
more on behavioral patterns than on buildings’ thermal properties.
Similar to district heating networks, gas networks contain linepack,
the amount of energy in pipelines, computed with the fixed tem-
perature and the average heating value of gas (Botev and Johnson
(2020)).43

c) The choice of variables

A variable neglected by one author is of importance in other stud-
ies, which is understandable if this work draws a line between in-

http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822


Fo
re

ca
st

ho
ri

zo
n

R
es

ol
ut

io
n

D
ec

is
io

n
D

is
tr

ic
t

he
at

in
g

(D
H

)
ne

tw
or

ks
Pr

ed
ic

ti
on

:
H

ea
t

de
m

an
d

fo
r

re
si

de
nt

ia
l

se
ct

or
,

ba
se

d
on

w
ea

th
er

G
as

ne
tw

or
ks

Pr
ed

ic
ti

on
:g

as
de

m
an

d

U
lt

ra
-s

ho
rt

-
te

rm
<1

m
in

,
Se

co
nd

s
W

in
d

tu
rb

in
e

co
nt

ro
l

N
ot

ap
pl

ic
ab

le
N

ot
ap

pl
ic

ab
le

Ve
ry

-s
ho

rt
-

te
rm

<1
ho

ur
1
,5

,1
0
,1

5

m
in

.
Ba

la
nc

in
g,

w
in

d
fa

rm
co

nt
ro

l,
sp

ot
m

ar
ke

ts
N

ot
ap

pl
ic

ab
le

fo
r

ne
tw

or
ks

at
th

e
ci

ty
le

ve
l;

a
D

H
ne

tw
or

k
is

a
sh

or
t-

te
rm

st
or

ag
e.

Sh
or

t-
te

rm
1
-4

8

ho
ur

s
3
0

m
in

.,
1

ho
ur

G
en

er
at

io
n

sc
he

du
lin

g,
da

y-
ah

ea
d

m
ar

ke
ts

,
so

m
e

sp
ot

m
ar

ke
ts

Ba
la

nc
in

g
th

e
su

pp
ly

Ba
la

nc
in

g
th

e
su

pp
ly

M
ed

iu
m

-
te

rm
1
-1

0

da
ys

1
ho

ur
,

3

ho
ur

s
G

en
er

at
io

n
sc

he
du

lin
g,

m
ai

nt
en

an
ce

pl
an

ni
ng

Ba
la

nc
in

g
th

e
su

pp
ly

Lo
ng

-t
er

m
M

on
th

s-
ye

ar
s

D
ay

s-
m

on
th

s
M

ai
nt

en
an

ce
pl

an
-

ni
ng

,
re

so
ur

ce
as

se
ss

-
m

en
t/

pr
oj

ec
t

fin
an

ci
ng

M
ai

nt
en

an
ce

pl
an

ni
ng

,
fu

el
pu

r-
ch

as
e

M
ai

nt
en

an
ce

pl
an

ni
ng

,
St

ra
te

gi
c

pl
an

ni
ng

,
Lo

ng
-t

er
m

in
te

rn
at

io
na

l
co

nt
ra

ct
s,

LN
G

co
nt

ra
ct

s.
Ta

bl
e

3
.2

:F
or

ec
as

t
ho

ri
zo

ns
,c

om
m

on
te

m
po

ra
lr

es
ol

ut
io

ns
,d

ec
is

io
ns

fo
r

w
in

d
en

er
gy

(B
ro

w
el

l(
2
0
1
5
))

,d
is

tr
ic

t
he

at
an

d
ga

s
ne

tw
or

ks
(M

.G
re

it
ze

r)



energy forecasting. focus: natural gas 40

Models, methods and tech-
niques are treated as synonyms.

44 Šebalj, Dario and Dujak Davor
and Mesaric Josip (2017). Pre-

dicting natural gas consumption
- a literature review. http://

archive.ceciis.foi.hr/app/public/

conferences/2017/08/SPDM-2.pdf
45 Side notes refer to the newest stud-

ies of models for gas forecasting.
46 Wang, Z., Li, Y., Feng, Z., and Wen,

K. (2019). Natural gas consump-
tion forecasting model based on

coal-to-gas project in China. Global
Energy Interconnection, 2(5):429–435

47 Su, H., Zio, E., Zhang, J., Xu, M., Li,
X., and Zhang, Z. (2019). A hybrid

hourly natural gas demand forecast-
ing method based on the integration

of wavelet transform and enhanced
deep-RNN model. Energy, 178:585–597

48 Su, H., Zio, E., Zhang, J., Xu, M., Li,
X., and Zhang, Z. (2019). A hybrid

hourly natural gas demand forecast-
ing method based on the integration

of wavelet transform and enhanced
deep-RNN model. Energy, 178:585–597

49 Szoplik, J. (2015). Forecasting of nat-
ural gas consumption with artificial

neural networks. Energy, 85:208–220

”The object of statistical methods is
the reduction of data. A quantity of

data, which usually by its mere bulk
is incapable of entering the mind, is to

be replaced by relatively few quantities
which shall adequately represent the

whole, or which, in other words, shall
contain as much as possible, ideally

the whole, of the relevant information
contained in the original data.” in:

Fischer, R. A. (1922). On the math-
ematical foundations of theoretical
statistics. Philosophical Transactions

of the Royal Society of London. Series A,
Containing Papers of a Mathematical or

Physical Character, 222(594-604):309–368

50 Erdoğdu, E. (2010). Natural gas
demand in Turkey. Applied Energy,

87(1):211–219. https://doi.org/

10.1016/j.apenergy.2009.07.006

dustrial and post-industrial countries. The increase of average in-
come/per capita in China could cause increased gas consumption
of the country, whereas in Germany, this linear relationship does
not exist.

In the next section, models are discussed at length.

There are no unified criteria for models’ categorization. For
comprehensive reviews on models in gas forecasting, see Soldo (2012),
Tamba et al. (2018) and Sen et al. (2019). Šebalj, Dario and Dujak Da-
vor and Mesaric Josip (2017)44 reviewed 187 papers on gas consumption
forecasting and listed the nine most used methods:45 neural networks,
adaptive neuro-fuzzy inference system (ANFIS), grey model, support
vector machine (SVM)46, genetic algorithms47, mathematical and sta-
tistical models, time series, and hybrid models.48 Szoplik (2015)49 pro-
vided an overview of three forecasting methods with a practical mean-
ing for predicting gas consumption: time series methods, regression
models, and neural networks. These reviews show that most forecasts
in the energy field deal with energy prices (Herrera et al. (2019)), fuel
production (Semenychev et al. (2014)) or fuel consumption of natural
gas and coal, as both belong to finite energy resources.

Tamba et al. (2018) reviewed models up to 2015 and ordered them
chronologically from oldest to most recent:

• Hubbert model

• statistical models (ARIMA, time series models, decomposition mod-
els and trend analysis)

• regression models

• econometric models

• AI-expert systems (neural networks)

• fuzzy logic

• grey prediction models

• genetic algorithms

• mathematical models

• hybrid models

• combination or mixed models.

Sen et al. (2019) grouped forecasting methodologies by the period
of their use into three types: ARIMA modelling, decomposition ap-
proaches on a daily basis and heuristic approaches based on economic
indicators such as GDP, population, and inflation.

http://archive.ceciis.foi.hr/app/public/conferences/2017/08/SPDM-2.pdf
http://archive.ceciis.foi.hr/app/public/conferences/2017/08/SPDM-2.pdf
http://archive.ceciis.foi.hr/app/public/conferences/2017/08/SPDM-2.pdf
https://doi.org/10.1016/j.apenergy.2009.07.006
https://doi.org/10.1016/j.apenergy.2009.07.006
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51 Makridakis, S., Spiliotis, E., and
Assimakopoulos, V. (2018). The M4

competition: Results, findings, conclu-
sion and way forward. International
Journal of Forecasting, 34(4):802–808

52 Barker, J. (2020). Machine learning
in m4: What makes a good unstruc-
tured model? International Journal of
Forecasting, 36(1):150–155

53 Januschowski, T., Gasthaus, J., Wang,
Y., Salinas, D., Flunkert, V., Bohlke-
Schneider, M., and Callot, L. (2020).
Criteria for classifying forecasting meth-
ods. International Journal of Forecasting,
36(1):167–177

54 Interval and quantile forecasts

55 In German Auftraggeber, usually
Ministries and other public institutions.

For time series data, Erdoğdu (2010)50 listed the following approaches
to economic forecasting: a) exponential smoothing methods, b) sin-
gle-equation regression models, c) simultaneous-equation regression
models, d) ARIMA, and e) vector autoregression.

Within the forecasting community, various criteria are used to
make a distinction between statistical models and machine learning mod-
els. In the broad sense, statistical methods are described as “variants
of exponential smoothing and ARIMA methods” in Makridakis et al.
(2018)51 and machine learning methods are anything else, covering
neural networks and random forests. A statistical model can also
be understood as a model learning its parameters in one series at a
time, whereas the machine learning (ML) model finds the parameters
across multiple series. Barker (2020)52 suggests a new division between
structured models (such as an autoregressive model) and unstructured
models (neural networks) based on the way the data are generated: is
the process of generation defined a priori or is it learned from the
data?

Januschowski et al. (2020)53 formulated objective and subjective di-
mensions of the classification; the next paragraph shortly summarizes
both groups according to their paper, with comments.

3.2.4 Objective methods according to Januschowski et al. (2020)

Global and local methods. Local methods mean estimating pa-
rameters for a model in each time series separately; global methods
search across time series.

Point vs probabilistic forecasts.54 Point forecasts assign one
single value for the amount category of a research object (e.g. wind
speed, gas consumption) for a forecasting horizon. Their main advan-
tage is how quickly the information is grasped by the public, though
this is without any quantification of forecast uncertainty. Probabilistic
forecasts estimate the likelihood of possible outcomes and thus, they
are combinations of the two qualities: sharpness and reliability.

In gas forecasting, researchers’ results take the form of point forecasts as
these are subjects of their contracts with contractors.55 However, interval
forecasts would provide higher information value as it is the maximum de-
mand that is relevant for maintaining the security of energy supply. Second,
overprediction and underprediction of gas consumption do not have the same
negative impact in terms of economic efficiency and security. Therefore, quan-
tile forecasts are more appropriate since they estimate the probability that an
observation will exceed the set value.
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56 A loss function L(y, ŷ) defines
the estimated prediction error by

measuring how close ŷ is to y.

A step further denotes probabilistic forecasting. Density forecasts
estimate probability distribution of the possible future values of a
variable meaning the forecast contains information regarding the full
range of possible outcomes (Browell (2015)).

Computational complexity, decreased by parallelizability. Com-
plexity measured by the time spent on producing the forecast serves as a main
criterion for assessing complexity in forecasting. Still, it only covers a single
aspect of the complexity phenomenon.

Linearity and convexity. Labelling statistical models as linear and
machine learning models as non-linear over-simplifies the categoriza-
tion. Methods applying a convex loss56 function for an optimization
procedure can be easily explained logically and thus better embed-
ded in a theory. Non-convex models may produce impressive results,
however there is no logical explanation as to how they work.

Subjective dimensions according to Januschowski et al. (2020)

Data-driven vs model-driven methods. Machine learning (ML)
models are perceived as data-driven models if the pattern comes from
the data only, with the risk of over-fitting. Additional information in
ML models take the form of adding a) external variables, b) features
from descriptive statistics (spectral entropy) or c) features automati-
cally generated by other ML algorithms. Data pre-processing affects
model performance.

ARIMA models are typical representatives of model-driven meth-
ods with defined assumptions.

In gas forecasting research studies, data-driven models start to prevail
while model-driven models are used as benchmarks.

Ensemble vs single models

Discriminative vs generative

Statistical guarantees are explained in articles published in
statistical and ML journals. In statistical journals, theoretical assump-
tions of a new proposed method are supported by an empirical study
based on a small-scale data set to validate theoretical results. In the
next step, results are expected to outperform results from previous
studies. In ML journals, a new procedure is described as well as the
motivation to use it; the proposal is contextualized within the exist-
ing literature (if possible) and then the method is tested on several
standard data sets.
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57 Wiener, N. (2013). Cybernetics or
control and communication in the animal
and the machine. MIT Press, Cam-
bridge, Mass., 2. ed. edition. ISBN
9781614275022

The International Energy Agency

Energy Information Administration

58 Sharmina, M., Abi Ghanem, D.,
Browne, A. L., Hall, S. M., Mylan,
J., Petrova, S., and Wood, R. (2019).
Envisioning surprises: How social
sciences could help models represent
‘deep uncertainty’ in future energy and
water demand. Energy Research & Social
Science, 50:18–28. https://doi.org/10.
1016/j.erss.2018.11.008

In energy journals, first the motivation for forecasting gas demand is stated
by two arguments – if gas demand is predicted at state level, it is the increased
security of energy supply and capacity building (pipelines, storage); in case
of prediction of gas demand for a part of a distribution network, energy and
financial efficiency comes into play. Second, the ultimate goal of forecasting
is not to pursue the development of the forecasting science but to generate
predictions for demand. Thus, forecasting models are perceived only as a
tool, one out of many, including for example expert judgements derived from
10-year development plans for gas infrastructure. Researchers follow recent
trends in forecasting and apply machine learning models but stay interested
in the interpretation of the forecast (and not the forecasting model itself).
Recalling the first two sentences in the introduction, there is often no evidence
of utilizing new forecasts in policy making.

Explanatory/interpretable vs predictive. Machine learning
methods are often seen as black boxes. Wiener (2013)57 understood
them as “a piece of apparatus, such as four-terminal networks with
two input and two output terminals, which performs a definite op-
eration on the present and past of the input potential, but for which
we do not necessarily have any information of the structure by which
this operation is performed". He defined the white box in the same
fashion with an essential distinction: "we (researchers) are able to follow
the determined process of gaining outputs as we built in the relation between
input and output."

Within the gas sector, results coming from black boxes are not acceptable.
Models from the IEA, the BP and the U.S. EIA produce explanatory forecasts
(predictions with scenarios) by modelling the whole gas sector as a part of the
modelled economy and following the goal of minimized costs.

Outside the forecasting community, figure 3.4 shows a visual-
ization of methods used in studies of energy and water demand, pre-
sented in Sharmina et al. (2019).58 Based on three references, Sharmina
et al. (2019) state the machine learning methods are more accurate than
statistical methods. The reason the latter prevails regardless is because
of the built-in agenda of a technical discipline, where authors borrow
the term "shared technical interest" from Asdal (2011).

The next section describes chosen models and their applications in
gas forecasting.

https://doi.org/10.1016/j.erss.2018.11.008
https://doi.org/10.1016/j.erss.2018.11.008
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Figure 3.4: Visualisation of methods
used for energy and water demand.

59 Wang, Z., Li, Y., Feng, Z., and Wen,
K. (2019). Natural gas consump-

tion forecasting model based on
coal-to-gas project in China. Global
Energy Interconnection, 2(5):429–435

60 Siemek, J., Nagy, S., and Rych-
licki, S. (2003). Estimation of nat-

ural gas consumption in Poland
based on the logistic-curve interpre-

tation. Applied Energy, 75(1-2):1–7

61 Al-Fattah and Startzman (1999)
modified the Hubbert model assum-

ing multiple gas production cycles.
62 Ma, Y. and Li, Y. (2010). Anal-

ysis of the supply-demand sta-
tus of China’s natural gas to 2020.

Petroleum Science, 7(1):132–135. https:

//link.springer.com/content/pdf/

10.1007/s12182-010-0017-9.pdf

3.2.5 Forecasting models and applications

Hubbert Model – a theoretical production model with various adap-
tations for yearly forecasts of gas production. The classical version of
the model assumes a symmetric production curve, i.e. the production
peaks at a point when half of the ultimately recoverable resources are
already exploited (Wang et al. (2019)).59 Real production curves show
a higher rate of production before the peak is reached than after the
climax point (Wang et al. (2019)).

In gas forecasting, Siemek et al. (2003)60 used the Startzman mod-
ification of the Hubbert model61 to describe possible gas demand in
Poland, based on economic development and taking into account pro-
duction/demand maxima of energy carriers. For forecasting gas pro-
duction in China, Ma and Li (2010)62 excluded this model from their
list of methods reasoning that “the predicted outputs are generally
greater than actual outputs and the prediction results are less accu-

https://link.springer.com/content/pdf/10.1007/s12182-010-0017-9.pdf
https://link.springer.com/content/pdf/10.1007/s12182-010-0017-9.pdf
https://link.springer.com/content/pdf/10.1007/s12182-010-0017-9.pdf
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63 To calculate the total storage capac-
ity, cushion gas is subtracted from the
amount of stored gas. Cushion gas is
the amount of gas required for main-
taining adequate underground storage
reservoir pressures and deliverability
rates throughout the output cycle.
64 Dependence on temperature is
country-specific (more details in the
modelling section on forecasting gas
demand in Germany).

65 Browell, J. (2015). Spatio-temporal
prediction of wind fields. PhD thesis,
University of Strathclyde. http:

//oleg.lib.strath.ac.uk:80/R/?func=

dbin-jump-full&object_id=25822 Last
accessed 2020-12-20

66 In recurrent neural networks, the
gradient may vanish during backprop-
agation. The Long Short-term memory
(LSTM) algorithm (deep learning) fixes
the short memory of recurrent neural
networks (Anagnostis et al. (2019)).

67 Theocharis, Z. and Harvey, N. (2019).
When does more mean worse? Ac-
curacy of judgmental forecasting is
nonlinearly related to length of data
series. Omega, 87:10–19

rate with time.” This loss of accuracy is the nature of every forecasting
method.

In contrast to the electricity sector, global natural gas pro-
duction does not have to match gas demand in the same period due to
the option to store gas63 and other alternative fuels (synthetic methane,
hydrogen). Still, similarities between the electricity and gas distribu-
tion systems (grid-bounded, dependence on temperature)64 serve as
justification for applying models from electricity (load) forecasting to
predicting gas spot prices as argued by Busse et al. (2012).

1. The persistence model, also called a naïve forecast model, is
the simplest reference model supposing that the response variable
(output) y at some point in the future (t + ∆) will be the same as the
observation x at time t.

y + ∆ = x (3.2.12)

Browell (2015)65 writes ”The performance of the persistence fore-
cast is considered a measure of the ‘predictability’ of a particular
times series and is still used by some practitioners in the energy
industry today for short-time forecasting.” If any model does not
outperform the persistence forecast, additional effort and cost in
terms of computational time is not justified. New models do not
have to outperform a naïve forecast remarkably; e.g. in Busse et al.
(2012) recurrent neural networks66 achieved the best performance
with the hit ratio accuracy measure of 0.64 and the MAPE of 88.20
whereas the persistent forecast would deliver a hit ratio of 0.6 and
the MAPE of 317.

2. Statistical/Time Series Models. Time series models imply
that the history, mirrored in data sets, has its own pattern that will
probably continue into the future.

In judgemental forecasting, the very short length of time se-
ries (an observation) or relatively long observations (more than 20
observations) will provide better results than, for example, the last
five observations (Theocharis and Harvey (2019)).67

Time-series analysis assumes:

(a) Random error terms are normally distributed. Random error is
an estimate of the variance of an output; this variance emerges
due to factors not included in the model.

http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
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68 Policies such as coal-to-gas program
in Northern China (see Wang et al.
(2019)) invalidate this assumption.

69 In notation, p stands for the order of
the auto-regression, d is the order of

the differencing, and q stands for the
moving average process. Capital letters
are seasonal parts of the model with S

representing the number of periods per
season (Debnath and Mourshed (2018)).

70 Barker, J. (2020). Machine learn-
ing in m4: What makes a good un-

structured model? International
Journal of Forecasting, 36(1):150–155

Stationary time series consist of ran-
dom processes that have constant
mean which do not exhibit trend

pattern. Augmented Dickey-Fuller
Test is performed for this purpose.

71 Petropoulos, F., Hyndman, R. J.,
and Bergmeir, C. (2018). Explor-

ing the sources of uncertainty: Why
does bagging for time series fore-
casting work? European Journal of

Operational Research, 268(2):545–554

72 Erdoğdu, E. (2010). Natural gas
demand in Turkey. Applied Energy,

87(1):211–219. https://doi.org/

10.1016/j.apenergy.2009.07.006

73 To complete the analysis, the
mean absolute percentage error

(MAPE) and the symmetric mean
absolute percentage error (sMAPE)
are 19.58% and 8.91% respectively.

(b) There are dependable correlations between the variable to fore-
cast and other independent variables.

(c) Past patterns in the variable to be predicted will continue un-
changed into the future.68

(d) The data does not exhibit a trend.

3. Statistical/autoregressive integrated moving average mod-
els (p, d, q)(P, D, Q)S)

69

These models are typical representatives of model-driven methods
with defined assumptions; many automatic forecasting algorithms
are based on them. An ARIMA model seeks additive relationships
between lags of a series and its future values70 under the condition
of stationary time series (identically distributed). The methodology
of a model consists of four steps:

• identification of values of a model by tools such as an auto-
correlation function (ACF), or a partial autocorrelation function
(PACF);

• estimation;

• checking residuals from the estimation to identify any autocor-
relations and partial correlations of the residuals that are statisti-
cally significant;

• forecasting.

In ARIMA models, a model combination benchmark cannot be ap-
plied, as there is an infinite number of ARIMA models (Petropoulos
et al. (2018)).71 Also, the running time of ARIMA models is too high
in comparison with other models used as a benchmark.

Erdoğdu (2010)72 used these methods for making predictions of gas
demand in Turkey with a data set from the IEA covering quarterly
consumption for the period of 1988-2005. For the validation of mod-
elling, the author calculated the absolute value of deviation in mil-
lion cubic metres from 2000 to 2004 and the annual deviation as a
percentage of actual consumption; with the minimum deviation of
1%, the maximum 8.1% and the average at 4%.

To evaluate this forecast for 2020, forecast values in billion cubic me-
tres of gas from 2009-2017 are compared with reported data from
Eurostat. The average annual deviation expressed as a percentage
of actual consumption was at 13.4% , with the minimum deviation
in 2011 at 4.9% and the maximum deviation at 23.5% in 2016.73

Forecasts overestimated gas demand in Turkey for all years. De-
cisions based on these forecasts would cause overcapacity but no

https://doi.org/10.1016/j.apenergy.2009.07.006
https://doi.org/10.1016/j.apenergy.2009.07.006
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74 Hyndman, R. J. and Khandakar, Y.
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75 Chkili, W., Hammoudeh, S., and
Nguyen, D. K. (2014). Volatility fore-
casting and risk management for
commodity markets in the presence of
asymmetry and long memory. Energy
Economics, 41:1–18

76 Busse, S., Helmholz, P., and Wein-
mann, M. (2012). Forecasting day ahead
spot price movements of natural gas
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network. Multikonferenz Wirtschaftsin-
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2012. https://publikationsserver.
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cessed 2021-04-14

77 Akpinar, M. and Yumusak, N. (2016).
Year ahead demand forecast of city
natural gas using seasonal time series
methods. Energies, 9(9):727

threat to gas supply in Turkey in any sector (residential, industry
and electricity production).

In the R forecast package, the auto.arima() function imple-
ments the Hyndman-Khandakar algorithm (Hyndman and Khan-
dakar (2008))74, which chooses an appropriate model with the low-
est Akaike Information Criterion (AIC)

AIC = −2ln(L̂) + 2p (3.2.13)

where p denotes the number of estimated parameters in the model
and L̂ is the maximum value of the likelihood function for the
model.

4. Statistical/Generalized AutoRegressive Conditional Het-
eroscedasticity (GARCH) models.

Chkili et al. (2014)75 used GARCH models for forecasting the con-
ditional volatility and market risk of four commodities: oil, gas,
gold and silver. Busse et al. (2012)76 recommend GARCH and other
linear methods for short-term gas price forecasting as their results
suggest gas price development is not dominated by nonlinear input
factors.

5. Statistical/Decomposition and trend analysis

There are a few types of decomposition. This work uses the additive
and multiplicative model of decomposition based on moving aver-
ages (section 4.1) as well as the STL (the Seasonal and Trend decom-
position), which handles any type of seasonality. In hybrid models,
decomposition serves as a preprocessing step and the modelling of
components of decomposition and their residuals can be achieved
through an unstructured modelling technique.

In the gas field, Akpinar and Yumusak (2016)77 applied decom-
position, Holt-Winters exponential smoothing and ARIMA on four
years of gas consumption data in Turkey (2011-2014), gathered in
monthly periods. They concluded that all methods provide satisfy-
ing results and differences in accuracy between them are low.

Decomposition introduces simplicity to modelling. Some
authors claim the opposite as united data are decomposed into more
parts, which goes hand in hand with the natural use of the term
complexity as discussed later.

https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
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Notation on prediction values: f (x) = ŷ

79 Kuhn, M. and Johnson, K. (2016).
Applied predictive modeling. Springer,

New York, Corrected 5th printing
edition. ISBN 978-1-4614-6849-3

6. Statistical/Linear regression models

Linear regression, as all causal models, is based on the assumption
that an output responds to the various, up-front chosen variables
(predictors). Their number shall be lower than the number of data
points and they shall not be correlated.

Precisely, given a set of n measurements with d attributes, each
measurement can be represented as a d-dimensional input vector X.
Under the assumption, each vector X has an associated scalar prop-
erty, s ∈ R; regression analysis derives a functional relationship
between each vector X and its associated scalar property s (Rieck
(2017)).78

f (X) = β0 +
p

∑
j=1

Xj β̂ j (3.2.14)

The parameter β̂ is estimated from a training data set
(x1, y1)...(xN , yN), by minimizing the sum of squared residuals (a
quadratic cost function corresponding to the log-likelihood of the
distribution of the error term) (Hastie et al. (2009)):

RSS(β) =
N

∑
i=1

(yi − f (xi))
2 (3.2.15)

Estimation error refers to β̂ coefficients which vary regarding the
true regression coefficients. It is assumed the model is built upon
the sample of the data and as the sample N increases, the estimation
error decreases (Tashman (2018)). Thus, it gives more weight to out-
liers in the data set as these have exponentially large residuals. This
can be solved by applying the absolute loss function L(y, f (x)) =

|y− f (x)| or Huber loss function (below), which squares ’small’
residuals and takes the absolute value of them when they are larger
(Kuhn and Johnson (2016)).79

L(y, ŷ) = (y− ŷ)2 ...|y− ŷ| ≤ α (3.2.16)

|y− ŷ| ...|y− ŷ| > α (3.2.17)

where y is the target variable, ŷ the prediction and α ∈ R+ is a
hyperparameter.

Multiple linear regression is based on the fact that when all
inputs x1, x2, ..., xp are orthogonal (uncorrelated), then their multiple

http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
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81 Support vector regression

82 In econometrics, this approach of
measuring complexity has been crit-
icized by Keuzenkamp and McAleer
(1997).

83 Shaikh, F. and Ji, Q. (2016). Fore-
casting natural gas demand in China:
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tional Journal of Electrical Power & Energy
Systems, 77:25–32

84 Melikoglu, M. (2013). Vision 2023:
Forecasting Turkey’s natural gas de-
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newable and Sustainable Energy Reviews,
22:393–400

least square estimates β̂ j are equal to the univariate estimates. That
means, the orthogonality of inputs enables parameter estimates to
be independent of each other. For inputs x1 and x2, the vector x2 is
regressed on the vector x1, which leaves the residual vector z. Then,
y is regressed on z, which gives the coefficient of x2. If some inputs
are correlated, the residual vector, representing how much of xp is
unexplained by an xk, would be close to zero, which would make
the coefficient β̂p unstable (Hastie et al. (2009)).

Multiple linear regression is used to remove insignificant variables
and / or employed to compare and demonstrate performance of
other methods, as in Beyca et al. (2019).80 They compared this
method with SVR81 and ANN methods for monthly forecasts of
gas consumption of up to one year in Istanbul.

Similarly to the case study on gas consumption in Germany, Sen
et al. (2019) used multiple linear regression to predict Turkey’s yearly
gas consumption based on socio-economic variables.

The complexity of the linear regression, is measured by
degrees of freedom – number of parameters chosen by a model (Kuhn
and Johnson (2016)).82

7. Logistic modelling analysis and the logistic-population mod-
elling approach assumes there is a maximum demand related to
historic extraction / production of all forms of energy resources,
which in turn relates to the availability and depletion of the raw
materials (Shaikh and Ji (2016)).83 The following parameters are
used: Dmax - the maximum gas demand a country is expected to
achieve in the long term, α - growth parameter, tmax - time in years
when half of the Dmax or the Dmax/capita occur.

Melikoglu (2013)84 used the logistic equation for forecasting gas de-
mand in Turkey between 2013 and 2030.

8. Random forest is a collection of tree predictors f (x, T, Θk), k =

1, 2, ...K) where the Θk are independent and identically distributed
random vectors. This method has its roots in regression trees and
it is constructed by portioning a data set sequentially along values
of the explanatory variables (Kaposty et al. (2020)). The stop crite-
rion, i.e. the penalty method, causes the algorithm stop to prevent
overfitting. The performance of the model would slightly deterio-
rate by including extra predictors, as there is a higher chance that
a model randomly uses unimportant predictors for splitting (Kuhn
and Johnson (2016)).
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85 Breiman, L. (2001). Random Forests.
Machine Learning, 45(1):5–32. https:

//doi.org/10.1023/A:1010933404324

86 Frequentist methods use the er-
ror rate form assessing the qual-

ity of the model; models based on
Bayesian methods use coherence.

87 Franco, A. and Fantozzi, F. (2015).
Analysis and clustering of natural
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energy use forecasting. Journal of

Physics: Conference Series, 655:012020

Šebalj, Dario and Dujak Davor and
Mesaric Josip (2017) concluded neural
networks are currently the most com-

monly used models in gas forecasting.

Breiman (2001)85 dealt with the problem of overfitting by proposing
the mean prediction of many different trees. The method is also
used for introducing nonlinearity in the data.

The problem of overfitting is typical for frequentist86 methods in
contrast to Bayesian approach. In the latter, "the maximization over
a subset cannot exceed that over the full set" (Lindley (2001)). Least
squares as the method used for fitting "...is equivalent to a Bayesian
argument using an improper prio, namely a uniform distribution
over the space of the regression parameters" (Lindley (2001)).

9. Temperature correlation models, also called heating degree
methods, are used for residential demand forecasts only as the idea
lies in the strong negative correlation between the daily outside tem-
perature and gas consumption.

Franco and Fantozzi (2015)87 suggested forecasting models for res-
idential gas consumption in the winter as follows:

• an additive model for a total consumption Ct

C(t) = CN + CW + Cs + Cr (3.2.18)

where CN represents the standardized load shapes of production,
CW the weather sensitive component, CS a random term.

• a multiplicative model

C(t) = CN × f (w)× f (s)× f (r) (3.2.19)

where CN is the base consumption and f s are correction factors
for current weather, special events and fluctuation, respectively.

• a model combining an additive and a multiplicative model

C(t) = F(d(t)× f (w(t))) + R(t) (3.2.20)

where C(t) is the current consumption at time t, d(t) is the day
of the week, F(d) is the daily component, w(t) is a function of
the weather data (temperature, humidity and wind chill), f (w) is
a weather function and R(t) a term of correction. The accuracy of
gas forecasting in temperature correlation models depends on the
quality of weather forecasts.

10. Artificial Neural network models are non-linear, non-para-
metric models enabling the forecasting of any subject without knowl-
edge of the specific relationships between variables. Neural net-
works can search for their parameters locally and globally (see the
distinction in Januschowski et al. (2020)) and almost all of them
work without any non-convex loss function.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
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Polynomial networks are networks
using the squared activation function
σ2(x) = x2.

In unsupervised learning, there is a
set of N observations (x1, x2, ...xN) of a
random p-vector X having joint density
Pr(X). Properties of this probability
density are deduced without providing
any targeted output data for each obser-
vation (Hastie et al. (2009). A learning
is understood as a density estimation
problem if we suppose that (X, Y) are
random variables represented by joint
probability Pr(X, Y)).

The issue of "adapting weights" in a neural network can be
seen as a special case for estimating parameters of any other func-
tional model (Werbos (1988)).88 Concretely, a coefficient β jk is the
effect of the jth predictor on the kth hidden unit (Hastie et al. (2009)).

In the first step, data normalization is required as normalization
causes the higher population of data for the same manifold space.

Activation function links the data in predictors with the first
hidden layer.89 There are several commonly used activation func-
tions, the ReLU (rectified linear unit) σ(a) = max{0, a} is currently
the most popular, while the sigmoid function σ(a) = 1

1+ea has been
used in the more traditional approach. Both functions are advan-
tageous over the threshold activation (e.g. σ(z) = 1 if z > 0 and 0
if otherwise) as they can be trained using gradient based methods
(Livni et al. (2014)).90 Stochastic gradient descent involves random
shuffling of the training data set before each iteration; this enables
different orders of updates to the model parameters. The linear
activation function is seen as problematic; the output of the second
layer is just a different linear function of the first layer as was shown
in the appendix of Barker (2020).

In supervised (structured) learning (previous models), in-
put XT = (X1, ..., Xp) and output vectors Y = (Y1, ..., Ym) are spec-
ified and the network tries to minimize an error, characterized by
a loss function L(y, ŷ), for a known set of target values (answer ŷi

for each xi); in unsupervised learning, targeted output data is not
required and this increases degrees of freedom, which can result in
overfitting. As Barker (2020) puts it; “the search space of the model
increases exponentially with the degrees of freedom of the model,
but the number of points to fit only increases linearly with the size
of the data set.”

The number of parameters p is counted according to the formula:

p = H(P + 1) + 3 + 1 (3.2.21)

where H denotes the number of hidden layers and P the number of
predictors (inputs).

Forecasting is an extrapolation problem, and unstructured
models are optimal for interpolation, as the relationship between
forecasts and its lags is more flexible (Barker (2020)). In unstruc-
tured models, the curse of dimensionality is solved by assuming

https://arxiv.org/pdf/1410.1141
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the manifold, hypothesis, i.e. data in a data set are discrete samples
of a continuous manifold of some dimension. The manifold hypoth-
esis can also be seen as one of the tools for reducing the complex-
ity. There is no single algorithm for verifying the hypothesis, but
manifolds enable a smooth mathematical structure, especially while
analyzing natural phenomena (Rieck (2017)).91 In the best possible
case, the manifold where the data lie should be as low-dimensional
as possible and as densely populated as possible (Barker (2020)).

Any low-dimensional entity can be understood as a subset of the
higher dimension; this is demonstrated in the two pixeled pictures
of identical size. The right side of the merged figure 3.592 depicts
the result of using a random pixel generator with a pixel size of 4,
the left side shows one possible subset out of many. The left con-
figuration of colours of pixels of the same size is typical for what
is identified as “Marlene Dietrich” and any picture of Marlene Di-
etrich’s portrait shows similarities in the configuration of colours
of pixels with the picture on the left. These configurations evoke
associations with the Boltzmann’s formula for entropy S

S = kBlogW (3.2.22)

where kB = 1.3807x10−23J/K denotes Boltzmann’s constant, the
conversion factor between units of temperature and units of energy
and W the number of real microstates corresponding to the gas’s
macrostate. The right part of the figure depicts microstates of pre-
sumably equally probable assigning of any colour from the range
white-black to a pixel. The left figure does not fulfill this condition;
there is a smaller choice of assigning colors to a pixel for producing
a picture resembling Marlene Dietrich, and thus it is a subset of the
picture on the right.

Manifold hypothesis heuristically explains why machine learning
techniques work. A model needs to focus on a few key features in a
data set to make decisions. The task shall be as specific as possible
with lots of data enabling to find these features.

In the backpropagation algorithm, the cost function tries to
minimize the error, i.e. the sum of the squared residuals by back
propagating to the hidden layer, and weights are either increased
or decreased until the desired output is achieved. This was the
first algorithm that allowed the adaptation of all weights of a neural
network. As shown in figure 3.6, a negative partial derivative will
increase the weight and a positive partial derivative will decrease it
until the local minimum is found (Günther and Fritsch (2010)).93

http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
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Figure 3.5: Visualisation of relation
of low dimension to high dimension.

Figure 3.6: Basic idea of the back-
propagation algorithm illustrated

for a univariate error function E(w)
as in Günther and Fritsch (2010).

Learning rate ηk should decrease to
zero, as the iteration r approaches
infinity.

Weight backtracking adds a smaller
value to the weight in the next step.
The technique prevents the algorithm
from jumping over the minimum by
undoing the last iteration (Günther and
Fritsch (2010)).
94 Raza, M. Q. and Khosravi, A. (2015).
A review on artificial intelligence based
load demand forecasting techniques for
smart grid and buildings. Renewable and
Sustainable Energy Reviews, 50:1352–1372

In contrast to classical back-propagation, resilient back propagation
enables the change of the learning rate ηk during the process of
searching for the minimum. In shallow areas, for speeding up the
convergence, the learning rate ηk will increase "if the correspond-
ing partial derivative keeps its sign" (Günther and Fritsch (2010)),
(see the second formula with the sign below). Changing the sign
will cause the learning rate ηk to slow down as it means that the
minimum has been missed. For comparison,

• the rule for adjusting weights in classical backpropagation:

wk
(t+1) = wk

t − η
∂E(t)

∂wk
(t)

(3.2.23)

where t indexes the iteration steps and k the weights.

• the rule for adjusting weights in resilient backpropagation:

wk
(t+1) = wk

t − ηsign

(
∂E(t)

∂wk
(t)

)
(3.2.24)

The neuralnet package, tested in the modelling section, uses classi-
cal propagation as described here, resilient backpropagation with or
without weight backtracking and the modified globally convergent
version.

Raza and Khosravi (2015)94 identified four learning issues related
to this algorithm: getting trapped in local minima instead of the
global minimum i.e. there could be another set of parameters uni-
formly better, network paralysis, temporal instability and lack of
generalization of the network, resulting in overfitting, characterized
as unintended memorization of synaptic weight values. To avoid
overfitting, several approaches have been developed, such as early
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Figure 3.7: An example of how to
separate training data in a two-

dimensional space. The support
vectors define the margin of largest
separation between the two classes.

Source: Larhmam (https://
commons.wikimedia.org/wiki/File:

SVM_margin.png), „SVM margin“,
https://creativecommons.org/

licenses/by-sa/4.0/legalcode
95 Cortes, C. and Vapnik, V. (1995).

Support-vector networks. Ma-
chine learning, 20(3):273–297

stopping (the procedure will stop before approaching the global
minimum; when an error estimate starts to increase) or weight de-
cay – adding a penalty to the error function, with λ as its tuning
parameter. For λ estimation, the cross-validation is used (Hastie
et al. (2009)).

For short-term load forecasting, hybrid models have been
proposed such as ANN with fuzzy and genetic algorithm, ANN
with wavelet and time series, ANN with genetic algorithms etc. Ex-
amples are to be found in Raza and Khosravi (2015).

11. Support vector machines (SVMs)

Originally, Cortes and Vapnik (1995)95 developed SVMs for data
classification; the main idea is depicted in figure 3.7. To make
boundaries more flexible, the feature space is enlarged by using
polynomials (expansions).

The optimal hyperplane is denoted as:

w0 · z + b0 = 0 (3.2.25)

The weights w0 could be written as the linear combination of sup-
port vectors:

w0 = ∑
support vectors

αizi (3.2.26)

where αi are weights of the output units and zi weights from a hid-
den unit. As it can be seen from a formula, new samples enter the
model as the sum of inner products so the formula can be rewritten
with the kernel function K(.). Various kernel functions can be cho-
sen: e.g. linear, polynomial, or the radial basis function. The tuning
parameter sigma impacts the smoothness of the decision boundary
(Kuhn and Johnson (2016)); its underestimation would cause the
boundary to be too sensitive to noise.

The cost parameter, (i.e. setting the price for misclassified samples
in the training set), is attached to residuals, not to the parameters. It
can be manually set or determined by using cross-validation. With
large cost parameters the model becomes flexible and likely over-
fits. Thus, this parameter can be understood as a measure of com-
plexity for SVM.

SVMs are one of the methods for performing regression analysis in
machine learning; the support vector regression (SVR) is a (linear)
regression formulation of the support vector machines. Considering
the linear regression model (Hastie et al. (2009)):

https://commons.wikimedia.org/wiki/File: SVM_margin.png
https://commons.wikimedia.org/wiki/File: SVM_margin.png
https://commons.wikimedia.org/wiki/File: SVM_margin.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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96 The indication of the accuracy risk is
provided by the variance; “how likely a
very poor forecast is for a given series”
(Lichtendahl and Winkler (2020)).

97 In this section, we do not explore
questions 1 and 2 further. Question 3 is
discussed in the section on complexity.

98 This method was preferably used in
the M4 Competition, organized by the
International Institute of Forecasters.
99 Uncertainty types are not of the same
magnitude; the effect of parameter
uncertainty seems to be of a smaller
order of magnitude than that due to
other sources (Chatfield (2001)).

f (x) = xT β + β0, (3.2.27)

β is estimated by considering minimization of

H(β, β0) =
N

∑
i=1

V(yi − f (xi)) +
λ

2
‖β‖2 (3.2.28)

where

Vε(r) = 0 if |r| < ε, and

Vε(r) = |r|−ε, otherwise.

From the formula above, it is clear that data points with residuals
within threshold ε are ignored in the regression fit, analogically to
the SVM in the classification problem, where points on the right
side of the division and far away form it are also ignored.

12. Hybrid models link causal methods (i.e. input variables are as-
sumed to affect the output) and data-based models. They are com-
posed of structured and unstructured methods, e.g. using machine
learning for forecasting the trend component of the decomposition
only and are regarded as the next and further developed form than
ensemble models. However, the choice of models to be hybridized
remains arbitrary. Since they have become a popular method, the
forecasting community raised the following questions:

• Under which conditions does a model combination perform bet-
ter?

• Would decision makers accept accuracy risk96 (a higher risk of
poor forecasts) while combining models?

• Do more complex models gain outperform simple models when
the criterion of the complexity is measured by computing time?97

de Nadai and van Someren (2015) tested the combination of the
ARIMA and ANN model to detect anomalies in gas consumption.

13. Ensemble of models
98

One single model with a single benchmark does not address model,
data, or parameter uncertainty.99 While combining models, there is
a chance a new model will provide information that has not been
caught by other models. Thus, a combination of models keeps the
bias about the same but decreases the variance (Atiya (2020)). While
constructing an ensemble, a practitioner answers two questions:
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101 Gaba, A., Tsetlin, I., and Winkler,

R. L. (2017). Combining interval fore-
casts. Decision Analysis, 14(1):1–20

102 Among forecasting methods, di-
versity is measured in terms of cor-

relations among their forecasting er-
rors (Lichtendahl and Winkler (2020)).

Computable general equi-
librium (CGE) models

103 Bale, C. S., Varga, L., and Foxon,
T. J. (2015). Energy and Complex-

ity: New ways forward. Applied En-
ergy, 138:150–159. https://doi.org/

10.1016/j.apenergy.2014.10.057

• Which and how many forecasting models are to be combined.
A method with poor forecasts contributes to the diversity of the
pool of models and therefore it shall not be left out. On the
other hand, one of two poor performing methods with highly
positively correlated errors can be excluded due to no gain in
diversity (Lichtendahl and Winkler (2020)).100

• Which method to use for their combination and how to choose
the best weights. Models are aggregated by using mean (the
preferred method), median, mode, or trimmed mean. Gaba et al.
(2017)101 suggests combining between five and ten forecasts for
optimal results. The greater diversity in the pool, i.e. with minor
direct relation,102 the better results.

In an analogy to complex systems, a practitioner acquires
more individual predictions (prediction trajectories) by suitable
perturbation of the initial state of the system, to which complex
systems are sensitive (Pelikán (2014)). In a similar fashion, vari-
ous models and their functions fit the data and produce forecasts
("prediction trajectories").

3.2.6 Excluded models

Equilibrium- and linear optimization models

Equilibrium models (e.g. MARKAL, IKARUS, TIMES) assess tech-
nology options based on the simple decision rule of cost optimisa-
tion (Bale et al. (2015)).103 In these models, agents (e.g. households,
energy trading companies) are assumed to act as rational economic
actors with the ability of perfect foresight. Scenarios are unique for
each case; only their full description captures the essence. The next
example illustrates the point. Eser et al. (2019) and Gillessen et al.
(2019) share similar objects and time frames in their studies: the im-
pact of the Nord Stream 2 pipeline and liquefied natural gas (LNG) on
gas trade, the security of supply up to 2030 and infrastructure expan-
sion. However, whereas Eser et al. (2019) assume gas from production
countries is annually and hourly limited, Gillessen et al. (2019) exam-
ines energy security by modelling the gas flow disruption in one of the
transmission pipelines and models the gas flows and velocities of the
remaining parts of the transmission system.

The study by Eser et al. (2019) simulates a high-pressure gas net-
work with 500 network nodes (i.e. points where the gas flow is mea-
sured), and 150 compression stations and gas storage sites within the
borders of Germany to identify bottlenecks in the gas system. Input on

https://doi.org/10.1016/j.ijforecast.2019.03.027
https://doi.org/10.1016/j.ijforecast.2019.03.027
https://doi.org/10.1016/j.apenergy.2014.10.057
https://doi.org/10.1016/j.apenergy.2014.10.057
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of 2030. Applied Energy, 238:816–830.
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2019.01.068

105 The US Energy Information Admin-
istration.

106 Ang, B. W., Choong, W. L., and Ng,
T. S. (2015). Energy security: Defini-
tions, dimensions and indexes. Re-
newable and Sustainable Energy Reviews,
42:1077–1093

107 Bezdek, R. and Wendling, R. (2002).
A half century of long-range energy
forecasts: Errors made, lessons learned,
and implications for forecasting. Journal
of Fusion Energy, 21. https://doi.org/

10.1023/A:1026208113925

108 Winebrake, J. J. and Sakva, D. (2006).
An evaluation of errors in US energy
forecasts: 1982–2003. Energy Policy,
34(18):3475–3483

109 Magdowski and Kaltschmitt (2017)
analyzed day-ahead power forecasting
from wind turbines in Germany and
came to the same conclusion. Moreover,
the prediction accuracy depends on
the predicted feed-in volume, with
small feed-in volumes decreasing the
accuracy.

In forecasting, statistic properties of
data are checked to choose proper
models for producing forecasts, and so
assumptions on the future development
of an energy system are not needed.

hourly imports into Germany is produced by using a Monte Carlo ap-
proach: “30 optimizations of the gas sourcing, each with stochastically
varied gas prices at the boundaries of the network, are solved.”104

Thus, gas imports represent an optimized input, meaning the least-
cost gas imports’ mix from probable production countries and world
LNG price, and assuming knowledge of events during the simulated
year. Authors validate the novel simulation at the annual level al-
though hourly values were produced first.

The IEA and the EIA105 work with macroeconomic models with an
outcome in the form of scenarios. The IEA applies the World Energy
Model (WEM), a partial equilibrium simulation model covering global
energy supply, transformed energy and its demand. The energy de-
mand / supply equilibrium is computed for the minimal total cost of
providing energy services. World Energy Outlook scenarios are taken
as inputs for other models, such as projections on the energy secu-
rity (Ang et al. (2015)).106 The Annual Energy Outlook of the EIA is
produced by an energy-economic model of the US energy system, the
”National Energy Modeling System,” based on the two main drivers
of GDP and energy intensity (Bezdek and Wendling (2002)).107

Retrospectively, large deviations from the forecasts and
following wrong policy assumptions have been observed. At first
sight, this is not obvious as low errors for total energy consumption
conceal much larger errors in sectors that offset each other when aggre-
gated (Winebrake and Sakva (2006)).108 They confirmed intuitive as-
sumptions: a) forecasts exhibit increased uncertainty when time hori-
zons are lengthened109; and b) certain sectors (e.g. residential) demon-
strate a more accurate level of forecasting than others (e.g. transport).

Energy-sector specific errors include

• underestimation of oil and gas production,

• projecting exhaustion of energy resources. Prediction of oil peak in
the time horizon of 10-15 years from the year of estimation,

• overestimation of energy consumption,

• an assumption that "technically feasible technologies or technolo-
gies feasible in an engineering sense will penetrate the market in
the future"(Bezdek and Wendling (2002)).

The private oil and gas companies Shell, ExxonMobil, Statoil,
and the BP (BP (2019)) publish their own projections. Outcomes of
all equilibrium models do not equal forecasts as no value is assigned

https://doi.org/10.1016/j.apenergy.2019.01.068
https://doi.org/10.1016/j.apenergy.2019.01.068
https://doi.org/10.1023/A:1026208113925
https://doi.org/10.1023/A:1026208113925
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110 Fortes, P., Alvarenga, A., Seixas, J.,
and Rodrigues, S. (2015). Long-term

energy scenarios: Bridging the gap be-
tween socio-economic storylines and
energy modeling. Technological Fore-
casting and Social Change, 91:161–178

to the probability of various scenarios. Also, they do not grasp the
complex reality of real processes in the economy/energy sector (Bale
et al. (2015)). However, they reflect the storyline of an expected future
scenario as it was shown with the TIMES model for the case study
Portugal in Fortes et al. (2015).110
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112 Raza, M. Q. and Khosravi, A. (2015).
A review on artificial intelligence based
load demand forecasting techniques for
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Sustainable Energy Reviews, 50:1352–1372

113 Yu and Xu (2014) combined GA with
improved BP neural network to form a
new prediction model.

3.2.7 Econometric models, grey models, genetic algorithms

Econometric forecasting models use the Cobb-Douglas formula
for gas demand in log-linear form:

Ln(Gas demand) = γ + αLn(Price) + βLn(GDP per capita)
(3.2.29)

where α denotes elasticity of price, β elasticity of GDP per capita and γ

is a constant (Dey et al. (2011).111 These models have been omitted as
their research questions relate more to price and income (in)elasticities
of demand for gas than to the actual forecasting.

Second, grey prediction models were taken out of the list. Ma
and Li (2010) used a bivariate model of grey system GM(1, 2) between
gas consumption and GDP in China for the yearly prediction of gas
consumption from 2009 to 2020. The following table 3.3 compares
their prediction with data from the Statistical Review of World Energy
(BP); the same source of information was used in their paper. From
2015 on, the model over-predicts gas consumption in China.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Prediction 89.9 104.2 120.8 140.0 162.2 188.0 217.9 252.6 292.7 339.3

BP, Statis-

tics

90.2 108.9 135.2 150.9 171.9 188.4 194.7 209.4 240.4 283.0

Table 3.3: Comparison of predictions
made by Ma and Li (2010) with the
statistical data from the BP, Statistical
Review of World Energy 2019, Gas
consumption in billion cubic metres.

Third, genetic algorithms (GA) are stochastic optimization al-
gorithms that supposedly simulate biological evolution (reproduction,
mutation, recombination, and selection). It is a class of population-
based algorithm and finds the optimal solution on the basis of the
optimal point of a population (Raza and Khosravi (2015)).112 Genetic
algorithms can often be used for finding optimal tuning parameters in
the hybrid methods.113

Although the last two models contribute to the diversity of models
tested on gas forecasting, they are marginal. Therefore, they were
taken out of the list of models to consider.

3.2.8 Conclusion

To conclude this chapter, a practitioner can use a) a single al-
ready established model, b) create an ensemble of well-established
models, or c) if there is a data scientist in a team, the team’s own model
or an ensemble of known models. One method is set as a benchmark,
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Journal of Forecasting, 36(1):135–141

116 Franco and Fantozzi (2015), one of
the few to do so, analysed and clus-

tered gas consumption data for ther-
mal energy use forecasting in Italy.

In the exponential smoothing, pre-
diction intervals might be used

for identifying outliers to remove
them and then the model selects

the best model in terms of AIC or
BIC criterion to produce forecasts.

117 Forecasts computed in the mod-
elling section are of the ex post
nature if not stated otherwise.

Study cases in the modelling sec-
tion represent a real-world applica-

tion of forecasting principles as a)
dates in a data set are available b)

the series are related to one another.

for example the persistence model or the Comb Method (the arithmetic
average of the Simple, Holt and Damped exponential smoothing mod-
els.114 Simple exponential smoothing methods are used when data
has no trend or seasonal pattern. In these methods, weights expo-
nentially decrease for past data; algorithms select the best in-sample
models based on information criteria such as AIC (Akaike Information
Criterion) or BIC (Bayesian Information Criterion) before forecasts are
generated.

The forecasting methods above do not require domain knowl-
edge (the knowledge of a time series’ commodity or sector). As Darin
and Stellwagen (2020)115 point out: “if a business series exhibits un-
usual structural changes, the reason is virtually always known (e.g. a
patent expired, the company merged with another firm, etc.) and this
domain knowledge will guide how the series should be forecast.” In
gas forecasting, authors applying domain knowledge do not publish
their results in forecasting magazines.116 Although gas forecasting is
part of business forecasting, one’s knowledge of the energy market at
city, country or global level cannot reach the depth of a company’s
insider knowledge.

Forecasts shall be computed fast; there may be a trade-off be-
tween the time spent computing and the accuracy of forecasts. The
final check on whether forecasts make sense can take a few hours or a
few working days. Instead of getting point forecasts right, prediction
intervals, i.e. getting the tails (upper quantiles) right matter in busi-
ness and energy forecasting. Then, error measurement in predicting
prediction intervals is understood as the difference between expected
and observed coverage. Here one needs to differentiate between con-
ditional (ex post117) where it is assumed true values of variables are
known and unconditional (ex ante) forecasts that reflect the uncer-
tainty of future variables. As for regression analysis, since the random
error and the estimation error does not change with time it is the un-
certainty of inputs that causes increases with time. Thus, in the ex ante
forecasting, the width of prediction intervals shall increase; Tashman
(2018) suggests to double the width.

The amount, quality of time series used and contextual in-
formation about them also determine the performance of chosen
models. For example, if dates for the series are not present (as e.g. in
the M4 forecasting competition), cross-series learning, which is crucial
for getting benefits from unstructured models, cannot be applied.

The scale and its economy influence the predictability of data; the
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gas demand of the local distribution company is easier to predict than
the demand of one single house.
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"Some folk love complexity
for it hides inadequacies and
even errors." (Lindley (2001))

118 Kuhn, M. and Johnson, K. (2016).
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New York, Corrected 5th printing
edition. ISBN 978-1-4614-6849-3

Support Vector Machines

"Consider a data set represented as
a one-dimensional ordered string of
0s and 1s. By the complexity of this

string, I will mean simply its length,
and by its simplicity, the reciprocal

of its complexity.” Herbert A. Simon
119 Zellner, A., Keuzenkamp, H. A.,

and McAleer, M. (2002). Simplic-
ity, inference and modeling: Keep-

ing it sophisticatedly simple. Cam-
bridge University Press, Cambridge

and New York. ISBN 0521803616

3.3 Complexity

3.3.1 Terminology

Explaining the role of complexity in forecasting is by itself a
complex issue. Authors of textbooks count on reader’s contextual un-
derstanding of complexity; a few textbook examples can be found in
Applied Predictive Modelling by Kuhn and Johnson (2016):118

fewer predictors decrease complexity,
tuning parameters control the complexity of the model,
degrees of freedom measure complexity for linear regression models,
SVM and random forests are associated with higher complexity,
and finally
“all other things being equal, simplicity is favored over complexity.”
Is the same definition of complexity implied in each case?

First, the term is not universally defined. The natural use
of both terms, complexity and simplicity, does not point to a direct
antonymous relationship. The Oxford Learners Dictionary of Aca-
demic English defines complexity as 1) the state of being formed of
many parts; the state of being difficult to understand 2) for a plu-
ral form – the features of a problem or situation that are difficult to
understand. Simplicity is defined as 1) the quality of being easy to
understand and use, 2) the quality of being natural and plain, 3) in
plural: an aspect of something that is easy, natural or plain. These
definitions do not draw a boundary line; the ease of understanding
depends on one’s intellect and experience. Still, complexity appears to
be related to any subject formed of many parts.

Herbert A. Simon in (Zellner et al. (2002))119 defined complexity
by the length of the string of zeros and ones; and simplicity as the
reciprocal of its complexity. In similar fashion, he measured complex-
ity and simplicity of the formula used to describe the string, more
generally: the data set. Then, parsimony is a relation between strings
representing a data set and the other representing a formula for that
set. More concretely, it is “the ratio of the complexity of the data set
to the complexity of the formula (Zellner et al. (2002)).” Any formula
involving a pattern found in the data set would be of decreased length
and thus of a decreased level of complexity.

The first approximation to measuring complexity can be calcu-
lated by a measure suggested by Jeffreys in Zellner et al. (2002):

C = Order + Degree + S (3.3.1)
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123 Ergodic theory studies ergodicity.
"In an ergodic system, the trajectory
of almost every point in phase space
eventually passes arbitrarily close to
every other point (position and momen-
tum) on the surface of constant energy."
(Sethna, P. James (2020)). The phase
space is the 6N-dimensional space
(P, Q) where P stands for momentum
and Q for position. Sethna, P. James
(2020) states our inability to prove that
systems in the research are ergodic.

where S stands for the Sum of absolute values of normalized coeffi-
cients. The last variable does not equal often-cited numbers of param-
eters in the model, it is the sum of numbers of parameters times their
absolute values (Keuzenkamp and McAleer (1997)).120

In forecasting, journal articles identify models of high accuracy
(based on the test set) without pointing out “why this method out-
performs all the others or why a model A outperforms a model B?”
Complexity may partially explain it. However, whereas models are
relatively easily compared based on the pre-chosen criteria of their
predictive performance, quantification measures cannot be developed
for their structural differences that might be able to explain the ques-
tion above. Structural differences remained ignored in the literature
(Rieck (2017).121

Coming back to quantifiable criteria, in the simplest terms,
complexity equals the computing time necessary for a forecasting model
to complete the task of forecasting. Thus, in some forecasting compe-
titions, such as the M4 Forecasting competition, this was used as a
measure of time efficiency. In general terms, this notion is labelled as
computational complexity.

The next section continues with discussing quantifiable aspects of
complexity only.

In mathematics, quantifying regularity is related to the concept of
entropy, since entropy is associated with randomness as the measure
of irregularity and disorderliness. Thus, complex and random sys-
tems produce larger entropy and vice versa (Li and Zhang (2008).122

Tools include Multi-scale entropy, the Kolmogorov-Sinai entropy to
classify deterministic dynamical systems, the sample entropy developed
by Richman and Moorman (2000) and few others. Often they do not
share the same definition of entropy, or their assumptions for its ap-
plication differ.

Kolmogorov-Sinai entropy h, in the ergodic theory123, is a quan-
titative measure of the impossibility of perfect forecasts (Zambella and
Grassberger (1988)).

"Assume we have observed a system with some measuring device
Γ (which has some finite resolution), at all times ≤ t. Then, we cannot
completely predict what the same device Γ will measure at t+ τ, τ > 0.
Instead, there will be a gap ≤ hτ + 0(τ2) between the information
obtainable with Γ and the information of the best forecast based on
measurements with Γ." (Zambella and Grassberger (1988)). This idea
of entropy, as a rate of information generation of chaotic system, was

http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/22914/1/Dissertation.pdf
https://doi.org/10.1007/s00477-007-0161-y
https://doi.org/10.1007/s00477-007-0161-y
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modified by Grassberger and Procaccia in 1983 to be able to calculate
such a rate from time series data.

3.3.2 Approximate Entropy and Sample Entropy

Approximate Entropy (ApEn) quantifies the regularity in a data
set with at least 1, 000 data points; the larger value of ApEn denotes
greater randomness, and a smaller value corresponds to more cases of
patterns in the data (Pincus (1991)).124 Given the data set of N data
points, "ApEn(m, r, N) is approximately equal to the negative average
natural logarithm of the conditional probability that two sequences
that are similar for m points remain similar (within a tolerance r) at
the next point" (Ramesh (2011)) whereas

• m is the length of sequences compared and

• r is a tolerance window (that is, tolerance for accepting matches).

As Pincus (2008) points out, we can imagine “partitioning the state
space into uniform width boxes of width r, from which we estimate
mth order conditional probabilities. ApEn is unaffected by noise of
magnitude below this filter level r and is finite for both stochastic and
deterministic processes, in contrast to K-S entropy.125 However, ApEn
lacks relative consistency and depends on the length of time series.

Sample Entropy (Richman and Moorman (2000))126
is the

modification of the approximate entropy as it searches for any re-
peated patterns of various lengths but does not count self-matches.
This was justified by understanding entropy as the rate of information
production (Chen (2002)127) and in this context, comparing data with
themselves does not make sense (Richman and Moorman (2000)). If
B denotes the total number of matches of length m and A is the total
number of forward matches of length m + 1, then with the notation:

A/B = [Am(r)]/[Bm(r)] (3.3.2)

Sample Entropy can be expressed as

SampEn(m, r, N) = −ln(A/B) (3.3.3)

Approximate Entropy and Sample entropy increase as a data
set increases.

The Sample and Approximate Entropy was computed with the length
of reconstructed vector 1 and 2 (for chaotic processes) and r according
to the recommended formula r = 0.2 · sd(time series) for gas import

http://dx.doi.org/10.2139/ssrn.307442 
http://dx.doi.org/10.2139/ssrn.307442 
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Ghandar et al. (2016) measured the
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128 Hyndman, R. J. and Khandakar, Y.
(2008). Automatic time series forecast-
ing: The forecast package for r. Journal
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values for Germany, from the data set used for forecasting gas im-
ports, with the results displayed in table 3.4. A low value of entropy
indicates a time series is either deterministic and easier to predict; a
higher value indicates randomness. Sample Entropy does not depend
that much on the length of the time series.

Table 3.4: ApEn and Sample Entropy for the data set "Gas im-
ports"

Embedding dimension Approximate Entropy Sample Entropy
1 1.635595 -
2 1.037104 1.884978

3.3.3 Complexity of forecasting models

General associations of complexity in the literature on predictive mod-
elling

In statistical learning, complexity of methods is understood
as the number of degrees of freedom (also referred to as the number
of free parameters in the model), "difficulty in estimation," or as the
number of variables. It is specified for every forecasting method. In
the section Related work, typical accuracy criteria for measuring out-of-
the sample errors are listed; here we discuss training errors and their
complexity. Again, let Y denote the output (a target variable), X vector
of inputs and f̂ (X) the prediction model from a training data set τ.
The loss function is denoted by L(Y, f̂ (X)) as in Hastie et al. (2009).
The training error is the average loss of the training sample (Hastie
et al. (2009)):

err =
1
N
(

N

∑
i=1

i = L(yi, f̂ (xi)) (3.3.4)

With higher number of degrees of freedom (for non-parametric meth-
ods), the training error decreases as the function of a model describes
the data fully, but this overfitting issue results in poor performance of
a model for the test-sample. Methods marked as stable are supposed
to have the same in-sample and out-of-sample errors.

The Akaike Information Criterion is a penalized method based
on the in-sample fit (Hyndman and Khandakar (2008)).128

AIC = L∗(θ̂, x̂0) + 2p (3.3.5)
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129 Green, K. C. and Armstrong, J. S.
(2015). Simple versus complex fore-

casting: The evidence. Journal of
Business Research, 68(8):1678–1685

Although it is not the goal of this work
to prove that in every case higher com-

plexity will not improve the accuracy
of the model, the research in other fields
does go in this direction, e.g. Andrade-

Cabrera et al. (2018) found they can
reduce the model complexity, defined

through computational tractability,
by half for Urban Building Energy
Modelling (UBEM) and still retain

annual energy estimation errors be-
low 10 per cent for a single building.

130 Hyndman, R. J. and Kostenko
Andrey V. (2007). Minimum sam-
ple size requirements for seasonal

forecasting models. Foresight,
(6):12–15. https://robjhyndman.

com/papers/shortseasonal.pdf

131 The number of layers of the net-
work characterizes the depth of
the network. The total number

of neurons represents the size of
the network (Livni et al. (2014)).

where p is the number of parameters in θ plus the number of free
states in x0, and θ̂ and x̂0 are the estimates of θ and x0. Since the
AIC is based on likelihood, the criterion enables the choice of identical
point forecasts from two models (Hyndman and Khandakar (2008)).

Green and Armstrong (2015)129 defined simplicity as “processes
that are understandable to forecast users.” Users, not researchers. In
this respect, naïve or no-change models without seasonal adjustment,
seasonal adjustment, single-exponential smoothing, Holt’s exponen-
tial smoothing, dampened exponential smoothing and simple average
of the exponential smoothing forecasts are regarded as simple. They
conclude that “complexity beyond the sophisticatedly simple fails to
improve accuracy in all but 16 of the 97 comparisons in 32 papers that
provide evidence”(Green and Armstrong (2015)).

Hyndman and Kostenko Andrey V. (2007) point out the misconcep-
tion that ARIMA models are more complex than Holt-Winters models
and thus need a larger data set. In their article130 it is shown that
ARIMA models actually need the minimum number of 16 observa-
tions for estimating a seasonal ARIMA model (monthly data), while
for the Holt-Winters model it would be 17 observations. With these
numbers of observations, prediction intervals would still be finite.

For support vector machines, while developing the algorithm,
the order of operations has been interchanged. To start, two vectors
are compared in the input space and a non-linear transformation takes
place while computing the value of the result. Thus, the complex-
ity of the model does not depend on the dimensionality of the fea-
ture space, but on the number of support vectors (Cortes and Vapnik
(1995)). Changing the parameter C enables the trade-off between the
complexity of decision rule and frequency of error.

As for neural networks, let the sample complexity be defined by
the number of examples required to learn the class, i.e. the set of all
prediction rules obtained by using the same network architecture131

while changing the weights of the network. Until now, theoretical
work on neural networks has not been promising, still in practice neu-
ral networks yield results thanks to a few tricks used. Livni et al.
(2014) listed among them the change of the activation function, over-
specified networks and the regularization of weights to speed up the
convergence. Changing the activation function to the squared function
σ2(x) = x2 makes sample complexity grow (the increase of sample
complexity is caused by increasing the depth of the network).

https://robjhyndman.com/papers/shortseasonal.pdf
https://robjhyndman.com/papers/shortseasonal.pdf
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Besides the natural complexity of
processes behind forecasting objects,
complexity increases with re-defining
of the object; in demand forecasting in
general, one may include returns of a
product. However, this is not applicable
in energy forecasting.

Water flow forecasting to optimize
electricity generation

132 Tongal, H. and Berndtsson, R. (2017).
Impact of complexity on daily and
multi-step forecasting of streamflow
with chaotic, stochastic, and black-
box models. Stochastic Environmental
Research and Risk Assessment, 31(3):661–
682

133 Their work defines complexity as
a measure of the number of degrees
of freedom of a system active locally
around a given instantaneous state.

134 Akpinar, M. and Yumusak, N. (2016).
Year ahead demand forecast of city
natural gas using seasonal time series
methods. Energies, 9(9):727

135 Potočnik, P., Soldo, B., Šimunović,
G., Šarić, T., Jeromen, A., and Govekar,
E. (2014). Comparison of static and
adaptive models for short-term residen-
tial natural gas forecasting in Croatia.
Applied Energy, 129:94–103

136 Yu, F. and Xu, X. (2014). A short-term
load forecasting model of natural gas
based on optimized genetic algorithm
and improved BP neural network.
Applied Energy, 134:102–113. https:

//doi.org/10.1016/j.apenergy.2014.

07.104

137 Stock prices are often modelled
as a random walk averaged over the
number of stocks. By this, fluctuations
are reduced.

3.3.4 Complexity of a phenomenon in relation to modelling

If the process representing the forecast phenomenon is of dynamic
(complex) nature, the complexity of this process may influence the
choice of a forecasting model. A complex system is a system that
consists of many mutually interacting components, and that shows
emergent behaviour, i.e. the collective behaviour evidences some traits
that cannot be easily derived or explained based on behaviour of indi-
vidual parts (Pelikán (2014)). Forecasting electricity production from
hydro power plants tends to design more complex models to cap-
ture complex processes such as precipitation. On the other hand, the
lower complexity of river stream flows leads to higher predictability
as shown in Tongal and Berndtsson (2017).132 Here, the complexity
is measured on the data set as data (i.e. the time series) represent a
sample of the phenomenon in question. Tongal and Berndtsson (2017)
conclude determining the degree of complexity enables the pre-deter-
mination of a suitable model. It is implied artificial neural networks
may be a better choice for high complex systems than deterministic
models, especially for a one-step forecasting horizon.

World weather models are also ranked in terms of their complex-
ity degree, albeit without any clear definition of how to measure the
degree of complexity, as in (Scher and Messori (2019)).133 It is un-
clear whether a model with higher resolutions with fewer components
could be assigned a higher complexity degree than a low resolution
model with a larger number of processes.

Regarding accuracy, combination of models and complex-
ity, the relation between the increasing complexity of forecasting mod-
els and accuracy remains ambiguous. Akpinar and Yumusak (2016)134

concluded that with the computation complexity accuracy rates in-
crease. On the other hand, (Potočnik et al. (2014)135 derived that
“among the adaptive models, the nonlinear models did not surpass
the performance of the adaptive linear models.” Yu and Xu (2014)136

addressed the issue of complexity by observing that “over the years,
studies have shown that a combinative model gives better projected
results compared to a single model for natural gas prediction” and
saw the future of forecasting in hybrid models. Szoplik (2015) shared
this vision. However, it is open to discussion whether combinations of
models do increase their complexity in each case. Dimitriadou et al.
(2018) concluded in their review of oil price forecasting that “machine
learning methodologies produce a higher forecasting accuracy in com-
parison to the typical econometric ones and they typically outperform
the random walk (RW) model,137 while econometric approaches often

https://doi.org/10.1016/j.apenergy.2014.07.104
https://doi.org/10.1016/j.apenergy.2014.07.104
https://doi.org/10.1016/j.apenergy.2014.07.104
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138 Debnath, K. B. and Mourshed,
M. (2018). Forecasting methods
in energy planning models. Re-

newable and Sustainable Energy Re-
views, 88:297–325. https://doi.

org/10.1016/j.rser.2018.02.002

fail to do so.” Still, the latest M4 competition, organized by the Inter-
national Institute of Forecasters in 2018 (Makridakis et al. (2020)), did
not confirm Dimitriadou’s conclusions.

Debnath and Mourshed (2018)138 state “According to reviewed liter-
ature, NN (neural network) structure with two hidden layers produced
best results for the monthly load forecasting, the peak load forecast-
ing and the daily total load forecasting modules.” However, there is
no reasonably explainable connection between the number of hidden
layers of the ANN network and the complexity of gas forecasting. Yal-
cinoz and Eminoglu (2005) state that 1) there is a relation between the
correct number of hidden layers, domain (e.g. monthly load forecast-
ing) and the accuracy, or 2) without any speculation of reasons behind
it, until now two hidden layers produced the most accurate results for
these domains.

The short list of self-contradicting statements points out
that without holistic consideration of a phenomenon to be forecasted,
a data set as a sample of the reality and the complexity of the model,
any statement is valid only for the study case used. The current state
of the theoretical research is far from being able to generalize.

https://doi.org/10.1016/j.rser.2018.02.002
https://doi.org/10.1016/j.rser.2018.02.002


1 Interestingly, LNG gas is not a direct
competitor to pipeline gas. Building
the entire LNG chain results in further
pipeline construction (Bridge and
Bradshaw (2017)).

2 International Energy Agency (2021).
Energy security. https://www.iea.org/
topics/energy-security Last accessed
2021-01-09

3 Biresselioglu, M. E., Yelkenci, T., and
Oz, I. O. (2015). Investigating the
natural gas supply security: A new
perspective. Energy, 80:168–176

4
Study 1: German gas imports

Problem definition

The Science Direct search engine found 256 articles on gas de-
mand forecasting (as of March 2020) and three articles on gas imports
in relation to either China or India. Gas imports matter to foreign
energy policy of any country with a strong industry sector (such as
Germany or China), and for the strategy on pipeline/LNG1 infras-
tructure development. This chapter underlines the features of gas im-
ports in comparison to gas demand forecasts, and presents results of
models (e.g. Holt-Winters filtering, regression analysis, and ANN) for
monthly gas imports based on a self-constructed data set. Moreover,
implications for energy engineering and IR are discussed.

The International Energy Agency defines energy security as
"the uninterrupted availability of energy sources at an affordable price"
(International Energy Agency (2021))2; security of energy supply is a
more specific term stressing the reliability of gas supply from produc-
tion countries, routes, transit countries, and the infrastructure of an
importing country. When imagining foreign policy as a four-dimen-
sional idea (i.e. a country with time represented by stakeholders think-
ing and acting in the foreign policy field), the issue of energy security
is one element competing with other issues in this space: combating
terrorism, climate change, or pandemic diseases, political influence
in supranational organizations, humanitarian help, military expendi-
tures, etc. Thus, in countries such as Germany, with this space being
overcrowded with a variety of issues, the topic of energy security is
less prominent in IR than in countries synonymous with energy sup-
ply (e.g. Azerbaijan, Saudi Arabia).

In the last decade, various attempts have been made to quantify
energy security by creating indices as in Biresselioglu et al. (2015).3 In
their work, supply security was quantified by the number of supplier

https://www.iea.org/topics/energy-security
https://www.iea.org/topics/energy-security
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4 International Energy Agency
(2020). Germany 2020. Energy Pol-

icy Review. https://www.bmwi.

de/Redaktion/DE/Downloads/G/

germany-2020-energy-policy-review.

pdf?__blob=publicationFile&

v=4 Last accessed 2020-12-27

countries, supplier fragility, and the subject of this research the overall
volume of imported gas.

To be clear on terminology, the security of gas supply and the
reliability of gas supply are not synonymous. The latter is measured in
the average time (minutes per year) of the service not being provided
for a customer; in Germany’s case: 0.99 minute per year Bundesnet-
zagentur and Bundeskartellamt (2019). Back-up mechanisms keep the
reliability of energy supply high, even if the security of energy supply
is lower for a short period of a year.

This research shows two novel approaches to this topic: 1)
aiming at imports instead of demand/consumption from the data sci-
ence point of view; and 2) reflecting on the relevance of imports for the
discipline of IR. The next subsections compute maximum German gas
imports, provide reasons behind a lack of work on import forecasting,
and discuss differences in assumptions for import and demand fore-
casting. After the description of data set construction, the results of
selected models are presented. The last subsection gives concluding
remarks on forecasting of gas, and on its link to energy security and
further to IR.

Natural gas imports into Germany. Infrastructure considerations

In 2017, Germany was the no.1 ranked country in terms of gas imports
worldwide, and was no.13 in the ranking of gas exporting countries
(i.e. re-exports). There are three routes for gas imports from the Rus-
sian Federation:

• The Yamal-Europe system crossing Belarus and Poland, with a ca-
pacity of 33 bcm/y,

• Nord Stream, connecting Russia and Germany directly via the Baltic
Sea, with a total capacity of 55 bcm/y,

• The Ukrainian gas transportation system with a total capacity over
100 bcm/y, crossing Slovakia, and the Czech Republic with the bor-
der node at Waidhaus, or through Slovakia and Austria (Interna-
tional Energy Agency (2020))4.

Figure 4.1 shows the excerpt of the Transmission Map 2019 with
import, export and virtual nodes for Germany. To answer the question

“what maximum amount of gas can be imported into Germany per year
within the technical limits of the infrastructure (border nodes)?”

this work calculates the upper limit by using maximum technical
capacity in GWh/day per transmission pipe at the border provided

https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4
https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4
https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4
https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4
https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4
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Figure 4.1: Transmission Capacity
Map - Germany, ENTSOG (2019)

5 This figure was chosen after re-
calculating delivered gas to Germany
from the Nord Stream pipeline and
comparing it to the capacity of the
pipeline. The gas market operates
with thermal power units (GWh); the
capacity of pipelines is defined in mass
flows measured in billion cubic metres
of transported gas per year. For the
conversion, we used the heating value
of the gas imported from the Russian
Federation.

by transmission system operators (TSO). The transmission pipe capac-
ities are defined to satisfy demand on a daily basis. It is assumed
that the node can be operated 90% of time.5 The largest import node
(Greifswald) is an exception; whereas its technical capacity is at 1, 570
GWh/d, usually only 618.8 GWh/d (capacity adjusted by the capaci-
ties of OPAL pipeline) is considered. The German grid cannot absorb
more gas; any excess gas would have to flow to the Czech Repub-
lic and from there back to Germany (Federal Ministry for Economic
Affairs and Energy (2019)). Still, construction capacities of pipelines
are higher than reported technical capacities. Therefore, it would be
plausible to use a factor 1 (fully utilized time of a year) while calculat-
ing the maximum technical capacity for a year. Another factor could
be used to mirror the technical feasibility of the maximum imports
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6 German Federal Office for Eco-
nomic Affairs and Export Control

7 Actual import depends on de-
mand in two market zones for H-

Gas (high-calorific gas) infrastructure
imported from Russia and Norway

and the L-Gas (low-calorific gas) in-
frastructure from the Netherlands.

8 Real export in 2018 was 1, 563, 930
TJ (source: BAFA) and the technically

possible calculated export based on
the information from the Transmis-

sion Capacity map was 3, 758, 047 TJ.

Abbreviations from the table 4.2:
ISSA - Improved singular spectrum

analysis, LSTM - long short-term
memory, FARX - AutoRegressive
model with exogenous variables

In theory, the prices of all energy com-
modities decrease in the long run.

9 This is still the case in China.
10 In September 2019, two Saudi Ara-
bian oil facilities were attacked, and

their production - accounting for
5% of global production - was in-

terrupted. As a result, Brent crude
prices increased by 14.6% to $ 69.02,
and US crude oil by 14.7% to $ 62.90
(Wearden (2019)). Ten days after the

attack, one of facilities restored its
oil production (Astakhova (2019)).

per node and a pipeline section by taking into account the capacity of
compressor stations. As daily capacities for border nodes are reported
at the maximum level, this factor has been disregarded.

In the second step, this maximum technical physical capacity for
imports to and exports from Germany has been compared with ac-
tual imports and exports published by BAFA6 for the year 2018.7 For
2018, based on the above-mentioned assumptions, Germany used ca.
44% of its technically maximum possible capacity on the import side
(10, 045, 322 TJ); for exports it was 41.6%.8 Reported exports from
BAFA also include "Ringflüsse" (loops) - the amount of gas leaving
Germany at one border crossing point (e.g. Olbernhau) and entering
Germany at another point (Waidhaus).

Table 4.1 shows planned LNG-terminals for Germany.

Name of the installation Status Start-
Up

Year

Nominal An-
nual Capacity

(in billion cubic
metre/year)

LNG storage
capacity cubic
metres LNG

Brunsbüttel LNG Terminal planned 2022 8,00 240.000

LNG Stade GmbH planned - 5,00 -
Rostock transshipment planned - - -

Wilhelmshaven planned 2022 10,00 263.000

Table 4.1: LNG Import termi-
nals in Germany. Source: Gas

Infrastructure Europe (2021)
Missing forecasting on gas imports

Most gas forecasting is conducted on an hourly-basis as in
Su et al. (2019); studies on monthly gas consumption forecasting are
scarce, and based on the literature review conducted for this research,
papers on forecasting gas imports are non-existent. Therefore, the next
close field of short-term gas forecasting is investigated with studies
summarized in table 4.2. Whereas types of models and criteria remain
the same, objects of studies vary in scope and in space, as does the
type of the best performing model.

Table 4.3 compares approaches in forecasting gas demand and
gas imports. The variable gas prices deserves attention; as gas prices
used to be excluded from data sets as there was no expectation of
an increase and some governments strongly regulated them for end
customers.9 Therefore, gas prices have a low information value for
modelling a problem. The occurrence of events such as attacks on
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Author Forecast subject Models compared Criterion The best out-
come

Wei et al.
(2019)

Daily gas consumption
London, Melbourne,
Karditsa, Hong Kong

Back propagation neural
network (BPNN), support
vector regression (SVR),
multiple linear regression
(MLR) and other

MAE, RMSE,
MAPE, mean
absolute range
normalized error
(MARNE)

ISSA, LSTM

Chen
(2018)

Day-ahead high-resolution
gas demand and supply in
Germany

Presented model: func-
tional FARX compared to
alternative autoregressive
models

Relative MAPE,
relative RMSE, for
direction: mean
correct prediction
(MCP)

FARX -for av-
erage values of
relative MAPE

Merkel G.
D. et al.
(2017)

Daily gas load for a utility
in the USA
62 operating areas of lo-
cal distribution companies
in the USA
10 years of data

Linear regression, artifi-
cial neural networks, deep
neural network

MAPE, RMSE Deep neural
networks

Akpinar
and Yu-
musak
(2016)

Gas consumption (com-
mercial and residential
consumers, city-level) in
Sakarya, Turkey
Daily data summarized as
monthly
January 2011- December
2014

Time series decomposition,
Holt-Winters exponential
smoothing, autoregressive
integrated moving average
(ARIMA), SARIMA

MAPE, R2 ARIMA

Potočnik
et al.
(2014)

Day-ahead gas consump-
tion, local distribution com-
pany in Croatia
Data: consumption,
weather data for 2 heating
seasons
5 November 2011 – 26 April
2012

9 November 2012 – 31

March 2013

Benchmark models:
random-walk, temper-
ature correlation
Linear models: regression
method, auto-regressive
models with exogenous
inputs
Non-linear models: neural
network, support vector re-
gression (SVR)

The mean abso-
lute range normal-
ized error (e), the
adjusted R2 mea-
sure

Support vector
regression

Yu and Xu
(2014)

Day-ahead gas consump-
tion in Shanghai
15 November 2005 – 13 Oc-
tober 2008

Three-layer Back Propaga-
tion (BP) neural network
structure, with a genetic al-
gorithm

MAR, MAPE,
RMSE

CCMGA–Im
MBP mode
CCM- cat
chaotic map-
ping

Szoplik
(2015)

Hourly peak offtake of gas
in the following year for the
city of Szczecin, Poland
1 January 2009 – 31 Decem-
ber 2011

ANN network (MultiLayer
Perceptrons)

MAPE, RMSE
nRMSE

ANN

Table 4.2: Short-term fore-
casting - case studies
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11 For a research article on an appli-
cation of online statistical control
techniques for unaccounted for gas

(UAG), see (Botev and Johnson (2020)).
Botev, L. and Johnson, P. (2020).

Applications of statistical process
control in the management of unac-

counted for gas. Journal of Natural
Gas Science and Engineering, 76:103194

12 In German: Monatliche Entwick-
lung des Grenzübergangspreises

Inputs are described by defi-
nition, units and information

source are included in Annex.
13 There are several imputation methods

for imputing missing data, the most
simple one is to use the mean or me-

dian of non-missing values. However,
any method introduces additional un-

certainty into estimates and predic-
tions. The additional uncertainty could

be measured by doing multiple im-
putations for the creation of different

training data sets (Hastie et al. (2009)).

Saudi Arabian oil facilities in 2019
10 and their impact on gas prices

cannot be predicted by well-established forecasting tools of statistical
learning. Moreover, gas markets are still affected by regional circum-
stances; the U.S gas prices may have reacted with a price decline due
to higher production of oil with an associated gas, whereas the cross-
border prices for Germany remained unaffected.

4.0.1 Data collection

First, Eurostat data was checked along with data issued by the BAFA.
As for the Eurostat data, gas consumption per month equals inland
deliveries as these are calculated. This means, the energy balance fits
100%, which is never the case due to, e.g. the unaccounted for gas, i.e.
the gas quantity that remains after the balancing of all metered input
and outputs calculated across the gas accounting period (e.g. a gas
day).11

The BAFA has published the monthly amount of cross-bordered gas
in terajoules (higher heating value) and its average price12 since 1991.
The price reflects the price in the import contracts; amounts of gas
sold for a spot price are not included. The comparison of this data
with energy consumption data from Eurostat reveals huge differences.
The highest difference between these two values takes place outside
the heating season (e.g. in July 2015, the cross-bordered imports were
at 368, 687 TJ, whereas inland consumption was just 160, 509 TJ).

A constructed data set covering monthly data from January 2002
to December 2018 refers to Germany with the following inputs: 1)
heating degree days, 2) cooling degree days, 3) German imports, 4)
cross-border price for gas 5) amount of gas used for electricity pro-
duction, 6) production of gas within Germany, 7) German gas exports,
and 8) gas storage balance. Gas imports are less affected by random
factors such as extreme temperatures than gas demand. No data was
found to be missing.13

The minimum size of the data set depends on the number of
parameters to estimate for a statistical model and on the amount of
randomness in the data (Hyndman and Kostenko Andrey V. (2007)).
The latter can be described by the variance in a data measured, for ex-
ample, by the range or quartiles. Similarly, Hastie et al. (2009) mention
two criteria for the sufficient size of a training data set depending on
the signal-to-noise ratio of the function to be used, and the complexity
of the models used for fitting the data. In this work, as for the regres-
sion with seasonal dummies, m + 2 observations would be required
when m denotes the number of months in a year (and subsequently



75

Gas demand forecasting Gas import forecast
Choice of
variables

1) Gas consumption (time series)
2)Variables such as population, industrial
activity, and weather included.
Typical variables: past consumption, tem-
perature, days of week, month, seasonal
information, wind data, GDP, holidays,
humidity, the number of gas subscribers
and gas price (Šebalj, Dario and Dujak Da-
vor and Mesaric Josip (2017)).

1) gas imports (time series)
2) Excluding a variable "the amount of ex-
ported gas" if the domestic gas production is
negligible with no optimistic outlook for do-
mestic gas reserves.

Gas price Price sensitivity in the industrial and elec-
tricity generation sector.

Cross-border prices follow long-term con-
tracts.
Impact factors: world price for oil and lique-
fied natural gas (LNG), weather, negotiations
of new supply contracts in Europe, etc.

Weather as
a variable

Importance of heating degree days
showed in the seasonal component of the
decomposition analysis.
For the day-ahead gas demand forecast-
ing in Denmark with a similar climate to
Northern Germany, solar radiation was
found an ineffective variable in terms of
accuracy (Karabiber and Xydis (2020)).

Diminished importance
For day-ahead forecasting, nominations in-
stead of temperature shall be included as an
input (Chen (2018)).

Market players Gas demand relates to customer sections:
residential, industry, commercial and en-
ergy use (e.g. electricity generation).

Gas traders and gas storage operators.

Infrastructure
Market regulation

influence

Dense infrastructure. For the long-
term prediction, see the regularly up-
dated Network Development Plan Ger-
many. (Müller-Syring et al. (2013)).

Cross-border connections of high-pressure
transmission pipelines, LNG regasification
terminals.

Number of actors In the residential sector: 31.09 mil. people
(German-speaking population older than
14 years) live in a household with gas con-
nection. The trend continues to rise (Paw-
lik V. (2019)).

There are 25 companies active as gas im-
porters into Germany.

Technical
specification

All pressure levels in the gas transmission
and distribution network.
No ceiling in terms of the maximum pos-
sible gas demand is set in gas forecasting;
gas infrastructure is far from being fully
utilized.

High-pressure gas pipelines. In the model-
ing part of the infrastructure (in contrast to
the practice in forecasting), Eser et al. (2019)
set ceilings for a given node to the maximum
observed annual import at the node in the
past.

Future re-
search trends

Changing the time density – monthly pre-
dictions produced from daily forecasts
(Akpinar and Yumusak (2016)).
Case studies to prove the speculation – the
accuracy of gas consumption forecasting
is related to the gas consumption patterns
of climate zones (Wei et al. (2019)).

Considerations about forecasting in the true
forecasting phase although the control vari-
ables are unknown.

Table 4.3: Approaches to gas de-
mand forecasting and gas imports’

forecast. Study case: Germany
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14 Chen, Y., Chua, W. S., and Koch,
T. (2018). Forecasting day-ahead

high-resolution natural gas de-
mand and supply in Germany.

Applied Energy, 228:1091–1110

15 Zero values in a data set result in
infinite values for some accuracy mea-

sures (division by zero) or in unde-
fined values due to the division zero

by zero. Hyndman and Koehler (2006)
provide circumvention to these prob-
lems by introducing a mean absolute

scaled error (section Related Work).

16 In the long-term; households may
change their heating systems to heat

pumps, solar panels, etc. due to 1)
higher economic standards in the

society or 2) a combination of pol-
icy measures for higher deploy-

ment of renewable energy and the
society’s acceptance to pay higher

prices for environmental protection.

17 In contrast with other indus-
trialized countries, the share of

air conditioning in households in
Germany is less than 5% , in the

commercial sector it is about 60%.

parameters), one parameter is needed for the time trend and m + 2
is regarded as the theoretical minimum for the estimation (Hyndman
and Kostenko Andrey V. (2007)). Therefore, 14 observations would be
sufficient for a reasonable regression analysis if there is no randomness
in the data. For Holt-Winters forecasting, the minimum size of the data
set is m + 5 observations; i.e. for this work, the minimum size would
be 17 observations. For comparison, 204 observations are included in
the data set.

Few authors worked with data sets including gas imports into Ger-
many until now; for example Chen et al. (2018)14 used high-resolution
data for gas flows at three cross-border nodes. Gillessen et al. (2019) in-
cluded a gas feed-in into GASOPT model, per grid node and per hour.
To our knowledge, no other researchers have been using data related
to gas imports in Germany for forecasting or modelling purposes. A
data set used for this section includes aggregate imports through all
cross-border nodes. Due to the domain (gas imports) and the aggrega-
tion, it is highly improbable that such a data set would contain zeros.15

Still, this phenomenon is possible in intermittent (energy) demand or
supply forecasting, as can be seen in the cases of electricity produc-
tion from PV-panels or wind turbines, or the district heat demand of
a single household, to name a few.

For the short-term forecast in a city, gas prices, GDP per capita,
and other economic factors do not impact the outcome (Szoplik (2015)).
The gas price change causes a fuel-switch in the long-run only.16 Still,
a cross-border price remain included in the data set as it corresponds
to the amount of imported gas to Germany. Both variables are derived
from the same data source and contribute to data consistency.

Domestic demand is the most important variable for imports; both
the residential and industrial sector are of equivalent relevance in Ger-
many. Demand in the residential sector depends on the outside tem-
perature as gas is mostly used for heating (thus an input: heating de-
gree days). An input "cooling degree days" is also included assuming
that:

a) during hot summer days in cities; air conditioning in a commer-
cial sector17 increases electricity consumption as compression chillers
are the most widespread cooling technology in Germany, and

b) to some extent, this consumption will be covered by electricity
generated in gas power plants.

Gas exports have been removed from the data set due to the
strong collinearity with gas imports.
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Figure 4.2: Seasonal plot of gas imports
into Germany. The data set "Imports"

covers physical flows of gas (TJ) in the
period (January 2002 - December 2018).

In the seasonal plot, figure 4.2, data are plotted against months
to check how closely imports follow temperature differences. Some
peculiar deviations from the expected line (based on the outside tem-
perature) are due to the unequal length of months with the range from
28 to 31 days.

4.0.2 Material and methods

4.0.3 Time series models

For testing various models, out-of-sample accuracy measurement has
been used by dividing data into a training set (January 2002 - Decem-
ber 2017) and a testing set (January 2018 - December 2018).

The time series "gas imports" was decomposed into trend, seasonal,
and random (residual) parts (figure 4.3) with a distinct seasonal pat-
tern. Furthermore, the data exhibits a rising trend in addition to
monthly seasonality. For the sake of completeness, the data was also
decomposed by using a multiplicative method, too – with results sim-
ilar to those presented in figure 4.3.

In general, the objective of time series models is to discover the pat-
tern in data series and produce forecasts by extrapolating that pattern
into the future. Time series models are acceptable when knowledge of
the prediction of the response variable is sufficient without the under-
standing of reasons for the change of the response variable.

While checking a trend on inputs, there is a seasonal variation
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Figure 4.3: Decomposition of additive
time series

18 In the wholesale electricity trade, gas
with its high marginal costs is next to

the last or last option for electricity
generation based on the merit order
principle. Thus, this part of gas de-

mand is sensitive to gas price changes.

A naïve forecast is optimal when data
follow a random walk (financial, eco-
nomic data). Every "random walk" is
unique and unpredictable but the en-

semble of random walks possesses
properties such as the central limit

theorem. As steps N approach infin-
ity, the endpoints of an ensemble of N

step random walks with root-mean-
square steps-size a has a normal prob-

ability distribution (Sethna, P. James
(2020)): ρ(x) = 1√

2πσ
exp(−x2/2σ2).

in heating degree days, imports, gas for electricity production,18 and
storage. For the description of the time series, an additive model is
appropriate as seasonal fluctuations are more or less constant in size
over time. For “cooling degree days”, the size of the seasonal fluctua-
tions and random fluctuations seem to decrease with the level of time
series. Hence an additive model would not be suitable. Second, the
time series was seasonally adjusted by estimating and subtracting the
seasonal component from the original time series.

As pointed out in the chapter Related Work, first a persistence fore-
cast was computed, meaning a forecast equal to the most recent ob-
servation assuming a random walk model. A naïve forecast is optimal
when data follows a random walk.

Any model needs to outperform the persistence forecast (figure 4.4)
to justify the effort to construct it.
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Figure 4.4: Persistence forecast. Widen-
ing intervals indicate increased uncer-
tainty of future values (Fan chart).

19 Holt, C. C. (2004). Forecasting
seasonals and trends by exponentially
weighted moving averages. International
Journal of Forecasting, 20(1):5–10

20 Ŷt+h denotes the forecast for h periods
ahead, p is the length of the seasonality,
e.g. the number of months in a year.

Holt-Winters Time Series Model

The Holt-Winters method is the extension of the Holt method, cap-
turing a linear trend, as it also captures seasonality in a time series
by introducing a coefficient. The method applies exponential smooth-
ing; smoothing equations for the level α, trend β, and seasonality γ

are shown below. The seasonality can be modelled in an additive or
multiplicative way:

Holt-Winter equations for additive seasonality with the pe-
riod length p19

Ŷt+h = at + bth + s[t−p+(h−1)modp]+1 (4.0.1)

where at denotes level, bt denotes trend and st denotes seasonality.
They are given by

at = α(Yt − st−p) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

st = γ(Yt − at) + (1− γ)st−p

Holt-Winter equations for multiplicative seasonality; (level
+ trend) × seasonal component:

Ŷt+h = (at + hbt)× s[t−p+1+(h−1)modp] (4.0.2)

where at denotes level, bt denotes trend and st denotes seasonality.20

They are given by:
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21 R Documentation (2020).
Holt-Winters function | R doc-

umentation. https://www.

rdocumentation.org/packages/

stats/versions/3.6.2/topics/

HoltWinters Last accessed 2020-09-06

22 For an additive model: α = 0.8293

(the coefficient for the level smooth-
ing), β = 1e−04 (the coefficient for the
trend smoothing) and γ = 1e−04 (the

coefficient for the seasonal smoothing).

at = α(Yt/st−p) + (1− α)(at−1 + bt−1)

bt = β(at/at−1) + (1− β)bt−1

st = γ(Yt/at) + (1− γ)st−p

Special cases are obtained while setting smoothing parameters α,
β and γ to zero; with α = 0 the level is unchanged, with β = 0 the slope
is constant over time and with γ = 0 we fix the seasonal pattern. In
the formula at, real values are deseasonalized by dividing real values
by the seasonal number (Makridakis et al. (1998)). In the formula st for
seasonality, Yt denotes real values from the data set, thus containing
seasonality and randomness, whereas at is already smoothed (average)
value with a seasonality element. The factor γ serves to smooth the
randomness which is necessary due to the Yt. To start the algorithm,
initial components must be set; for the HoltWinters function of the R
stats package, start values come from a simple decomposition in trend
and seasonal component using moving averages on the start.21

In this study, both trends showed similar results: the values for
forecast imports were higher for the multiplicative trend but not more
accurate. Parameters are determined by minimizing the squared pre-
diction error and low values for β and γ22 indicate that rather older
values of x are weighted more. Values of α (specifying how to smooth
the level component) near 1.0 mean that the latest value has more
weight.
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Figure 4.5: Holt-Winters filter-
ing. The black line represents

the actual value; the red line rep-
resents the filtered time series.

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/HoltWinters
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/HoltWinters
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/HoltWinters
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Forecasts from Holt-Winters
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Figure 4.6: Point forecasts and the
80% and 95% prediction intervals

obtained using Holt-Winters model

23 Autocorrelation function is one
of the diagnostic checks for model
uncertainty. For any suitable forecasting
model, residuals left over after fitting
the model should be white noise
(Makridakis et al. (1998)).

Figure 4.5 depicts forecasted values as well as the actual values. The
method performs well in predicting seasonal peaks, i.e. the highest
amounts of gas cross-bordered per year. The fan chart (figure 4.6)
shows prediction intervals, set to 80% and 95% by default.

The autocorrelation function indicates patterns in in-sample
forecast errors called residuals (figure 4.7).23 As for figure 4.7: 1) the
boundaries are set by definition, 2) monthly data are used; the time
lag is expressed in years, 3) by default, the ACF at zero time lag is set
to 1. The blue lines are set to 95% confidence interval (an estimate of
a fixed but unknown parameter value). Correlation values outside of
this threshold are likely to mean a correlation. "Likely" is stressed as "a
priori approximately 1 out of every 20 correlations will be significant
based on chance alone."(E. E. Holmes, M. D. Scheuerell and E. J. Ward
(2020)).

Second, the Ljung-Box test results have been evaluated with the
p-value 0.001293, which indicates the possibility of non-zero autocor-
relation within the first 20 lags. To sum up the evaluation, as there is
a pattern in the error residuals and due to the result of the hypothesis
test, the model would not be the first choice for predictions.

Besides the Holt-Winters time series (HWTS) model, we considered
the Bayesian Structure Time Series models, however, with less promis-
ing results.
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4.0.4 Regression analysis

Regression analysis assumes that the output (gas imports) exhibits
an explanatory relationship with a few independent variables under
the assumption of continuity i.e. the explanatory relationship will not
change. First, we included all variables from a data set, however, the
variables gas use for electricity production and cooling degree days showed
no significance in the model; hence they were excluded.

200000 250000 300000 350000 400000 450000

−5
00

00
0

50
00

0

Fitted values

R
es

id
ua

ls

lm(Import ~ .)

Residuals vs Fitted

192

159 179

(a) Residuals vs fitted

−3 −2 −1 0 1 2 3

−2
0

2
4

Theoretical Quantiles

St
an

da
rd

iz
ed

 re
si

du
al

s

lm(Import ~ .)

Normal Q−Q

192

159179

(b) Normal Q-Q

Three assumptions for the algorithm have been checked: the linear
relationship, normality, and homogeneity. Residuals vs fitted depicted
a horizontal line without a distinct pattern (figure 4.0.4, a); Normal Q-
Q confirmed the normality assumption as residual points follow the
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24 Heteroscedasticity refers to the
situation in which the variability of a
variable (residuals) is unequal across
the range of values of a second variable
(fitted values).
25 Feature selection is an optimization
problem of searching for the features’
combination that predict the response
optimally (Kuhn and Johnson (2016)).

26 Usually all inputs are standardized
to have a mean of zero and standard
deviation of one (Hastie et al. (2009)).

straight dashed line (figure 4.0.4), b). Scale-location was used to check
the homogeneity of variance of the residuals, depicting a heteroscedas-
ticity24 problem (figure 4.0.4, c).

As for the feature selection,25 analysis of variance (ANOVA
test), has been conducted with two models; model 1 including all of
the variables, model 2 with all variables but two above-mentioned in-
puts. Although feature selection has improved models, the standard
residuals overall pattern change is negligible. To solve the problem of
non-linearity, we also considered introducing an interaction between
some predictors. In the Explanatory Data Analysis (EDA), a relation-
ship between the consumption of gas for electricity production and gas
storage balance has been detected. Therefore, an interaction between
them has been introduced to determine a possible difference. How-
ever, this interaction, as well as the interaction of heating degree days
and gas storage, has not contributed to the increased performance of
a model.

Also, dummy variables have not improved the model and eventu-
ally the standard regression models were chosen, excluding price.

4.0.5 Artificial Neural Networks

An artificial neural network computes its output by multiply-
ing the inputs x by weights (w0) and passing the result through an
activation function. The training algorithm selects the weights of the
input units by following the goal of minimizing a cost function, e.g.
mean squared error (MSE). As the scaling of the inputs26 determines
the effective scaling of weights, data has been normalized. Within the
R package neuralnet, the network architecture with the logistic acti-
vation function has been chosen under the criterion of the least total
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27 Makridakis, S. G., Wheelwright,
S. C., and Hyndman, R. J. (1998).

Forecasting: Methods and applica-
tions. Wiley, Hoboken, NJ, 3. ed.

edition. ISBN 9780471532330

28 We also tested the random for-
est model. This approach uses the

most recent data from the data
set as the forecast for the next pe-

riod but it showed over-fitting and
it was left-out of consideration.

Hyndman and Koehler (2006)
recommends using MAPE if all

data is positive and much greater
than zero due to its simplicity.

squared error (figure 4.8). After the training step with the network
learning an approximation of the relationship between inputs and an
output (gas imports), predictions have been made and compared with
the testing data.
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Figure 4.8: Plot of a trained neural net-
work including synaptic weights and

basic information. The black lines show
connections between layers and weights
on each connection; the blue lines show

the bias term for each step. The train-
ing process needed 1692 steps until

absolute partial derivatives of the error
function were smaller than the default

threshold (0.01). The information value
of the plot is rather low; one cannot re-
late inter-steps of the model to making

statements on the response variable.

A small size data set is never ideal for ANN, as neural net-
works require a much larger number of observations than other mod-
els such as linear models.27 Further, it is not clear which parameters
(i.e. number of layers and number of nodes) are best for the network;
in this case, one layer with ten nodes produced the best result in the
mean absolute percentage error (MAPE).28

4.0.6 Modelling conclusions

The performance of models is checked by the accuracy measure MAPE
as it is not scale-dependent, there are no zero values in the data set and
the results are not intended to be compared with gas imports of coun-
tries with other pattern profiles. Table 4.4 provides an overview of
the out-of-sample forecasting errors for three chosen models with the
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29 Szoplik, J. (2015). Forecasting of
natural gas consumption with artificial
neural networks. Energy, 85:208–220

30 Lewis, C. (1982). Industrial and
business forecasting methods. A practical
guide to exponential smoothing and curve
fitting. Butterworth, London. ISBN
0408005599

31 Čeperić, E., Žiković, S., and Čeperić,
V. (2017). Short-term forecasting of
natural gas prices using machine learn-
ing and feature selection algorithms.
Energy, 140:893–900

32 This is valid especially for neural
networks and the field of medicine
where the interpretation of models is
crucial for the results’ usability.

33 Scarpa, F. and Bianco, V. (2017).
Assessing the quality of natural gas
consumption forecasting: An appli-
cation to the Italian residential sector.
Energies, 10(11):1879

persistence model where the forecast for all months of 2019 equals the
value of the last observation from the data set, December 2018. Only
results for the ANN with three nodes combat the persistence model
and are comparable with results in Szoplik (2015).29 No MAPE out-
come is equal to or exceeds 50% of the Lewis Benchmark for inaccuracy
(Lewis (1982)).30 Lewis’ benchmark is arbitrary; labelling the model as
accurate depends on the object of forecasting, to be more general: on
the model domain.

Table 4.4: MAPE comparison.

Persistence Regression Time Series ANN with 3 nodes
MAPE 0.0924 0.116 0.278 0.062

Results are reflected upon in the relation to statements

from previous studies:

• There is still a gap between the rapid pace of algorithms’ devel-
opment and their real-world application (Čeperić et al. (2017)).31

Although algorithms work in many cases mentioned in the litera-
ture on testing the models (Merkel G. D. et al. (2017)), they are still
rarely used as the basis for a decision-making process. As all results
are valid for data sets (simplified sample of reality) with approxi-
mations describable by mathematical functions at the current stage
of data science, it is hardly possible to make one step out of the
boundaries of a model and make a statement about the observed
reality.32 Authors who dare to make this step, call their statements
speculations. Increased complexity of emerging models stresses the
relevance of interpretability.

• In real-time forecasting, all variables become the subject of uncer-
tainty, and solving the issue by using rough estimates would pro-
duce relative confidence bounds so large that they would lose any
practical use (Scarpa and Bianco (2017)).33 Therefore, here we re-
strict a forecasting exercise to the testing data.

• Forecasting of gas imports is a more complex task than gas demand
forecasting due to factors taking place outside the boundaries of the
area (Germany). As an example, rising gas demand of neighbouring
countries causes the steady growth of gas exports in the equation:
Natural gas imports = natural gas (internal) consumption + exports –
natural gas own production +/- storages; going hand in hand with the
extension of infrastructure.

• An explanatory data analysis shows that the cross-border price does
not influence German gas imports. In the short-term, the available
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34 Most studies on energy secu-
rity are country-specific (Ang et al.

(2015)) although the concept of
energy security requires a holis-

tic view due to its interdependent
character, especially in Europe.

35 Weather forecast providers use a de-
terministic model with no random-

ness, called an operational model and
a probabilistic model running at spe-

cific hours and providing different
weather scenarios, called an ensem-
ble model (Gianfreda et al. (2020)).

gas infrastructure (i.e. technical physical capacity of entry points)
sets the upper boundary for imported amount of gas.

• Yet, the gas market has all the attributes of a slowly-evolving ma-
ture sector: a long tradition with detailed legislation, regulation
and standardization, a dense gas network, and sector independence.
Still, the gas sector experiences pressure from both politics and the
public to decrease its carbon dioxide and methane emissions and
use its vast infrastructure system for transporting new products
(hydrogen, biogas, synthetic methane). This could start a sort of de-
centralization of gas supply in the network: high pressure pipelines
for the transport of the high-calorific gas (H-Gas) will be used for
the rising export and distribution lines for local customers will be
equipped with new supply entry points for synthetic methane and
hydrogen injection. In some regions of Germany, the hydrogen in-
frastructure is being built as a project-specific island supply solu-
tion.

4.0.7 Geopolitical implications of gas imports

Monthly gas imports matter for the security of energy supply.
Thus, the issue is being discussed at state level.34 The BAFA publishes
total German gas imports on behalf of the BMWi (German Federal
Ministry for Economic Affairs and Energy) and is not involved in fore-
casting. Several reasons behind not studying gas imports as a subject
of short-term forecasting are:

• Gas network operators make internal plans for future consumption
according to forecasts based on past consumption and weather fore-
casts.35 It is unknown whether their algorithms are mainly based
on ML methods.

• Ministries develop long-term strategies, where a one-year ahead
forecast, based on monthly data, is too detailed for their goals (i.e.
energy security).

• Germany’s security of gas supply is high (BMWi (2019)). Due to
data protection, the country of gas origin is not disclosed to the
public anymore; however, this information is provided in the Bun-
desnetzagentur and Bundeskartellamt (2019) for 2017 data. Most
of the gas has been imported from Russia, Norway, and – with a
declining tendency – from the Netherlands.

• Missing high-resolution data on imports.
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In the previous work on gas supplies
in the context of the IR discipline back
in 2008, two assumptions were stated:
gas supplies are concentrated and there
will be no physical shortages in gas
until 2020. Any shortfall of supply
with demand will be due to political or
economic obstacles.

Geopolitical perspective on supplies
distinguishes a) pipeline gas with the
geopolitical importance of transit states,
b) LNG gas with no direct transit states
but “choke points” such as Bosporus,
Strait of Hormuz or Strait of Malacca.

In the IR discipline (academia), on the other hand, either unique
events of the disruption of supply would be set into a story line or the-
ories that enable understanding of main actors’ actions are published.

Geopolitical debate on gas supply has undergone a shift in focus
in the last twenty years. In the first decade of the 20th century, the
discussion in the IR circled around gaining control of new gas fields
and transport routes. At Gazprom’s Annual General Shareholder’s
Meeting on 30 June 2006, Alexey Miller, Chairman of the Gazprom
Management Committee, stated:

"Ongoing global competition to gain control over hydrocarbon re-
serves has shown that state owned and backed companies have consid-
erable advantages in obtaining dominating positions on international
markets. Integration of state and commercial approaches enables to
ensure a long-term planning based on prospective gas balance on the
national and international scale." (Miller (2006)).

Figure 4.9: Correlation of gas con-
sumption among Germany and its
neighbouring countries (selection). Data
source: Eurostat

The post-2020 global energy system still counts on rising gas im-
ports but from new exporting regions (the US) and in another form
(LNG). The intention for using gas has changed, too. With applying
energy-efficiency measures within the residential sector, gas consump-
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36 Germany is an energy hub for
physical gas flows in Europe.

Gas consumption in neighbour-
ing countries increases Ger-
man gas imports while Ger-

man gas exports also increase.

37 Examples: extreme cold winter
in 2010, a warm winter in 2014.

tion will rise in the electricity sector to back-up the electricity produc-
tion from renewable energy sources.

To sum up, high fixed costs for pipeline infrastructure and three sepa-
rate gas consumption regions (Northern-American, Asian-Pacific and
European) remained the reality of gas supplies. Changes occur in the
gas pricing and the realization of producer countries that gas demand
will be curtailed by pursuing environmental policies in Europe.

Figure 4.10: Time plot of gas
consumption of Germany

and neighbouring countries

Regarding Germany,36 figure 4.9 shows the high correlation of gas
consumption among Germany and some of its neighbouring countries.
Shared climate and weather conditions are one of the reasons for the
correlation. An analysis of of heating degree days revealed a high cor-
relation among all countries in question but Denmark. Gas profiles
in figure 4.10 mirror the set-up of the energy sector in a country; e.g.
the curve for Germany depicts remarkable differences between win-
ter peaks37 and lows, whereas the Danish profile is flat as heating in
Denmark is supplied by district heating based on renewable energy
sources rather than by using gas boilers. Furthermore, gas consump-
tion trends of France and Germany resemble each other. In France,
industry consumes more gas than the residential sector as of 2016,



energy forecasting. focus: natural gas 89

with the majority of gas consumed in the northern part of France.

Germany has been more successful in diversifying gas imports
by routes than by product (diminishing L-gas imports from the Nether-
lands will be replaced by H-gas; low share of other methane-based
gases).





“The future is in a large measure a
deconvolution of the past with seeds of
novelty carefully selected and planted
by the system itself.” Cesare Marchetti

5
Study 2: Yearly gas consumption in Germany

5.0.1 Introduction

In the second study case, this research constructs models such as prin-
cipal component regression, support vector model, ANN in various
variants for forecasting gas demand in Germany and tests how energy
engineering knowledge impacts data set construction. The data set has
been constructed assuming the link between the information gain from
the energy sector of a country and the quality of energy forecasts. It is
shown that data and the assumed relationships between a forecast and
the explanatory variables must be country-specific in energy forecasting.

Biomass
Brent Price
Coal Con
Cool DG
Elect Gen
GDP
Heat DE
Hydro E
Oil Con
NG Con
NG Imp
NG Price H
NG Price In
NG_Prod
NG_RES
Nuclear
Pop
Solar
Wind

Electricity from Biomass
Brent oil price
Coal consumption
Cooling degree days
Electricity Generation
Gross domestic product
Heating degree days
Electricity from hydro power plants
Oil consumption
Natural gas consumption
Natural gas imports
Natural gas price for households
Natural gas price for industry
Natural gas production
Natural gas – proven reserves
Electricity from nuclear power plants
Population
Electricity from photovoltaics
Electricity from wind power plants

Table 5.1: Abbreviations. All variables
relate to Germany, the Brent oil price
excluded.
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1 EU (2012). Eur-lex-12012e: Con-
solidated version of the Treaty on

the Functioning of the European
Union. https://eur-lex.europa.

eu/legal-content/EN/TXT/?uri=CELEX:

12012E/TXT Last accessed 2019-07-22

2 This is in contradiction to defini-
tions in Fallah et al. (2019) (an ar-
ticle on the short-term load fore-

casting); a method is defined as an
umbrella term for various models.
3 Barker, J. (2020). Machine learn-

ing in m4: What makes a good un-
structured model? International

Journal of Forecasting, 36(1):150–155

4 Dreborg, H. K. (2004). Scenarios and
Structural Uncertainty: Explorations
in the Field of Sustainable Transport.
Trita-INFRA. ISBN 91-7323-068-5

Defined boundaries

Any EU country has "the right to determine the conditions for
exploiting its energy resources, its choice between different energy
sources, and the general structure of its energy supply" (Article 194/2).1

In Germany, oil and gas remain the only two sources affected by for-
eign events. The nuclear phase-out is scheduled to be completed by
the end of 2022, and the coal phase-out by the 2030s. As a result, re-
newable energy as well as secondary energies will increase their share
in the energy mix. Only gas fulfills the role of the bridge fuel in the
vision of Energiewende, therefore oil has been excluded. Furthermore,
the share of gas on primary energy consumption in Germany is sub-
stantial, amounting to 24% in 2018 and 25% in 2019. Thus, our primary
focus lies on gas and Germany.

5.0.2 Forecasting literature

Models and methods are treated as synonyms in the literature,2

and instead of differentiating between statistical/ML methods, this
work follows Barker (2020).3 She suggests a division between struc-
tured models (such as autoregressive models) and unstructured mod-
els (neural networks) based on how the knowledge is generated: is the
process of generation defined a priori or is it learned from the data?
Second, even studies from several regions cannot be compared with
each other as the setup of every analysis with its forecasting models
is unique in nearly all criteria, the time horizon being one of them.
Long-term forecasting implies forecasting of technological change. The
classical way of predicting technological changes is the Delphi tech-
nique, which is based on expert opinions. In the gas domain, experts
would express their opinions on the rate of increase of hydrogen in-
jection into gas pipelines provided that hydrogen has been produced
in the water electrolysis process with electricity generated from re-
newable resources. The iterative process with the controlled feedback
results in a consensus scenario which is perceived as the most likely
development.4

Study 2 presents 1) the process of constructing a data set for fore-
casting gas demand, for Germany, 2) methods used for forecasting gas
demand understandable within the scientific community of all back-
grounds, and 3) demonstrates a first attempt to combine gained knowl-
edge from both data science and social sciences.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012E/TXT
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012E/TXT
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:12012E/TXT
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5 Zhang, W. and Yang, J. (2015). Fore-
casting natural gas consumption in
China by Bayesian Model Averaging.
Energy Reports, 1:216–220. https://doi.
org/10.1016/j.egyr.2015.11.001
6 In the long-lasting scenarios in the
Network Development Plan in Ger-
many, assumptions for gas prices are
divided into “international prices for
oil and carbon dioxide” and “cross-
border prices – Germany” (FNB-
Konsultationsdokument), the latter was
also used in the section on short-term
forecasting of gas imports.

7 Three main types of uncertainty
include parameter, model and data
uncertainty. Regarding parameter
uncertainty, a few models filter out
irrelevant information. Interestingly,
Petropoulos et al. (2018) tested six
forecasting strategies for yearly, quar-
terly and monthly data of M and M3

forecasting competition for ETS and
ARIMA models. Strategy 3, addressing
all three types of uncertainties, failed
to produce the most accurate results in
terms of MASE and sMAPE in general
and for yearly forecasts.

Petropoulos, F., Hyndman, R. J.,
and Bergmeir, C. (2018). Exploring
the sources of uncertainty: Why does
bagging for time series forecasting
work? European Journal of Operational
Research, 268(2):545–554

5.0.3 Research setup

Constructing the data set and gathering variables

Typical inputs for long-term gas forecasting are GDP, (ur-
ban) population, energy consumption structure, energy efficiency or
exports of goods and services (Zhang and Yang (2015)5; fuel6, elec-
tricity prices as well as gas use for electricity production have been
added to the list in this work. The complete data set contains 22 vari-
ables; they are described by definition, units and information source
in Annex.

As data were collected for a single purpose, they show some
commonality in their origin. It is likely they occupy the same man-
ifold space. This fact would gain importance when constructing an
unsupervised neural network model where the manifold search space
is not limited to a particular class, as is the case in supervised models.
Second, the data set resembles a data set used in business rather than
those used in forecasting competitions, as one can apply logical con-
straints such as all forecasts will be non-negative, use exogenous time
series, etc. Third, the high quality of the data set with no missing val-
ues addresses partially one type of uncertainty:7 the uncertain model
input data. Still, as data in this research have been measured, summed
up for Germany, and reported, they contain a systematic error.

In this research setup, forecasting serves as a tool in business
forecasting (technical infrastructure management). Pursuing forecast-
ing methods forward would require standard data sets known from
forecasting competitions (e.g. Kaggle, M4).

The data collection process took place from December 2018 to
June 2019. A few remarks about the variables:

• Natural gas demand, the response value. The energy balances
of the federal states of Germany describe the total gas demand
as primary energy consumption of natural gas, consisting of final
energy consumption, the conversion input for natural gas power
plants, losses and others. Figure 5.1 depicts the increasing variabil-
ity of gas consumption (% change from previous year) in Germany,
from about 2009 onwards.

• Population represented as a total number of citizens, data was ob-
tained from the International Monetary Fund (IMF), the World Eco-

https://doi.org/10.1016/j.egyr.2015.11.001
https://doi.org/10.1016/j.egyr.2015.11.001
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Figure 5.1: Increasing variability of gas
consumption (per cent change from
previous year)

8 Free On Board (FOB) is a shipping
industry term indicating the sub-
ject liable for goods that are dam-

aged or destroyed during shipping.

9 Šumskis, V. and Giedraitis, V.
(2015). Economic implications of

energy security in the short run.
Ekonomika, 94(3):119. https://doi.

org/10.15388/Ekon.2015.3.8791
10 In Germany, industry consumes as

much gas as the residential sector.

In German: Nutzungsentgelte

nomic Outlook Database (WEO), and the Official Statistical Body
(Statistiches Bundesamt). Data until 1990 refers to West Germany.

• Gross domestic product (constant prices), the same data
source as for the population data. National accounts data until
1990 do not include FISIM (financial intermediate services indirectly
measured). Data from 1991 refer to united Germany and include
FISIM. Base year: 2010. The GDP deflator in the base year is not
exactly equal to 100 since it is computed based on the quarterly real
GDP data, which have been adjusted for seasonal and calendar ef-
fects. Type: Expenditure-based GDP, i.e. the total final expenditures
at purchasers’ prices, less the f.o.b. (free on board)8 value of goods
and services.

In the simplified point of view, as the measure of net exports is in-
cluded in real GDP (calculated by the expenditure approach), there
is a hypothesis that energy security has a positive impact on the real
GDP development (Šumskis and Giedraitis (2015)).9

• Gas prices, determined by long term contract prices and spot
prices. The data set contains 1) average gas price for industry;10 av-
erage price for households and total average price of gas, all without
the value-added tax (VAT) but with the inclusion of usage charges
and taxes, according to data from the Official Statistical Body in

https://doi.org/10.15388/Ekon.2015.3.8791
https://doi.org/10.15388/Ekon.2015.3.8791
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In German: Preise. Erzeugerpreise
gewerblicher Produkte (Inlandabsatz).
Preise für leichtes Heizöl, Motorenben-
zin und Dieselkraftstoff.
11 Still, ca. 40% of gas sold in European
markets is indexed to the oil price
(Bridge and Bradshaw (2017)).

12 LBEG, Landesamt für Bergbau,
Energie und Geologie, Erdöl- und
Gasreserven in der Bundesrepublik
Deutschland am 1. Januar 2019. On
the 3rd July 2020 data sources’ updates
have been checked; a data value from
the first source and the second one for
2018 is the same.
The L-gas production is re-calculated

for energy content of 9.7692 kWh/cubic
metre.

Germany (Statistisches Bundesamt).

• Prices of gas alternatives. The price for light heating oil in
Germany has been added to the data set. Gas prices are not de-
termined by oil prices any more,11 still their corridor may be set
with oil-prices being a ceiling and coal prices a floor. Villar and
Joutz (2006) concluded the dynamics of the relationship as follows:
a one-month temporary shock to the West Texas Intermediate (WTI)
of 20% has a 5% impact on gas prices, but is reduced to 2% after
two months. A permanent shock of 20% in the WTI leads to a 16%
change in the Henry Hub price one year out with all else equal. In
the model, a stable long-term relationship is assumed. Therefore,
we included Average annual Brent crude oil prices from OPEC and
the IEA.

• Heating degree days, a factor for predicting consumed gas in the
residential sector. Data come from Eurostat, until 1990, only heating
days for West Germany are included. Cooling degree days in rela-
tion to gas consumption are especially relevant for countries with
massive deployment of cooling inside buildings (the USA, Turkey
etc.) due to peak electricity demand covered by gas engines. For
checking the relationship of cooling degree days with gas consump-
tion, this input has been included in the data set, too.

• Proven Natural gas reserves are defined as quantities that ge-
ological and engineering information indicates with reasonable cer-
tainty and can be recovered in the future from known reservoirs un-
der existing economic and operating conditions. Data comes from
BP; for the missing year 2018 data from the LBEG was used.12

• Gas production. In 2018, gas production covered 6.5% of the
gas consumption in Germany (Federal Ministry for Economic Af-
fairs and Energy (2019)). The low calorific gas (L-gas) production
in Germany as well as proven reserves decreases, with a decreasing
trend predicted for both the production (table 5.2) and proven gas
reserves. Gas production in Germany is one of few inputs for which
future yearly values up to 2030 are available with lower uncertainty.

As law in Germany does not permit shale gas production on a com-
mercial basis and its costs are higher than the costs of purchasing
pipeline gas now, shale gas production has been excluded.

Data on gas consumption is taken from the BP Data Product "En-
ergy Production and Consumption." As they are derived from tonnes



energy forecasting. focus: natural gas 96

Production Capacity
Year Billion m3 Mil.m3/h
2019 6.26 0.80

2020 5.82 0.74

2021 5.72 0.73

2022 5.38 0.68

2023 5.11 0.65

2024 5.76 0.72

2025 5.44 0.68

2026 5.02 0.63

2027 4.61 0.57

2028 4.23 0.52

2029 3.99 0.49

2030 3.73 0.46

Table 5.2: Gas production prediction,
source: FNB Gas (2019), original source:
BVEG e.V (Bundesverband Erdgas,
Erdöl und Geoenergie e. V.)

13 In German: Bundesamt für
Wirtschaft and Ausfuhrkontrolle

of oil equivalent (TOE) using an average conversion factor, they do
not correspond exactly with gas volumes expressed in Germany’s
federal statistics.

• Data on natural gas imports is taken from the International
Energy Agency (IEA) and from the Federal Office for Economic Af-
fairs and Export Control (BAFA).13

• Electricity generation. Scenarios for Germany predict increas-
ing share of gas consumption for electricity production due to the phase-
out of nuclear and coal power plants. They balance electricity pro-
duction from weather-dependent sources; to be precise, the lack of
it. There are no data on gas consumption for electricity production
back to 1980, therefore the data set includes electricity generation
from BP. The value for the last year in the data set (2018) comes
from the Federal Environment Agency (Umweltbundesamt). All
data are based on the gross electricity production, i.e. power plants’
own consumption is included.

• Other data such as oil consumption, hydro electricity, electricity
produced in biomass power plants, by solar, wind and nuclear en-
ergy and coal consumption are from the BP Statistical Review of
World Energy, 2019.

There is a lack of high-quality data sets on renewable en-
ergy sources, as they only started being collected in the 1990s (this
research’s data set starts in 1980). There is no data on LNG gas con-
sumption; at the time of writing, Germany does not operate an LNG
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14 Busse, S., Helmholz, P., and Wein-
mann, M. (2012). Forecasting day ahead
spot price movements of natural gas
- an analysis of potential influence
factors on basis of a NARX neural
network. Multikonferenz Wirtschaftsin-
formatik 2012 - Tagungsband der MKWI
2012. https://publikationsserver.

tu-braunschweig.de/servlets/

MCRFileNodeServlet/dbbs_derivate_

00027726/Beitrag299.pdf Last ac-
cessed 2021-04-14

15 Other factors influencing gas prices:
geopolitical events and political de-
cisions, seasonality/temperature,
storage key figures, transport capacity,
substitutes (e.g. oil price), spot and
front month contracts for base- and
peak-load) (Busse et al. (2012)).
16 Previous section on gas imports

17 Outliers could be defined as values
differing more than four times the
standard deviation from the mean as in
Busse et al. (2012).

terminal. Still, even without an own terminal, the LNG availability
does influence gas prices (and indirectly consumption) according to
the survey among several traders and portfolio managers conducted
in 2011 by Busse et al. (2012).14,15

After constructing the research data sets for a short-term16 and a
long-term period, relevant aspects are summarized in table 5.3.

5.0.4 Methodology and Results

Exploratory data analysis.

Data is highly correlated (the correlation plot in figure 5.2); thus, some
of the correlated features have been removed. The data is not normally
distributed and contains outliers. Since we keep any input due to the
size of the data set, outliers have not been removed.17

For certain models, this research works with log transformations of
skewed variables. Some models, such as support vector machines, do
not assume the exact shape of distributions. Seasonality in the low
frequency (yearly) data is not observed.
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Figure 5.2: Variables correlation matrix

The following forecasts were produced by multiple linear re-
gression (full and reduced form), Principal Components Regression
(PCR), Support Vector Machines (SVM), time series analysis, and neu-
ral networks. PCR addresses collinearity by reducing the dimension-
ality of the data set. The time series models applied poorly to the data

https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
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Criterion Aspect Short-term

forecasting horizon:

hours, days, months,

Frequency: high

Long-term with the yearly data

Forecasting horizon: years,

Frequency: low

Purpose of

forecasting

Use of forecasts Improving operational

efficiency of back-up

plants for renewable

energy sources, further

saving energy and

reducing emissions

(methane and carbon

dioxide)

Managing supply contracts, indige-

nous production (measuring gap be-

tween domestic production and con-

sumption), infrastructure planning

Data set Choice of variables Weather variables

(measured values or

forecasts) – tempera-

ture or heating degree

days, wind velocity,

solar irradiance, air

humidity

Periods: weeks-

days/public holidays

Macro-socio-economic indicators

(population, gross national product),

gas availability, gas and electric-

ity price, price of competitive

fuels/technologies.

Decomposition Seasonal pattern Yes, also within a day. No seasonal trend in a classical statis-

tical meaning.

Choice of the

forecasting

methods

Statistical methods vs

judgemental methods

Extrapolation of

past trends into the

future (times se-

ries), Assumption:

“patterns/relationships

will remain during the

forecasting phase.

Combination of statistical and judge-

mental methods; otherwise one

conducts judgement only through

method selection; extrapolation

methods perform suboptimal due to

missing seasonal trend.

Periodic adaptation of a model by us-

ing adaptive models or by retraining

the model from time to time.

Scenarios Analysis of disruptions

of supply

Possible if time steps

involve hours, days and

weeks

Insufficient for short-term disruptions

analysis

Accuracy Criteria Mean absolute error

(MAE), the mean ab-

solute percentage er-

ror (MAPE), normal-

ized mean square error

(NMSE)

The same criteria as for the short-term
or not defined.

Scenarios are rarely evaluated ex post.

Table 5.3: Short-term and long-
term forecasting of gas im-
ports/consumption
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18 Hribar, R., Potočnik, P., Šilc, J., and
Papa, G. (2019). A comparison of
models for forecasting the residential
natural gas demand of an urban area.
Energy, 167:511–522

19 Collinearity implies two variables are
near perfect linear combinations of one
another, while multicollinearity involves
more than two variables.

and were abandoned. Neural networks were used in the full model,
and two reduced models.

The training data set is composed of data from 1980 to 2011, and
the validation data for the forecast ranges from 2012 to 2018, unless
stated otherwise. The Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE) were computed and compared for
each model.

Linear regression

Full Model. The linear regression model should be tried first (Hribar
et al. (2019)).18 The first trial of a multiple linear regression with all
variables shows the correlation coefficient R-squared adjusted at 0.9742
with most variables not significant and most coefficients close to zero.
The variable Heating Degree Days has the highest significance level (p-
value for the t-test) of 0.00421, followed by gas produced in Germany
and electricity production from wind power plants.

The high adjusted R-squared value suggests there might be an is-
sue with collinearity or multicollinearity.19 In the presence of multi-
collinearity, regression estimates become unstable, with higher stan-
dard errors.
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The residuals vs fitted plot appears (figure 5.0.4, a) to have a dis-
tinct nonlinear pattern in the scatter, suggesting that the relationship
between the explanatory variables and the target is non-linear. The
Q-Q (quantile-quantile) plot (5.0.4, right) is non-linear, indicating the
assumption of normality is not met either. The full regression model
performs poorly on the validation data (figure 5.3).
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Figure 5.3: Prediction. Full linear
regression model, 2012-2018
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Figure 5.4: Prediction. Reduced linear
regression model (2012-2018)

PCR is one of the multi-
variate regresion models.

"Multivariate" refers to more than
one time-dependent variable.
20 Each vector component is a
linear combination of all vari-

ables and is orthogonal to
other components in the set.

Reduced Model. The best subsets select which variables should be kept
and which should be dropped from the linear model. A five-vari-
able model with the minimum mean squared error prediction (MSEP)
contains [NG_Prod], [Elect_Gen], [Heat_DE], [Wind], and [Coal_Con].
This model has an adjusted R-squared value of 0.9699 and all coeffi-
cients are statistically significant. Again, the research team checked
diagnostic plots for testing the model’s validity and concluded that
model assumptions are not met. The analysis of variance (ANOVA
test) of the full and reduced model shows the p-value is 0.249, indicat-
ing that the reduced model performs just as well as the full model.

Figure 5.4 suggests better performance although the p-value is large;
for the ANOVA test, there are not large differences between the two
models.

Removing variables correlated with the target. As the next step, vari-
ables [Coal_Con], [Pop], and [NG_Imp] were found to be highly corre-
lated with gas consumption [NG_Con]. These variables were removed
and the linear regression model was refit, resulting in an adjusted R-
squared value of 0.9644 with few variables being significant.

5.0.5 Principal Components Regression

Principal Component Analysis (PCA) converts a set of correlated vari-
ables into a set of linearly independent variables (principal compo-
nents) using orthogonal transformations.20 This technique is widely
used when the number of variables exceeds the number of objects (in
this research, years) or because of collinearities (Mevik and Cederkvist
(2004)). To formulate the problem from the beginning; in multiple
linear regression:

Y = b0 + b1 · x1 + b2 · x2 + ...bx · xx + ε, (5.0.1)

where x are predictor variables, y the prediction and ε error term. The
β (beta coefficient, also called regression weight) is given by

β = (XTX)
−1

XTY (5.0.2)

Because of the above-mentioned reasons, the XTX could be singular.
Such matrix is caused by linear interdependences among the variables
i.e. some variable is a linear combination of other variables causing
problems in a data analysis. Therefore we decompose X into orthogo-
nal scores T and loadings P:

X = TP (5.0.3)
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21 The standard deviation is the square
root of the average of the squared
deviations from the mean.
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Figure 5.5: Cross-validated predictions
for gas consumption data
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Figure 5.6: Example of one of strategy
for finding optimal model dimension:
one-sigma strategy

The first principal component accounts for the largest possi-
ble variance in data, and each following component has the next high-
est variance possible provided that it is orthogonal to the preceding
components. Whereas in the standard linear regression model a de-
pendent variable is regressed on the explanatory variables directly, the
principal components of the explanatory variables function as regres-
sors (independent variables).
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(b) Cross-validated MSEP curves for gas consumption data

Since PCR is sensitive to variable scale, the data were scaled,
i.e. standardised by dividing it by its standard deviation,21 before
finding the principal components. Using PCR, 91.22% of the variation
in the data is accounted for by the first five principal components. The
plots show curves of the cross-validated mean squared error (RMSEP)
in figure 5.0.5 left and the root mean squared error (MSEP) in figure
5.0.5 right. If the Partial Least Squares Regression (PLSR), meaning the
alternative, was used, few principal components would be sufficient
for decreasing the RMSEP error. The PLSR reduces a dimension by
not only summarizing the original predictors but also relating them to
the outcome.

Inspecting a few aspects of the fit, with the first eight princi-
pal components chosen, the prediction plot in figure 5.5 shows cross-
validated predictions versus measured values. The points follow the
target line acceptably, significant anomalies have not beet spotted.

Built-in methods in the pls package enable use of a few methods
for choosing the suitable number of components. As an example, one-
sigma heuristic in figure 5.6 chose the model with the fewest compo-
nents; one standard error away from the overall best model.
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Figure 5.7: Gas Consumption forecast
using PCR with the first 8 principal
components (2012-2018)

22 Examples: back-up power and heat
plants, ability of the cold start for com-

bined heat and power (CHP) plants.
On electricity production company

level, an overprediction can mean
a government penalty and an un-

derprediction an increased cost.
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Figure 5.8: SVM full model, tuned
(2012-2018)

The first eight principal components accounted for ca. 98% of the
data variation; results are shown in figure 5.7 depicting the overpre-
diction of gas consumption.

To review, the primary value of forecasts lies in dealing with uncer-
tainty while taking informative decisions. In the gas sector, decisions
based on underpredictions may put the security of energy supply at
risk, whereas decisions based on forecasts that turn out to be over-
predictions decrease economic efficiency of the energy system. How-
ever, the energy infrastructure is usually built with a high security
and safety margin.22 Thus, while inventing a new accuracy measure
for forecasting results for energy infrastructure, it would make sense
to penalize the underprediction. By this procedure, forecasters would
produce biased forecasts that could be accepted in the forecasting com-
munity. Keane and Runkle (1990) wrote on the asymmetric preferences
over forecast errors:

”If forecasters have differential costs of over- and under-prediction, it could
be rational for them to produce biased forecasts. If we were to find that fore-
casts are biased, it could still be claimed that forecasters were rational if it
could be shown that they had such differential costs.”

Then, the assumption of symmetric loss function, present in stan-
dard regression-based tests would not be appropriate for evaluating
forecasts with asymmetric preferences (Keane and Runkle (1990)).

5.0.6 Support vector machines (SVM)

Classification and regression analysis are two fields for su-
pervised SVM with no requirement for a normality assumption. We
chose a non-linear ε -SVM with radial kernel function and tuning with
the performance measure mean squared error. Kernel function sepa-
rates two classes of data by transforming data into higher dimensional
feature space which enables a linear separation (the kernel trick).

The full model in figure 5.8 predicts almost the same consump-
tion for each year. It underfits as the best.tune function chose a very
low cost parameter C. This is in line with the literature on SVMs;
“when the cost is small, the model will “stiffen” and become less
likely to over-fit (but more likely to underfit) because the contribu-
tion of the squared parameters is proportionally large in the modified
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Larger values of C address points near
the decision boundary. A decision
boundary is the region of a problem
space in which the output label of a
classifier is ambiguous (Hastie et al.
(2009)).
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Figure 5.9: SVM full model, tuned II
(2012-2018)
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Figure 5.11: SVM reduced (2012-2018)

error function” (Kuhn and Johnson (2016)). Generally, this is the result
of data not being scaled or the parameters not being tuned properly.
As we already scaled data, this time we tuned parameters by extend-
ing the list of ranges for the cost parameter to 1000. Larger C leads
to a smaller margin in the separating hyperplane, training errors will
decrease and complexity increase. Obviously, decreasing training er-
rors does not lead to decreasing the testing error (the distinction is
explained in the section on complexity). The results of tuning are seen
in figure 5.9.

The number of variables in the SVM model has been reduced
by choosing variable importance greater than 50 ((NG_Imp, GDP, Coal_-
Con, Wind, Pop, Elect_Gen, Biomass) in figure 5.10.

Importance

Hydro_E
Oil_Con

NG_Price_In
NG_Prod

Nuclear
Cool_DE
Heat_DE

Brent_Price
DE_Oil_Price

Solar
NG_Price_H

NG_Res
Biomass

Elect_Gen
Pop

Wind
Coal_Con

GDP
NG_Imp

0 20 40 60 80 100

Figure 5.10: SVM Variable Importance

Variable importance indicates the most useful predictors for pre-
dicting the response variable in this model context. Though, the most
important variables overall may not be the ones near the top of the
plot. As figure 5.11 displays, overfitting prevents feature selection from
producing more accurate predictions.

In the terminology used in Fallah et al. (2019), variable selection
represents a method whereas the SVM is a model used for the method.
Alternative models for variable selection include step-wise refinement,
correlation-based methods (searching for variables correlated with the
output but not with each other (Fallah et al. (2019)) and others. These
methods partially rely on expert judgement.
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23 Günther, F. and Fritsch, S. (2010).
Neuralnet: Training of neural net-

works. R Journal, 2(1):30–39. https:

//journal.r-project.org/archive/

2010/RJ-2010-006/RJ-2010-006.

pdf Last accessed 2020-12-20

An activation function is a differentiable
function that is used for smoothing

the result of the cross product of the
covariate or neurons and the weights.

24 SSE = 1
2 ∑L

l=1 ∑H
h=1(olh − ylh)

2

25 E = −∑L
l=1 ∑H

h=1(ylh log(olh) +
(1 − ylh)log(1 − olh))

"Sag" algorithm failed to
predict gas consumption.

5.0.7 Artificial neural networks

ANN models are unstructured models enabling forecasting of
any subject without the knowledge of relationships between variables.
However, some working packages have been built in the context of
regression analysis and apply a supervised method, i.e. the known
output is compared to the predicted input in the iterative cycles unless
parameters of the model (called weights in ANN) are optimized, based
on the minimization of the error function. Considering the size of
the data set, and the fact that the goal is to forecast gas demand in
Germany, the neuralnet package was chosen as it is understood as the
extension of regression analysis (a supervised method).

The first step, data normalization, enables the higher popula-
tion of data for the same manifold space. Values for weights usually
start randomly, drawn from a standard normal distribution (Günther
and Fritsch (2010)23) and are adapted according to the chosen algo-
rithm. The activation function transforms the node’s aggregated input
into the second layer. This works uses a non-linear logistic function
f (x) = 1

1+e−u ; the model was also run with the customized softplus
function, approximating rectified linear unit (ReLU) function, how-
ever with less promising results. Two error functions could be used,
either the sum of squared errors SSE24 where l = 1, ..., L indexes the
observations, i.e. given input-output pairs, and h = 1, ..., H the output
nodes, or, if a classification problem exists, cross-entropy E (Günther
and Fritsch (2010)).25

Several algorithms have been tested; the resilient backpropa-
gation with weight backtracking (default) and without backtracking,
as well as "sag" and "slr" inducing the usage of the modified globally
convergent algorithm, authored by Anastasiadis et al. (2005). The lat-
ter further modifies a learning rate, either by associating it with the
smallest absolute partial derivative ("sag") or the smallest learning
rate ("slr").

Figure 5.12 depicts the forecasting using the full model with and
without weight backtracking, figure 5.13 shows prediction with a clas-
sical backpropagation algorithm, used as a benchmark. Figure 5.14

shows results for the further modified algorithm by Anastasiadis et al.
(2005) with the "smaller learning rate." The default choice (resilient
backpropagation with weight backtracking) performs better than back-

https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf
https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf
https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf
https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf
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(a) Prediction (2012-2018), ANN (the resilient backpropagation
with weight backtracking)
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(b) Prediction (2012-2018), ANN (the resilient backpropagation
without weight backtracking) Figure 5.12: The influence of

weight backtracking on prediction
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Figure 5.13: Prediction (2012-
2018), ANN ( backpropagation)

propagation without backtracking; the classical propagation and the
method of Anastasiadis et al. (2005) does not follow the line of true
consumption in these years.

For any identified neural network, its weights follow a mul-
tivariate distribution and their confidence interval can be computed
if the error function equals the negative log-likelihood (Günther and
Fritsch (2010)).

An identified neural network does not include irrelevant neurons
neither in the input layer nor in the hidden layers; i.e. variables with
no effect on the response variable or variables that are a linear com-
binations of other variables shall be excluded. In the next subsection,
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Figure 5.14: Prediction (2012-
2018), ANN (Anastasiadis et al.

(2005)),"Smaller learning rate"
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Figure 5.16: Gas Consumption forecast
using ANN for the reduced model 1

this work presents several methods for models reducing the number
of variables.

Reduced models derived from the best case of the full model.

In the reduced model, two methods of variable importance select a
subset of variables in the neural network. In the Reduced method
1, variables with an importance above 40 are selected (NG_Price_In,
Nuclear, NG_Res, Biomass, GDP, Solar, Cool_DE, NG_Prod, Brent_-
Price, Pop, and Hydro_E), figure 5.15. Gas consumption forecast using
this method is shown in figure 5.16.

Importance
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Solar
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Wind
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Elect_Gen
GDP

DE_Oil_Price
Nuclear
Oil_Con
Biomass

Brent_Price
Hydro_E

NG_Price_H
NG_Prod
Cool_DE

NG_Price_In
Heat_DE

0 20 40 60 80 100

Figure 5.15: Neural network vari-
able importance from method 1

In the Reduced model 2, variable importance was computed using
one of the pre-defined set of functions: random forests of the rfe (re-
cursive feature elimination) function of the package caret. The function
uses the Algorithm 2 to prevent selection bias that could identify a non-
relevant variable as important due to its random correlation with the
outcome. That means, the genuine Algorithm 1 is placed inside of the
layer of resampling, set by default to 10-fold cross validation.
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Figure 5.17: Neural network vari-
able importance from method 2

(random forests), the performance
profile across different subset sizes
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Figure 5.18: Gas Consumption forecast
using ANN for the reduced model 2
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Figure 5.19: Gas Consumption fore-
cast (2012 − 2018) using ANN
for the full model, Approach 1

The output shows that the best subset size was estimated to be
13 predictors (variables) as shown in figure 5.17: (Coal_Con, NG_-
Imp, GDP, Wind, Biomass, Solar, Oil_Con, NG_Price_In, Nuclear, Pop,
Elect_Gen, NG_Price_H, NG_Res) and with three nodes in the hidden
layer (results in figure 5.18).

It appears that the neural network and linear regression models
perform best. However, the analysis also shows that the essential as-
sumptions of linear regression are not met by the data; thus, the next
section proceeds with neural networks.

The previous neural networks work with the training data from
1980− 2011, and predict seven years’ worth of consumption values all
at once. The next approach is to train the model using all previous data
for the given year of interest. To predict for 2016, the model is trained
using data from 1980− 2015; however, to predict for 2017, the model is
trained using data from 1980− 2016. In the first approach we included
only the data up to 2011 to train the model and the true value is not
replaced with the predicted values for years 2012− 2017 (figure 5.19),
but in the second approach the additional already forecast information is
used in the model. The second approach mirrors an actual forecast-
ing method (ex ante - "before the event"), when the true consumption
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Figure 5.20: Gas Consumption fore-
cast (2012 − 2018) using ANN
for the full model, Approach 2

value for the previous year is unknown (figure 5.20). Ex post forecasts
are produced from models that use the information available at time t
other than the output (gas consumption) to forecast the gas consump-
tion in the forecasting horizon t + 1.

Although producing ex ante forecasts is rare in forecasting practice,
they do matter in business and energy planning.

The last experiment produced results for one-year training, i.e.
using only the data from the previous year (figure 5.21). That is, a
full neural network is trained using the previous year data to predict
consumption for the next year. This method performs well, with more
inaccurate outcomes as the forecasting horizon lengthens.

As with the above strategy, to simulate how this would work in a
forecasting scenario, the true values are replaced with the forecasted
value for years 2012-2017. The results are in figure 5.21. Again, when
using the predicted values to forecast, the results are less accurate.
This is especially true for this method, since only the previous year is
used to forecast for the next.
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(a) Prediction (2012− 2018), ANN, Only one-year
data used, true values
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(b) Prediction (2012− 2018), ANN, Only one-year
data used, forecasted values

Figure 5.21: Gas consumption fore-
cast 2012-2018 (One year training with

a) true values b) forecasted values)
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26 As for national legislation: The
German High-Pressure Gas pipeline
Ordinance (GasHDrltgV), for indus-
try rules: the DVGW Set of Rules as
generally recognized Codes of Practice.

Table 5.4 sums some relevant models and compares their MAPE
and RMSE.

Model MAPE RMSE
Persistence model 0.6099 5.7427

Linear regression model, full 0.2549 20.5589

Linear regression model, reduced 0.0411 3.6362
Principal component regression 0.0401 4.5759
SVM, full model, tuned 0.0801 7.6122

SVM, tuned II 0.0826 8.8554

SVM, reduced variables 0.0999 9.3595

ANN, full model 0.0372 3.8002
ANN, reduced model 1 0.0441 5.3436

ANN, reduced model 2 0.0634 5.707

ANN, f. year by year with true values 0.0429 4.9759

ANN, f. year by year with predicted values 0.1123 10.9451

ANN, one year data, previous year, true d. 0.0700 7.6579

ANN, one year data, previous year, predicted d. 0.1068 9.9223

Table 5.4: Summary of values of evalua-
tion criteria for main forecasting models
created. Forecasts in the Persistence
model equal the last observation from
the training data set, Gas consumption
in Germany in 2011. This "no-change"
forecast provides the worst case upper
bound on forecast error.

5.0.8 Intersection gas supply security and forecasting

The concept of energy supply security is multi-faceted with
clear geographic boundaries; the following example presents the idea
in the gas supply context:

• Global level - Outside of the boundaris of energy supply secu-
rity, the gas sector represents a major part of global energy policy for
reducing global warming emissions. Reductions in the production,
transport and consumption of gas contribute directly to the reduc-
tions of global warming emissions by reducing methane and carbon
dioxide emissions. In this context, data scientists analyse data (time
series) on failures of transmission and distribution pipes as well as
the relationship between the rate of failures and the development of
rules set by national legislation or by industry itself.26

• EU-Level- Securing the supply of energy includes efforts to pre-
vent disruptions, or coordination of states’ actions when a disrup-
tion takes place. The revised Regulation no.2017/1938 (EU) defined
the role for ENTSOG (The European Network of Transmission Sys-
tem Operators for Gas) to carry out union-wide simulations of gas
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27 ENTSOG (2017). Secu-
rity of Supply Simulation Re-

port. https://www.entsog.eu/

security-of-supply-simulation

Last accessed 2021-04-14

28 Pulhan, A., Yorucu, V., and Sinan Ev-
can, N. (2020). Global energy market

dynamics and natural gas develop-
ment in the Eastern Mediterranean

region. Utilities Policy, 64:101040

29 Nuttall, W. J. and Manz, D. L.
(2008). A new energy security

paradigm for the twenty-first cen-
tury. Technological Forecasting

and Social Change, 75(8):1247–1259

30 Lindley, D. V. (2001). The phi-
losophy of statistics. Journal of the

Royal Statistical Society: Series D (The
Statistician), 49(3):293–337. https://

doi.org/10.1111/1467-9884.00238

The term used firstly in the meteorolog-
ical context by Lorenz. To cite Robert
M. May: “Alternatively, it may be ob-

served that in the chaotic regime arbi-
trarily close initial conditions can lead

to trajectories which, after a sufficiently
long time, diverge widely. This means

that, even if we have a simple model
in which all the parameters are deter-
mined exactly, long term prediction is

nevertheless impossible.” (May (1976)).

supply. ENTSOG simulates scenarios such as “Disruption of all im-
ports to EU via Ukraine” and suggests measures on the supply and
demand side (ENTSOG (2017).27 Their data sets include a winter
period (October – March) with variables such as average daily de-
mand and exports, average daily production, and storage (working
gas volume and initial filling level).

• Country level- Strategic decisions on the construction of gas
infrastructure, including LNG terminals, form part of a nation’s
energy policy. In the last decade, researchers have observed the
growing importance of global market dynamics at the expense of
geopolitics (Pulhan et al. (2020)).28 Whereas in the past, researchers
worked with notions such as scarcity of fossil fuels, oil supply peak
and the goal of securing access to resources, current scenarios are
based on the peak in demand for fossil fuels, probably taking place
before the peak in supply (Nuttall and Manz (2008)).29 Therefore,
importing countries and supranational organizations shall consider
revising and relaxing their geopolitical strategies. Countries that
previously imported only are now seeking routes for exporting, the
most prominent example being the US exporting liquefied natural
gas. In Germany, although no LNG terminal is in operation now,
several facilities are planned.

• Urban level - This is mainly discussed in academia. There are a
few concepts of autarky for German cities such as Hamburg, Berlin,
or Munich.

Lindley (2001)30
in the Philosophy of Statistics states “it is

valuable to think about the relationships between the small world se-
lected and the larger worlds that contain it.”. The small world is defined
by the data set size, chosen variables, and forecasting models. It re-
calls a mental picture of moving in one direction on a 20-cm-wide path
with no option of widening this path for ever-growing feet (i.e. ever
increasing complexity in a world or our increasing understanding of
this complexity) but with a meticulous survey of anything found on
this path. This process is supposed to enable the prediction of next
steps. This is the best known way currently and it produces forecasts.
The larger world is composed of the energy sector of a country, the
economy of a country and the world economy.

Suppose data is available for all situations related to one sub-
ject to forecast, such as the population of a single country, electricity

https://www.entsog.eu/security-of-supply-simulation
https://www.entsog.eu/security-of-supply-simulation
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1111/1467-9884.00238
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31 Smil, V. (2000). Perils of long-range
energy forecasting. Technological
Forecasting and Social Change, 65(3):251–
264

load, or future conflict. This starting statement is already problem-
atic as related to could be expressed only as a spectrum and even the
smallest “amount” of relation would still count bringing a change in
the outcome, as observed in the butterfly effect phenomenon. Thus,
boundaries on what to include are blurred. Beside other factors, the
subject to forecast (i.e. energy demand for a respective country) de-
pends on the world economy, migration, changing lifestyles, and tech-
nological change, to name a few. The speed of the two latter factors
is country-specific, as well as the final type of use of a commodity. If
relations among them are incomprehensible for including them into
one single model, an expert judgement remains the only option. Still,
"models" behind expert judgement are a black box, again and as Smil
(2000)31 proved it - expert judgement inclines to linear thinking. If
two to five observations are available, experts tend to see patterns in
the data (Goodwin (2020)) expecting current world trends to continue
rather than any rapid disruptions.
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Most hydrogen in Germany is
produced from natural gas, only
7% (3.85TWh) of demand is met

via electrolysis (Ministry for Eco-
nomic Affairs and Energy (2020).

32 In the simulation of Grüger et al.
(2019) hydrogen production costs

were reduced by up to 9.2 per
cent and wind energy utilization

increased by up to 19 per cent.
33 Grüger, F., Hoch, O., Hartmann, J.,
Robinius, M., and Stolten, D. (2019).

Optimized electrolyzer operation:
Employing forecasts of wind energy
availability, hydrogen demand, and

electricity prices. International Journal
of Hydrogen Energy, 44(9):4387–4397

34 All shares refer to 2017. Source: In-
ternational Energy Agency (2020).

5.1 Implications for the energy sector

5.1.1 Hydrogen

There are multiple reasons for increasing hydrogen’s share to cover
energy demand in Germany and worldwide:

• to replace fossil fuels with synthetic fuel produced in power elec-
trolysers that split water into its components, powered by electricity
produced by renewable or low carbon dioxide emission sources.
This would avoid costs in electricity infrastructure in the long term
and stabilize electricity grids in the short term as hydrogen is pro-
duced when the spot price of electricity is low,32 which indicates a
higher share of electricity produced by renewable energy (Grüger
et al. (2019).33

• to increase self-sufficiency of the energy sector.

Technologies for utilizing hydrogen have been developed for
decades; the issue of right timing or maturing the idea have been
assumed as reasons for their late deployment in the energy system.
Breaking down segments of gas and hydrogen consumption brings to
light issues with their mutual interchangeability. The highest segment
in consuming gas in Germany is industry (30.6%), followed by the res-
idential sector (28.8%), heat and power generation (24.4%), commercial
(13.8%), other energy (1.8%) and transport (0.6%).34 The total hydro-
gen consumption amounts to ca. 55 TWh with the highest share of
demand in material production processes in industry and production
of chemicals (Ministry for Economic Affairs and Energy (2020)).

Estimations of hydrogen use in the energy sector

Before 2030, none of the German scenarios in Jensterle et al. (2019)
assume extensive use of hydrogen. Some scenarios expect hydrogen
demand at 133 PJ (36.94 TWh) in transport and industry. As for 2050,
German scenarios count on the demand ranging from 300 to 600 PJ
(83.3 to 166.7 TWh).

By 2030, another estimation counts on increasing hydrogen demand
by 10 TWh (Ministry for Economic Affairs and Energy (2020)) which
does not automatically decrease the amount of natural gas used. Fur-
thermore, planned increase of hydrogen in the transport sector does
not impact overall gas consumption.
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35 Hydrogen will be utilized in all
energy sectors: electricity production,
transport, heating and industry.

The second option is to transport hy-
drogen through newly-built hydrogen
pipelines.
36 Altfeld, K. and Pinchbeck, D. (2013).
Admissible hydrogen concentrations in
natural gas systems. Gas for Energy, (03).
https://www.gerg.eu/wp-content/

uploads/2019/10/HIPS_Final-Report.

pdf Last accessed 2020-12-19

37 The Wobbe Index is the measure for
the interchangeability of different fuel
gasses.
38 The methane number describes the
knock behaviour of fuel gas in internal
combustion engines.

39 BP (2020). BP Statistical Re-
view of World Energy. https:

//www.bp.com/content/dam/bp/

business-sites/en/global/

corporate/pdfs/energy-economics/

statistical-review/

bp-stats-review-2020-natural-gas.

pdf Last accessed 2020-12-21

40 Nymoen Strategieberatung (2016).
Strategische Marktprognose Erdgas.
https://zukunft.erdgas.info/

fileadmin/public/PDF/Politischer_

Rahmen/marktprognose-erdgas-2016.

pdf Last accessed 2019-12-27

The IEA reports typical gross calorific
(higher) heating values of natural gas
in MJ/cubic metres. Russia: 38.23 MJ,
Norway 39.24 MJ, UK 39.71.The heating
value of hydrogen is 12.7 MJ per cubic
metre).

Until now, natural gas has been considered to be transported via
pipeline infrastructure in Germany and the whole gas consumption
has been related to it. To decrease the carbon footprint of gas trans-
ported via pipelines and, thus, save the investment in infrastructure,
hydrogen is considered as the next energy carrier to fulfill energy de-
mand.35 The first option discussed is injecting hydrogen into the pipeline
system, bearing in mind limits in concentration due to technical con-
straints.

Altfeld and Pinchbeck (2013)36 see a mixture up to 10 vol.% as not
critical in most cases. In terms of combustion parameters, 10 vol.%
of hydrogen decreases the Wobbe Index37 by 3%, as it also decreases
the methane number38 and increases turbulent flame speed. Under-
ground storage (bacterial growth), CNG steel tanks (interaction be-
tween hydrogen and steel), gas engines (increased combustion and
end-gas temperature - higher NOx emissions) and gas turbines (no ex-
tra margin for variation in a fuel’s properties) have been identified as
sensitive components of the gas system in relation to higher blending
of hydrogen with gas (Altfeld and Pinchbeck (2013)).

5.1.2 Publicly available estimations of gas consumption in Germany

Natural gas consumption at the state level is reported either in
billion cubic metres or exo-joules (both in the BP (2020)39) or in the
energy unit TWh (Nymoen Strategieberatung (2016)40. For the con-
version for past data, one needs to access the share of L-Gas with the
heating value at 8.9 kWh/cubic metre and of H-Gas with the heating
value of 11.1 kWh/cubic metre. Based on available information on
the domestic production in Germany (L-Gas) and imports from the
Netherlands (L-Gas), Norway (H-Gas) and other countries (mostly H-
Gas) in 2016, shares have been calculated at 28% for L-Gas and 72% for
H-Gas. The difference in 3.7% points rather to different methodologies
used in energy statistics. As for 2030, all gas used will be H-Gas.

Nymoen Strategieberatung (2016) developed the scenario

for final energy consumption until 2035 based on the rise of the GDP,
population, forecasts for energy carriers, policy measures as well as
on the forecasts of carbon dioxide emission certificates. Figure 5.22

shows scenarios for gas consumption development. Gas consumption
(in primary energy) was supposed to decrease by 38 TWh, or 5%, from
2015 to 2020 due to climate protection measures (Nymoen Strategieber-
atung (2016) which the latest gas statistics do not confirm.

https://www.gerg.eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf
https://www.gerg.eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf
https://www.gerg.eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://zukunft.erdgas.info/fileadmin/public/PDF/Politischer_Rahmen/marktprognose-erdgas-2016.pdf
https://zukunft.erdgas.info/fileadmin/public/PDF/Politischer_Rahmen/marktprognose-erdgas-2016.pdf
https://zukunft.erdgas.info/fileadmin/public/PDF/Politischer_Rahmen/marktprognose-erdgas-2016.pdf
https://zukunft.erdgas.info/fileadmin/public/PDF/Politischer_Rahmen/marktprognose-erdgas-2016.pdf
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Figure 5.22: Market prognosis for
gas consumption. Source: Nymoen
Strategieberatung (2016)

41 A third option, hydrogen chem-
ically bonded with metal hydrides

or liquid organic hydrogen carri-
ers has not entered the market, yet.

Federal Ministry for Economic Affairs and Energy (2019)
expects a slight to medium-sized decline in gas consumption by 2029,
based on the Network Development Plans for Gas Infrastructure. Some
German regions will experience an increase in gas consumption; there-
fore gas infrastructure will continue to expand and became more com-
plex due to injection of synthetic methane, bio-methane and hydrogen.

Considering the ambitious goals of the German government in de-
ployment of hydrogen, there are two main options41 for infrastructure:

• injection of hydrogen into gas infrastructure

• building separate hydrogen pipelines or the conversion of parts of
the gas infrastructure into hydrogen infrastructure.

Finally, possible paths for German gas imports and gas consump-
tion are presented below. These examples demonstrate one of a few
forecasting methods for forecasts into the future, without the possibility
of computing accuracy measures. Although paths resemble scenarios
in modelling analytical work of EIA or IEA, they were simulated with
random value of error terms.
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Figure 5.23: Paths for German gas im-
ports for next 25 years. Nnetar func-

tion (non-linear autoregressive model)
uses lagged values of the time se-

ries (Hyndman (2017)). Weights in
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Figure 5.24: Nine paths for gas
consumption in Germany. Al-

though paths resemble scenarios
in modelling analytical work of

EIA or IEA, they were simulated
with random value of error terms.





1 The simple median or the mean of
a few experts’ forecasts would be in
line with the outcome of the research
paper of Mannes et al. (2014) titled
“The Wisdom of Select Crowds”. In
current trends, forecast combinations
make use of their work by considering
single models as expert opinions.

In the IR field, after decades of efforts
to use quantitative methods, expert
analysis of events still dominates
among methods.

2 Commercial forecasting tools have
been mentioned but not directly used in
these chapters.
3 Beyca, O. F., Ervural, B. C., Tatoglu,
E., Ozuyar, P. G., and Zaim, S. (2019).
Using machine learning tools for
forecasting natural gas consumption
in the province of Istanbul. Energy
Economics, 80:937–949

4 Akpinar, M. and Yumusak, N. (2016).
Year ahead demand forecast of city
natural gas using seasonal time series
methods. Energies, 9(9):727

6
Conclusion

The goal of this work was to examine possibilities and trends in
gas forecasting while understanding the principles behind commonly
used models. First, forecasts based only on expert opinions prevailed.1

Reviewing the research questions

• RQ1 What are current approaches to predict gas imports and gas consump-
tion at the country level? What is the impact of the domain knowledge of
the gas sector on forecasting?

Gas imports have been rarely forecast, with reasons for this listed
in chapter 4. Methods for forecasting gas consumption are listed
and explained in chapter 3 with modelling exercises in chapters 4
and 5 for gas imports and consumption, respectively. These exer-
cises provide insights into the current possibilities of forecasting
packages2 and are comparable with studies conducted by Beyca
et al. (2019)3 and Akpinar and Yumusak (2016).4 Previous stud-
ies served as an inspiration in terms of searching for suitable input
variables and measures of accuracy. The transferability of results of
any study is low due to the unique setup of 1) data set (information
sample of the forecasted process), 2) choice of models, 3) goal of a
study, the length of a forecasting horizon and scope (company, city,
state, global level) of forecasting.

Domain knowledge applies while simulating gas flow in nodes
of a pipeline system and prior to modelling in the process of construc-
tion of a data set. Two data sets were necessary as short-term and
long-term forecasting require specific input variables, the latter one
including GDP, population, and price of alternative fuels, to name a
few. For the long-term scenarios, some models in chapter 5 include
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5 This work complies with most
of the golden rules in the Fore-
casting checklist, introduced by

Armstrong and Green (2017)
but combination of forecasts.

Changes in population are small;
the expected gas production in

Germany up to 2030 is known in
FNB Gas (2019), source: BVEG, e.V.

6 Standard commercial software does
not account for this higher uncer-
tainty and keeps the width of the
prediction interval the same over

the periods (i.e. months, years).

7 "a pattern is simple if it can be gener-
ated by a short program or if it can be
compressed, which essentially means

that the pattern has some "regular-
ity" in it." (Li and Abu-Mostafa (2006))

the simulation of the newly gathered data to the model (ANN, one
year data, previous year, true data).

The final size of both data sets depended on 1) fulfilling min-
imum requirements of a data set for a few models, 2) including all
relevant variables if data was available from reliable sources, and 3)
the selection of a starting point and the last known observations
for time series without missing values. No forecasts have been
adjusted as this would introduce intentional bias (Armstrong and
Green (2017)5.

Why were not more ex ante forecasts produced? The fore-
cast error would increase dramatically due to the uncertainty of
the future values of inputs such as population and gas production
in Germany (lower risk) or weather (higher uncertainty), and this
would make prediction intervals too wide to make any statement
about the future imports or consumption.6

• RQ2 Is there any relation between the complexity of the data set, fore-
casting models and the process modelled (gas flows) to the accuracy of
forecasts?

Section 3.3 discusses various complexity criteria. In accordance
with the literature on data complexity7, regularity in data sets has
been chosen as a measure for computing complexity of data sets
(Sample Entropy, Approximate Entropy). The Approximate Entropy
calculates the complexity of the process (model) whereas derived
versions of Shannon entropy (information theory) calculate the com-
plexity of a measure.

As for the complexity of forecasting models, either the
computational complexity (computing time necessary for a model
to complete the task of forecasting), or definition based on under-
standing the model by uses are taken into account. For the lat-
ter definition, naïve or no-change model without seasonal adjust-
ment, seasonal adjustment, single-exponential smoothing, Holt’s
exponential smoothing,dampened exponential smoothing and sim-
ple average of the exponential smoothing forecasts are regarded as
simple (Green and Armstrong (2015)).

Regarding complex processes to be modelled, in physics,
any phenomenon is too complex and therefore physicists work with
simplifications, set boundaries, and specified conditions until the
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8 For instance, searching for the input-
output relationship present in the
training data set as noted in Li and
Abu-Mostafa (2006)).

9 Makridakis, S., Hyndman, R. J., and
Petropoulos, F. (2020). Forecasting
in social settings: The state of the art.
International Journal of Forecasting,
36(1):15–28. https://doi.org/10.1016/
j.ijforecast.2019.05.011

phenomenon is computable. Present trends in forecasting have
shown the opposite trend, as more complex models are introduced
to probe new ways to forecast. Models of higher complexity go
hand in hand with the complexity of modelled processes themselves
(e.g. electricity production in hydro power plants).

Finally, deep inspection of the relation of complexity towards the
data set8, models and processes modelled would require avoiding
the connection to energy and forecasting as these relations are sup-
posed to be valid in general terms.

6.1 Closing thoughts

• More accurate forecasts provide marginal contributions for the gas
sector or for energy policy, if they are neglected while making deci-
sions at the gas company or state level. Ministries give assignments
to institutes to model situations as if climate goals were achieved
by 2050. These aspirational forecasts have to be distinguished from
forecasting based on data. Second, policy makers, as most people,
prefer a narrower interval, even without the true value included,
than the wider interval, which they perceive as too wide (Yaniv
and Foster (1995)). In comparison to finely grained judgements, im-
precise judgements are less informative and less attention is paid
to them from experts outside the forecasting community; however,
they are likely to be more accurate.

• Contextual information on commodities such as oil, gas or solar tech-
nology is strictly bound to the existing available infrastructure and
its capacity factors. In turn, this enables the final reality-check of
forecasts.

• Forecasting, especially with ML methods, is more vital for higher
frequencies; higher than hourly values approaching even real-time
data forecasting. By this, gas demand forecasting at the state level
cannot reap the advantages of new trends as data of higher fre-
quencies is available only to in-house experts in charge of their
market area. Data sets used in chapters 4 and 5 contain low resolu-
tion data (monthly, yearly) which can decrease accuracy of results
(Hong et al. (2014)). The sample (every data set represents just a
sample of information on the process) is insufficient for building an
appropriate model, therefore features of sophisticated models can-
not be utilized to their full extent. Therefore, explanatory variables
as well as contextual information was included. In their latest pa-
per, Makridakis et al. (2020)9 conclude explanatory variables can
be useful if there are accurate forecasts of the explanatory variables

https://doi.org/10.1016/j.ijforecast.2019.05.011
https://doi.org/10.1016/j.ijforecast.2019.05.011
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10 In classical forecasting problems, re-
searchers compare models as presented

in chapters 4 and 5, based on the ac-
curacy measure(s) of their choice, and

identify the model that outperforms
other models. However, no model can
show outstanding performance for all

data sets and forecasting problems.

available (e.g. in the case of German gas production) and when as-
sumed relationships between an output and explanatory variables
probably continue into the future. The latter condition is met for
weather forecasts. In electricity load forecasting, the strong corre-
lation between the temperature and load is widely accepted in the
field. However, this is valid only for the US or other countries in
warm climates with widespread air-conditioning use, meaning an
extensive use of electric heating and/or cooling units. Therefore,
in energy forecasting, data sets and assumed relationships between a
forecast and explanatory variables must be country-specific.

The tremendous number of studies on (electricity) load forecast-
ing, hydro power forecasting, and political forecasting shows an im-
perfect transferability of methods10 and the wish to test current mod-
els from new perspectives. Amendments take a form of stacking and
shuffling data sets from various countries for forecasting electricity
prices, direct forecasting of peak load from data on temperature, etc.
Moreover, full-time forecasters prefer producing synthetic data sets to
control the quality of probabilistic forecasts (bias, error, variance, co-
variance) and enhance their understanding of a models’ performances.

6.2 The value of forecasting

This work has not touched environmental aspects of gas use, es-
pecially flaring, methane emissions during the distribution, boil-off
during the LNG transport and emissions from gas combustion. Al-
though constraints on emissions are built-in in constructed energy sce-
narios, they matter in developed countries only. Rather, this research
drew attention to assumptions behind forecasting and modelling, which
should serve a better understanding of their products (i.e. forecasts,
scenarios) and, thus, using them with caution in energy planning.

Business forecasting measures value in monetary units and
poses the question of "what is the actual economic value of forecasts?"
Forecasting in the environmental sciences does not provide straight-
forward benefits; it does not save the environment nor can it prevent
harmful acts due to inefficient energy supply planning. However, an
improved ability to accurately anticipate energy consumption, emis-
sions, or inflation rates, would benefit decision-making. For this to
happen, ever improving methodologies for the anticipation must be
applied.

Forecasts assist investment, trading decisions and policies on
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energy security. Although all forecasts are incorrect, it is better to
plan actions now based on incorrect forecasts than to plan without
forecasts at all. Post 2030, it will not be macro-economic variables
(e.g. GDP or, population) that will determine future gas demand in
Germany, but rather policies of phasing-out natural methane-based
gases in Germany as well as in neighbouring countries.
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ŷt predicted value. 35



energy forecasting. focus: natural gas 128

n number of data points. 35, 37, 48

p the number of estimated parameters in the model. 47, 51, 66

rt relative error. 35

r Pearson’s correlation coefficient. 36

τ training data set. 34

x predictor variable, an observation in the data set. 45, 100

yt actual value. 35

y prediction, outcome, output, target variable. 34, 45, 48, 65, 100



Appendices





In
pu

t
U

ni
t

D
es

cr
ip

ti
on

So
ur

ce

H
ea

ti
ng

D
eg

re
e

D
ay

s
-

G
er

m
an

y
Eu

ro
st

at
C

oo
lin

g
D

eg
re

e
D

ay
s

-
G

er
m

an
y

Eu
ro

st
at

Im
po

rt
ed

G
as

T
J

BA
FA

W
eb

si
te

:h
t
t
p
s
:
/
/
w
w
w
.
b
a
f
a
.
d
e

C
ro

ss
-b

or
de

r
Pr

ic
e

EU
R

/T
J

BA
FA

h
t
t
p
s
:
/
/
w
w
w
.
b
a
f
a
.
d
e

G
as

co
ns

um
pt

io
n

fo
r

El
ec

tr
ic

it
y

Pr
od

uc
ti

on
G

J
G

er
m

an
y

D
es

ta
ti

s.
de

,
G

en
es

is
-T

ab
el

le
4
3
3
1
1
-0

0
0
2
,

h
t
t
p
s
:
/
/
w
w
w
-
g
e
n
e
s
i
s
.

d
e
s
t
a
t
i
s
.
d
e

D
om

es
ti

c
N

at
ur

al
G

as
Pr

od
uc

ti
on

TJ
W

.E
.G

.W
ir

ts
ch

af
ts

ve
rb

an
d

Er
dö

l-
un

d
Er

dg
as

ge
w

in
nu

ng
e.

V.

G
as

-
Ex

po
rt

TJ
C

on
si

de
re

d
bu

tE
x-

cl
ud

ed
BA

FA

G
as

St
or

ag
e

Ba
la

nc
e

TJ
BA

FA
Ta

bl
e

1
:D

at
a

ke
y

fo
r

G
er

m
an

ga
s

im
po

rt
s

https://www.bafa.de
https://www.bafa.de
https://www-genesis.destatis.de
https://www-genesis.destatis.de


energy forecasting. focus: natural gas 132

Ta
bl

e
2

:D
at

a
ke

y
fo

r
G

er
m

an
ga

s
co

ns
um

pt
io

n

V
ar

ia
bl

e
N

am
e

M
ea

ni
ng

U
ni

t
So

ur
ce

an
d

N
ot

es
Ye

ar
Ye

ar
of

da
ta

co
lle

ct
io

n;
de

-
no

te
s

a
si

ng
le

ob
se

rv
at

io
n

N
um

er
ic

al

G
D

P
G

ro
ss

do
m

es
-

ti
c

pr
od

uc
t

(G
er

m
an

y)
,

co
ns

ta
nt

pr
ic

es

Bi
lli

on
s

of
N

at
io

na
l

C
ur

re
nc

y
(E

ur
os

)
IM

F,
W

or
ld

Ec
on

om
ic

O
ut

lo
ok

D
at

ab
as

e
(W

EO
),

or
ig

in
al

so
ur

ce
:

N
at

io
na

l
St

at
is

ti
cs

O
ffi

ce
.

N
ot

es
:

D
at

a
un

ti
l

1
9

9
0

re
fe

rs
to

G
er

m
an

fe
de

ra
ti

on
on

ly
(W

es
t

G
er

m
an

y)
.

Ba
se

ye
ar

:
2
0
1
0
.

Th
e

G
D

P
de

fla
to

r
in

th
e

ba
se

ye
ar

is
no

t
ex

ac
tl

y
eq

ua
l

to
1
0
0

si
nc

e
it

is
co

m
pu

te
d

ba
se

d
on

th
e

qu
ar

te
rl

y
re

al
G

D
P

da
ta

,w
hi

ch
ha

ve
be

en
ad

ju
st

ed
fo

r
se

as
on

al
an

d
ca

le
nd

ar
ef

fe
ct

s.
Ty

pe
:E

xp
en

di
tu

re
-b

as
ed

G
D

P.
Po

p
Po

pu
la

ti
on

of
G

er
m

an
y

M
ill

io
ns

of
Pe

rs
on

s
IM

F,
W

EO
,

A
pr

il
2

0
1

9
,

or
ig

in
al

so
ur

ce
:

N
at

io
na

l
St

at
is

ti
cs

O
ffi

ce
.

La
te

st
ac

tu
al

da
ta

:
2
0
1
8

N
ot

es
:

D
at

a
un

ti
l

1
9

9
0

re
fe

rs
to

G
er

m
an

fe
de

ra
ti

on
on

ly
(W

es
t

G
er

m
an

y)
.

D
at

a
fr

om
1
9
9
1

re
fe

r
to

U
ni

te
d

G
er

m
an

y.
D

at
a

la
st

up
da

te
d:

0
3
/2

0
1
9

N
G

_R
es

Pr
ov

ed
N

at
-

ur
al

ga
s

re
se

rv
es

(G
er

m
an

y)

Tr
ill

io
n

C
ub

ic
M

et
er

s
BP

fr
om

th
e

D
at

a
pr

od
uc

t:
En

er
gy

Pr
od

uc
ti

on
an

d
C

on
su

m
pt

io
n.

Pe
rm

al
in

k:
h
t
t
p
s
:
/
/
w
w
w
.

q
u
a
n
d
l
.
c
o
m
/
d
a
t
a
/
B
P
/
G
A
S
_
R
E
S
E
R
V
E
S
_
D
E
U

Q
ua

nd
l

C
od

e:
BP

/G
A

S_
R

ES
ER

V
ES

_D
EU

D
es

cr
ip

-
ti

on
:

Pr
ov

ed
re

se
rv

es
of

na
tu

ra
l

ga
s

-
G

en
er

al
ly

ta
ke

n
to

be
th

os
e

qu
an

ti
ti

es
th

at
ge

ol
og

ic
al

an
d

en
gi

ne
er

in
g

in
fo

rm
at

io
n

in
di

ca
te

s
w

it
h

re
as

on
ab

le
ce

rt
ai

nt
y

ca
n

be
re

co
ve

re
d

in
th

e
fu

-
tu

re
fr

om
kn

ow
n

re
se

rv
oi

rs
un

de
r

ex
is

ti
ng

ec
on

om
ic

an
d

op
er

at
in

g
co

nd
it

io
ns

.F
or

th
e

2
0
1
8
,

da
ta

ar
e

ta
ke

n
fr

om
:

LB
EG

,
La

nd
es

am
t

fü
r

Be
rg

ba
u,

En
er

gi
e

un
d

G
eo

lo
gi

e.
O

il
an

d
ga

s
re

se
rv

es
in

G
er

m
an

y
on

1
st

Ja
nu

ar
y

2
0

1
9

(I
n

G
er

m
an

:
Er

dö
l-

un
d

Er
dg

as
re

se
rv

en
in

de
r

Bu
nd

es
re

pu
bl

ik
D

eu
ts

ch
la

nd
am

1
.

Ja
nu

ar
2
0
1
9
,

Ta
b.

5
:

R
oh

ga
sr

es
er

ve
n

am
1
.1

.2
0
1
9

na
ch

Fö
rd

er
ge

bi
et

en
(i

n
M

rd
.

m
³(

V
n)

),
Li

nk
:

w
w

w
.n

ie
de

rs
ac

hs
en

.d
e

La
st

ch
ec

k:
3
rd

Ju
ly

2
0
2
0
.

O
bs

er
va

ti
on

s
fr

om
th

e
fir

st
so

ur
ce

an
d

th
e

se
co

nd
on

e
fo

r
2
0
1
8

is
eq

ua
l.

C
on

ti
nu

ed
on

ne
xt

pa
ge

https://www.quandl.com/data/BP/GAS_RESERVES_DEU
https://www.quandl.com/data/BP/GAS_RESERVES_DEU


energy forecasting. focus: natural gas 133

Ta
bl

e
2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

V
ar

ia
bl

e
N

am
e

M
ea

ni
ng

U
ni

t
So

ur
ce

an
d

N
ot

es
N

G
_P

ro
d

N
G

pr
o-

du
ct

io
n

(G
er

m
an

y)

Bi
lli

on
C

ub
ic

M
et

er
s

BP
fr

om
th

e
D

at
a

pr
od

uc
t:

En
er

gy
Pr

od
uc

ti
on

an
d

C
on

su
m

pt
io

n.
pe

rm
al

in
k:

h
t
t
p
s
:
/
/
w
w
w
.

q
u
a
n
d
l
.
c
o
m
/
d
a
t
a
/
B
P
/
G
A
S
_
P
R
O
D
_
D
E
U

Q
ua

nd
lC

od
e:

BP
/G

A
S_

PR
O

D
_D

EU
.A

s
fa

r
as

po
ss

ib
le

,
th

e
da

ta
re

pr
es

en
ts

st
an

da
rd

cu
bi

c
m

et
re

s
m

ea
su

re
d

at
15

C
an

d
10

13
m

ill
ib

ar
(m

ba
r)

;a
s

th
ey

ar
e

de
ri

ve
d

di
re

ct
ly

fr
om

to
nn

es
of

oi
le

qu
iv

al
en

tu
si

ng
an

av
er

ag
e

co
nv

er
si

on
fa

ct
or

,t
he

y
do

no
t

ne
ce

ss
ar

ily
eq

ua
te

w
it

h
ga

s
vo

lu
m

es
ex

pr
es

se
d

in
sp

ec
ifi

c
na

ti
on

al
te

rm
s.

Br
en

t_
Pr

ic
e

A
ve

ra
ge

an
-

nu
al

Br
en

t
cr

ud
e

oi
l

U
.S

.d
ol

la
rs

/b
ar

re
l

O
PE

C
;

IE
A

.
Pu

bl
is

he
d

by
:

M
W

V.
de

,
ID

2
6
2
8
6
0
,

Ju
ne

2
0
1
9
.

Li
nk

:
h
t
t
p
s
:
/
/
w
w
w
.
s
t
a
t
i
s
t
a
.

c
o
m
/
s
t
a
t
i
s
t
i
c
s
/
2
6
2
8
6
0
/
u
k
-
b
r
e
n
t
-
c
r
u
d
e
-
o
i
l
-
p
r
i
c
e
-
c
h
a
n
g
e
s
-
s
i
n
c
e
-
1
9
7
6
/

O
ri

gi
na

l
so

ur
ce

:m
w

v.
de

,I
D

2
6

2
8

6
0

D
E_

O
il_

Pr
ic

e
Pr

ic
e

of
oi

l
fo

r
G

er
m

an
y

(W
es

te
rn

,
ch

an
ge

to
w

ho
le

in
1

9
9

9
)

Eu
ro

s
pe

r
H

ec
to

lit
er

w
w

w
.d

es
ta

ti
s.

de
.P

ri
ce

fo
r

lig
ht

he
at

in
g

oi
l.

In
G

er
m

an
:P

re
is

e.
Er

ze
ug

er
pr

ei
se

ge
w

er
bl

ic
he

r
Pr

od
uk

te
(I

nl
an

da
bs

at
z)

.
Pr

ei
se

fü
r

le
ic

ht
es

H
ei

zö
l,

M
ot

or
en

be
nz

in
un

d
D

ie
se

lk
ra

ft
st

of
f.

La
ng

e
R

ei
he

n
ab

1
9

7
6

bi
s

M
ai

2
0

1
9

,A
rt

ik
el

nu
m

m
er

:5
6
1
2
4
0
2
1
9
0
5
4

El
ec

t_
G

en
El

ec
tr

ic
it

y
ge

ne
ra

ti
on

(G
er

m
an

y)

T
W

h
BP

fr
om

th
e

D
at

a
pr

od
uc

t:
En

er
gy

Pr
od

uc
ti

on
an

d
C

on
su

m
pt

io
n.

Pe
rm

al
in

k:
h
t
t
p
s
:
/
/
w
w
w
.
q
u
a
n
d
l
.
c
o
m
/
d
a
t
a
/
B
P
/
E
L
E
C
_
G
E
N
_
D
E
U

Q
ua

nd
l

co
de

:
BP

/E
LE

C
_G

EN
_-

D
E

Ba
se

d
on

th
e

gr
os

s
ou

tp
ut

.V
al

ue
fo

r
20

18
:

h
t
t
p
s
:
/
/
w
w
w
.
u
m
w
e
l
t
b
u
n
d
e
s
a
m
t
.

d
e
/
s
i
t
e
s
/
_
d
e
f
a
u
l
t
/
f
i
l
e
s
/
m
e
d
i
e
n
/
3
8
4
/
b
i
l
d
e
r
/
d
a
t
e
i
e
n
/
2
_
d
a
t
e
n
t
a
b
e
l
l
e
-
z
u
r
-
a
b
b
_

e
n
t
w
-
b
r
u
t
t
o
s
t
r
o
m
e
r
z
e
u
g
u
n
g
-
v
e
r
b
r
a
u
c
h
_
2
0
1
9
-
0
2
-
2
6
.
p
d
f

N
G

_I
m

p
N

at
ur

al
ga

s
im

po
rt

s
T

J
In

te
rn

at
io

na
lE

ne
rg

y
A

ge
nc

y,
fr

om
1

9
9

9
on

:B
un

de
sa

m
tf

ür
W

ir
ts

ch
af

tu
nd

A
us

fu
hr

ko
nt

ro
lle

(B
A

FA
)

H
ea

t_
D

E
N

um
be

r
of

he
at

in
g

de
-

gr
ee

da
ys

in
G

er
m

an
y

N
um

er
ic

al
EU

R
O

ST
A

T.
A

cc
es

se
d

on
3

0
th

Ju
ne

2
0

1
9
.U

nt
il

1
9
9
0

–
BR

D
.

C
on

ti
nu

ed
on

ne
xt

pa
ge

https://www.quandl.com/data/BP/GAS_PROD_DEU
https://www.quandl.com/data/BP/GAS_PROD_DEU
https://www.statista.com/statistics/262860/uk-brent-crude-oil-price-changes-since-1976/
https://www.statista.com/statistics/262860/uk-brent-crude-oil-price-changes-since-1976/
https://www.quandl.com/data/BP/ELEC_GEN_DEU
https://www.umweltbundesamt.de/sites/_default/files/medien/384/bilder/dateien/2_datentabelle-zur-abb_entw-bruttostromerzeugung-verbrauch_2019-02-26.pdf
https://www.umweltbundesamt.de/sites/_default/files/medien/384/bilder/dateien/2_datentabelle-zur-abb_entw-bruttostromerzeugung-verbrauch_2019-02-26.pdf
https://www.umweltbundesamt.de/sites/_default/files/medien/384/bilder/dateien/2_datentabelle-zur-abb_entw-bruttostromerzeugung-verbrauch_2019-02-26.pdf


energy forecasting. focus: natural gas 134

Ta
bl

e
2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

V
ar

ia
bl

e
N

am
e

M
ea

ni
ng

U
ni

t
So

ur
ce

an
d

N
ot

es
C

oo
l_

D
E

N
um

be
r

of
co

ol
in

g
de

-
gr

ee
da

ys
in

G
er

m
an

y

N
um

er
ic

al
EU

R
O

ST
A

T.
A

cc
es

se
d

on
3

0
th

Ju
ne

2
0

1
9
.U

nt
il

1
9
9
0
-B

R
D

.

A
vg

_P
ri

ce
_I

n
A

ve
ra

ge
pr

ic
e

of
N

G
(i

nd
us

tr
y)

(G
er

m
an

y)

C
en

t/
kW

h
w

w
w

.d
es

ta
ti

s.
de

.
Ex

cl
ud

ed
:

V
al

ue
-a

dd
ed

ta
x

(V
A

T)
In

cl
ud

ed
:

us
ag

e
ch

ar
ge

s
(i

n
G

er
m

an
:

N
ut

zu
ng

se
nt

ge
lt

e)
,g

as
ta

xe
s

A
vg

_P
ri

ce
_H

A
ve

ra
ge

pr
ic

e
of

N
G

(h
ou

se
-

ho
ld

/d
om

es
ti

c)
(G

er
m

an
y)

C
en

t/
kW

h
w

w
w

.d
es

ta
ti

s.
de

.
Ex

cl
ud

ed
:

V
al

ue
-a

dd
ed

ta
x

(V
A

T)
.

In
cl

ud
ed

:
us

ag
e

ch
ar

ge
s

(i
n

G
er

m
an

:
N

ut
zu

ng
se

nt
ge

lt
e)

,g
as

ta
xe

s

A
vg

_P
ri

ce
To

ta
l

av
er

ag
e

pr
ic

e
of

N
G

(G
er

m
an

y)

C
en

t/
kW

h
w

w
w

.d
es

ta
ti

s.
de

.
Ex

cl
ud

ed
:

V
al

ue
-a

dd
ed

ta
x

(V
A

T)
.

In
cl

ud
ed

:
us

ag
e

ch
ar

ge
s

(i
n

G
er

m
an

:
N

ut
zu

ng
se

nt
ge

lt
e)

,g
as

ta
xe

s

O
il_

C
on

O
il

C
on

su
m

p-
ti

on
C

on
su

m
pt

io
n

in
m

il-
lio

n
to

nn
es

oi
le

qu
iv

-
al

en
t*

BP
,

St
at

is
ti

ca
l

R
ev

ie
w

of
W

or
ld

En
er

gy
,

2
0
1
9
,

6
8
th

Ed
it

io
n.
h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/

c
o
n
t
e
n
t
/
-
d
a
m
/
b
p
/
b
u
s
i
n
e
s
s
-
s
i
t
e
s
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
p
d
f
s
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
/
b
p
-
s
t
a
t
s
-
r
e
v
i
e
w
-
2
0
1
9
-
f
u
l
l
-
r
e
p
o
r
t
.
p
d
f

H
yd

ro
_E

H
yd

ro
el

ec
-

tr
ic

it
y

T
W

h
BP

,
St

at
is

ti
ca

l
R

ev
ie

w
of

W
or

ld
En

er
gy

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/

e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/
s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
.
h
t
m
l

Bi
om

as
s

El
ec

tr
ic

it
y

pr
od

uc
ed

b y
bi

om
as

s

TW
h

BP
.

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

C
on

ti
nu

ed
on

ne
xt

pa
ge

https://www.bp.com/content/-dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/-dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/-dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html


energy forecasting. focus: natural gas 135

Ta
bl

e
2

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

V
ar

ia
bl

e
N

am
e

M
ea

ni
ng

U
ni

t
So

ur
ce

an
d

N
ot

es
So

la
r

El
ec

tr
ic

it
y

pr
od

uc
ed

by
so

la
r

en
er

gy

TW
h

BP
.

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

W
in

d
El

ec
tr

ic
it

y
pr

od
uc

ed
fr

om
w

in
d

en
er

gy

TW
h

BP
.

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

C
oa

l_
C

on
C

oa
l

co
n-

su
m

pt
io

n
M

TO
E

BP
.

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

N
uc

le
ar

El
ec

tr
ic

it
y

fr
om

nu
cl

ea
r

po
w

er
pl

an
ts

T
W

h
BP

.
h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

N
G

_C
on

N
at

ur
al

ga
s

co
ns

um
pt

io
n

(G
er

m
an

y)

Bi
lli

on
C

ub
ic

M
et

er
s

BP
.

h
t
t
p
s
:
/
/
w
w
w
.
b
p
.
c
o
m
/
e
n
/
g
l
o
b
a
l
/
c
o
r
p
o
r
a
t
e
/
e
n
e
r
g
y
-
e
c
o
n
o
m
i
c
s
/

s
t
a
t
i
s
t
i
c
a
l
-
r
e
v
i
e
w
-
o
f
-
w
o
r
l
d
-
e
n
e
r
g
y
/
d
o
w
n
l
o
a
d
s
.
h
t
m
l

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html




7
Bibliography

Akpinar, M. and Yumusak, N. (2016). Year ahead demand forecast
of city natural gas using seasonal time series methods. Energies,
9(9):727.

Al-Fattah, S. and Startzman, R. (1999). Analysis of world natural gas
production. Conference: SPE Eastern Regional Meeting, paper SPE-
57463. Charleston, West Virginia, USA. https://doi.org/10.2118/
57463-MS Last accessed 2021-03-26.

Altfeld, K. and Pinchbeck, D. (2013). Admissible hydrogen concentra-
tions in natural gas systems. Gas for Energy, (03). https://www.gerg.
eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf Last ac-
cessed 2020-12-19.

Anagnostis, A., Papageorgiou, E., Dafopoulos, V., and Bochtis, D. D.
(2019). Applying long short-term memory networks for natural gas
demand prediction. In Bourbakis, N. G., Tsihrintzis, G. A., and Vir-
vou, M., editors, 10th International Conference on Information, Intel-
ligence, Systems and Applications, IISA 2019, Patras, Greece, July 15-
17, 2019, pages 1–7. IEEE. https://doi.org/10.1109/IISA.2019.

8900746 Last accessed 2020-08-31.

Anastasiadis, A. D., Magoulas, G. D., and Vrahatis, M. N. (2005).
New globally convergent training scheme based on the resilient
propagation algorithm. Neurocomputing, 64:253–270. http://

www.sciencedirect.com/science/article/pii/S0925231204005168

Last accessed 2020-09-06.

Andrade-Cabrera, C., de Rosa, M., Kathirgamanathan, A.,
Kapetanakis, D.-S., and Finn, D. (2018). A study on the trade-
off between energy forecasting accuracy and computational com-
plexity in lumped parameter building energy models. The 10th
Canada Conference of International Building Performance Simu-
lation Association (eSim 2018), Montreal, Canada, 9-10 May 2018.
http://hdl.handle.net/10197/9663 Last accessed 2019-03-22.

https://doi.org/10.2118/57463-MS 
https://doi.org/10.2118/57463-MS 
https://www.gerg.eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf
https://www.gerg.eu/wp-content/uploads/2019/10/HIPS_Final-Report.pdf
https://doi.org/10.1109/IISA.2019.8900746
https://doi.org/10.1109/IISA.2019.8900746
http://www.sciencedirect.com/science/article/pii/S0925231204005168
http://www.sciencedirect.com/science/article/pii/S0925231204005168
http://hdl.handle.net/10197/9663


energy forecasting. focus: natural gas 138

Ang, B. W., Choong, W. L., and Ng, T. S. (2015). Energy security: Def-
initions, dimensions and indexes. Renewable and Sustainable Energy
Reviews, 42:1077–1093.

Armstrong, J. and Green, K. (2017). Forecasting methods and princi-
ples: Evidence-based checklists. Working paper. https://doi.org/

10.1080/21639159.2018.1441735 Last accessed 2021-03-28.

Ascher, W. (1978). Forecasting: An appraisal for policy makers and planners.
Johns Hopkins University Pr, Baltimore. ISBN 0801820359.

Asdal, K. (2011). The office: The weakness of numbers and the produc-
tion of non-authority. Accounting, Organizations and Society, 36(1):1–9.

Astakhova, O. (2019). 12.10. 2019 aramco hopes to repair re-
maining damage from attacks by end-November. reuters.
https://www.reuters.com/article/us-saudi-aramco-attacks/

aramco-hopes-to-repair-remaining-damage-from-attacks-by-\

end-november-idUSKBN1WR0JS Last accessed 2021-04-08.

Atiya, A. F. (2020). Why does forecast combination work so well?
International Journal of Forecasting, 36(1):197–200.

Bale, C. S., Varga, L., and Foxon, T. J. (2015). Energy and Complexity:
New ways forward. Applied Energy, 138:150–159. https://doi.org/
10.1016/j.apenergy.2014.10.057.

Barker, J. (2020). Machine learning in m4: What makes a good un-
structured model? International Journal of Forecasting, 36(1):150–155.

Baughman, K. A., Cecchi, G. A., Kozloski, R. J., and Brian, O. M.
(1988). Selecting Forecasting Model Complexity using eigenval-
ues. us patent 10,469,398. https://patents.google.com/patent/

US10469398B2/en International Business Machines Corporation.Last
accessed 2021-04-01.

Beyca, O. F., Ervural, B. C., Tatoglu, E., Ozuyar, P. G., and Zaim, S.
(2019). Using machine learning tools for forecasting natural gas con-
sumption in the province of Istanbul. Energy Economics, 80:937–949.

Bezdek, R. and Wendling, R. (2002). A half century of long-range
energy forecasts: Errors made, lessons learned, and implications for
forecasting. Journal of Fusion Energy, 21. https://doi.org/10.1023/
A:1026208113925.

Biresselioglu, M. E., Yelkenci, T., and Oz, I. O. (2015). Investigating the
natural gas supply security: A new perspective. Energy, 80:168–176.

https://doi.org/10.1080/21639159.2018.1441735
https://doi.org/10.1080/21639159.2018.1441735
https://www.reuters.com/article/us-saudi-aramco-attacks/aramco-hopes-to-repair-remaining-damage-from-attacks-by-\ end-november-idUSKBN1WR0JS
https://www.reuters.com/article/us-saudi-aramco-attacks/aramco-hopes-to-repair-remaining-damage-from-attacks-by-\ end-november-idUSKBN1WR0JS
https://www.reuters.com/article/us-saudi-aramco-attacks/aramco-hopes-to-repair-remaining-damage-from-attacks-by-\ end-november-idUSKBN1WR0JS
https://doi.org/10.1016/j.apenergy.2014.10.057
https://doi.org/10.1016/j.apenergy.2014.10.057
https://patents.google.com/patent/US10469398B2/en
https://patents.google.com/patent/US10469398B2/en
https://doi.org/10.1023/A:1026208113925
https://doi.org/10.1023/A:1026208113925


energy forecasting. focus: natural gas 139

BMWi (2019). Monitoring-Bericht nach § 51 EnWG zur Ver-
sorgungssicherheit bei Erdgas. Stand: Februar 2019. Berlin.
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/

monitoringbericht-versorgungssicherheit-2017.html Last
accessed 2020-12-19.

Botev, L. and Johnson, P. (2020). Applications of statistical process
control in the management of unaccounted for gas. Journal of Natural
Gas Science and Engineering, 76:103194.

BP (2019). BP Statistical Review of World Energy. https:

//www.bp.com/content/dam/bp/business-sites/en/global/

corporate/pdfs/energy-economics/statistical-review/

bp-stats-review-2019-full-report.pdf Last accessed 2020-12-19.

BP (2020). BP Statistical Review of World Energy. https:

//www.bp.com/content/dam/bp/business-sites/en/global/

corporate/pdfs/energy-economics/statistical-review/

bp-stats-review-2020-natural-gas.pdf Last accessed 2020-12-21.

Bradshaw, M. and Boersma, T. (2020). Natural Gas. Resources. Wiley.
ISBN 9780745659978, LCCN 2019050902.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.
https://doi.org/10.1023/A:1010933404324.

Bridge, G. and Bradshaw, M. (2017). Making a global gas market: Terri-
toriality and production networks in liquefied natural gas. Economic
Geography, 93(3):215–240.

Browell, J. (2015). Spatio-temporal prediction of wind fields. PhD the-
sis, University of Strathclyde. http://oleg.lib.strath.ac.uk:80/

R/?func=dbin-jump-full&object_id=25822 Last accessed 2020-12-
20.

Bundesnetzagentur and Bundeskartellamt (2019). Monitor-
ingbericht gemäß § 63 Abs. 3 i. v. m. § 35 EnWG und §
48 abs. 3 i. v. m. § 53 Abs. 3 GWB Stand: 29. Mai 2019.
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/

Monitoringberichte/Monitoringbericht2018.pdf;jsessionid=

7947A2EB1993EAEF55BD446D286E487B?__blob=publicationFile&v=6

Last accessed 2019-10-20.

Busse, S., Helmholz, P., and Weinmann, M. (2012). Forecasting day
ahead spot price movements of natural gas - an analysis of potential
influence factors on basis of a NARX neural network. Multi-
konferenz Wirtschaftsinformatik 2012 - Tagungsband der MKWI 2012.
https://publikationsserver.tu-braunschweig.de/servlets/

https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/monitoringbericht-versorgungssicherheit-2017.html
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/monitoringbericht-versorgungssicherheit-2017.html
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf
https://doi.org/10.1023/A:1010933404324
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25822
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht2018.pdf;jsessionid=7947A2EB1993EAEF55BD446D286E487B?__blob=publicationFile&v=6
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht2018.pdf;jsessionid=7947A2EB1993EAEF55BD446D286E487B?__blob=publicationFile&v=6
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht2018.pdf;jsessionid=7947A2EB1993EAEF55BD446D286E487B?__blob=publicationFile&v=6
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf


energy forecasting. focus: natural gas 140

MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf

Last accessed 2021-04-14.

Cage, J. (1952). 4’33 Piano solo arrangement. First movement. https://
musescore.com/user/5832946/scores/1559096 Last accessed 2020-
07-26.

Chatfield, C. (2001). Time-series forecasting. Chapman & Hall/CRC,
Boca Raton. http://site.ebrary.com/lib/alltitles/docDetail.

action?docID=10143032 Last accessed 2020-12-20.

Chen, J. (2002). An entropy theory of value. SSRN Electronic Journal.
http://dx.doi.org/10.2139/ssrn.307442.

Chen, J. (2018). An entropy theory of value. Structural Change and
Economic Dynamics, 47:73–81.

Chen, Y., Chua, W. S., and Koch, T. (2018). Forecasting day-ahead
high-resolution natural gas demand and supply in Germany. Applied
Energy, 228:1091–1110.

Chkili, W., Hammoudeh, S., and Nguyen, D. K. (2014). Volatility fore-
casting and risk management for commodity markets in the pres-
ence of asymmetry and long memory. Energy Economics, 41:1–18.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3):273–297.

Darin, S. G. and Stellwagen, E. (2020). Forecasting the M4 competition
weekly data: Forecast pro’s winning approach. International Journal
of Forecasting, 36(1):135–141.

de Nadai, M. and van Someren, M. (2015). Short--term anomaly detec-
tion in gas consumption through ARIMA and Artificial Neural Net-
work forecast. In 2015 IEEE Workshop on Environmental, Energy and
Structural Monitoring Systems (EESMS 2015), pages 250–255. IEEE.
ISBN 978-1-4799-8215-8.

Debnath, K. B. and Mourshed, M. (2018). Forecasting methods in
energy planning models. Renewable and Sustainable Energy Reviews,
88:297–325. https://doi.org/10.1016/j.rser.2018.02.002.

Dey, H. S., Kabir, M. A., Wadud, Z., Khan, S. I., and Azad, M. A. K.
(2011). Econometric modeling and forecasting of natural gas de-
mand for power sector in Bangladesh. IEEE Region 10 Annual Inter-
national Conference, Proceedings/TENCONISBN 978-1-4577-0256-
3.

https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027726/Beitrag299.pdf
https://musescore.com/user/5832946/scores/1559096
https://musescore.com/user/5832946/scores/1559096
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10143032
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10143032
http://dx.doi.org/10.2139/ssrn.307442 
https://doi.org/10.1016/j.rser.2018.02.002


energy forecasting. focus: natural gas 141

Dimitriadou, A., Gogas, P., Papadimitriou, T., and Plakandaras, V.
(2018). Oil market efficiency under a machine learning perspective.
Forecasting, 1(1):157–168.

DNV-GL (2019). Energy Transition Outlook. Oil and Gas Forecast 2050.
https://eto.dnv.com/2017/oilgas Last accessed 2021-03-26.

Dreborg, H. K. (2004). Scenarios and Structural Uncertainty: Explorations
in the Field of Sustainable Transport. Trita-INFRA. ISBN 91-7323-068-5.

E. E. Holmes, M. D. Scheuerell and E. J. Ward (2020). 4.4
Correlation within and among time series | Applied
Time Series Analysis for Fisheries and Environmental Sci-
ences. https://nwfsc-timeseries.github.io/atsa-labs/

sec-tslab-correlation-within-and-among-time-series.html

Last accessed 2020-12-20.

ENTSOG (2017). Security of Supply Simulation Report. https://www.
entsog.eu/security-of-supply-simulation Last accessed 2021-04-
14.

ENTSOG (2019). The European Natural Gas Network: Ca-
pacities at cross-border points on the primary market.
https://www.entsog.eu/sites/default/files/2020-01/ENTSOG_

CAP_2019_A0_1189x841_FULL_401.pdf Last accessed 2020-10-29.
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