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Summary

Up to 40% of the total energy consumption in Germany is used in buildings. Up to 80 %
of the total energy consumed by buildings is used for heating the rooms and supplying the
buildings with warm water. This means that the heating system of a building consumes
the larges part of the total energy demand of the building. The high energy consumption
in the building sector results in a large potential for energy savings. This potential can be
utilized by optimizing the building automation systems, e.g., using new control methods
for the heating systems.

This thesis deals with the question how stored measurement data, which are often used
for monitoring purposes only, can be used for optimizing the control strategies. The
developed controllers will be applied to a heating system and the results will be evaluated.
Model predictive methods are a suitable choice for the control of systems with delay
times, such as heating systems. The model predictive controller (MPC) uses a model to
calculate the future behavior of the plant, so that the controller can react early to changes
in the environmental conditions. For heating systems, the weather forecast is used for
the MPC. An MPC solves an optimization problem by minimizing a cost function with
respect to the future behavior of the plant, represented by the model. One aspect of this
thesis is the modeling of heating systems by using stored measurement data.

First, two control strategies for today’s applications will be introduced and applied to
a heating system example. On the one hand the classical proportional-integral (PI)
controller and on the other hand a linear MPC. The PI controller is a standard controller
for many applications and also for heating systems. The simulation results will be used
in the following for the comparison with other control methods. Both controllers use a
reference trajectory. Finding a suitable reference can be difficult and time consuming.

An economic model predictive controller (EMPC) will be introduced next. The EMPC
uses also a model of the system and optimizes a cost function, but without using any
reference signals. That means, that no reference has to be defined and the optimization
is solved with constraints. The constraints are defined by the system requirements, such
as the comfort conditions of the room temperature for heating systems. Additionally,
time dependent constraints were introduced and the possibility to use discrete input
signals. The discrete input signals change the optimization problem to a mixed-integer
optimization problem, which leads to more complex and time consuming computations.
The EMPC was applied to a heating system and the simulation results were compared
with the results of the linear MPC. A real-time implementation of the EMPC for a
heating system of an office building was stated and the results are evaluated.

A linear MPC uses a linear model of the system. If the system description by a lin-
ear model is not accurate anymore, the modeling of the system leads, in general, to
a nonlinear model. A subclass of the general nonlinear model class are the multilin-
ear time-invariant (MTI) models. The structure of the MPC optimization problem was
investigated with the assumption that an MTI model is used, with the focus on the con-
vexity analysis of the optimization problem. It could be proven that the optimization
problem is convex for a subclass of MTI systems and a restricted prediction horizon.
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An iterative learning controller (ILC) is another approach to use measurement data
for control. An ILC uses the stored data for the calculation of the input signal of
the next iteration. A data-driven ILC was introduced as well as an element selector
for choosing a stored data set. For the element selector an optimization problem was
formulated. A combined data-driven learning MPC was presented and tested by an
application example. This combined control approach was implemented for a prototype
heating system. The data-driven ILC collects and stores the data of all historic iterations.
The historic data was stored in a tensor structure and the canonical-polyadic (CP)
decomposition method was applied to reduce the storage demand and enlarge the possible
implementation platforms to hardware with limited storage capacities. It could be shown
that the calculation of the similarity criterion for the choice of a historic data set can be
performed with the CP decomposed tensor, which leads to a significant reduction of the
storage demand.

In this thesis, measurement data was used for the modeling process for predictive control
methods to take the future behavior of the plant into account and for iterative learning
control, which uses the measurement data to consider the past behavior of the system.
The developed control methods were applied to a heating system and compared to the
results with a standard controller.
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Zusammenfassung

Im Gebäudebereich werden heutzutage schon rund 40 % der gesamten in Deutschland
verbrauchten Energie, eingesetzt. Bis zu 80 % der verbrauchten Energie im Gebäudebe-
reich wird für die Erwärmung des Gebäuden und die Warmwasserbereitung verwen-
det. Das bedeutet, dass der Heizungsanlage im Gebäude auf Grund des hohen Energie-
verbrauchs eine besondere Bedeutung zukommt. Durch den hohen Energieverbrauch
ergibt sich auch ein entsprechendes Einsparpotential, welches unter anderem durch eine
verbesserte Betriebsführung, wie z.B. durch die Verwendung neuartiger Regelungskonzep-
te, ausgenutzt werden kann.

Diese Arbeit beschäftigt sich mit der Frage, wie gesammelte und gespeicherte Messdaten,
welche oftmals nur für Monitoring und Auswertungszwecke verwendet werden, für die
Optimierung von Regelungen genutzt werden kann. Die entwickelten Regelungsstrate-
gien werden am Beispiel von Heizungsanlagen getestet und die Ergebnisse ausgewertet.
Modellprädiktive Verfahren haben sich für die Regelung von Systemen mit größeren
Totzeiten als besonders geeignet erwiesen. Zu solchen System gehören auch Heizungsan-
lagen, wobei für die modellprädiktive Regelung (model predicitve control - MPC) die
Wettervorhersagen und insbesondere die Vorhersage der Außentemperatur berücksichtigt
wird. Durch die Nutzung eines Modells für die Regelung kann das zukünftige Anlagenver-
halten vorausberechnet werden und so auf Änderungen in den Umgebungsbedingungen
frühzeitig reagiert werden. Dabei löst der MPC ein Optimierungsproblem, welches eine
Kostenfunktion minimiert unter Berücksichtigung des Anlagenverhaltens, welches durch
das Model wiedergegeben wird. Aus diesem Grund ist ein Aspekt der Nutzung von
Daten die Modellbildung für prädiktive Regelungsstrategien.

Anhand eines Beispiels einer Heizungsanlage werden zwei Regelungsstrategien vorgestellt,
wie sie heutzutage in der praktischen Anwendung verwendet werden. Auf der einen Seite
der klassische proportionale-integrale (PI) Regler und auf der anderen Seite ein linearer
MPC. Dabei gilt der PI-Regler als ein Standardregler, der in vielen Anwendungsberei-
chen genutzt wird, auch im Bereich der Heizungssysteme. Die Ergebnisse werden für
Vergleichszwecke mit den weiteren Regelungsstrategien genutzt. Sowohl der PI-Regler,
als auch der lineare MPC verwenden für die Regelung eine Referenz. Eine geeignete
Referenz zu finden kann mitunter aufwendig und schwierig sein.

Ein sogenannter EMPC (economic model predictive controller), welcher ebenfalls ein
Modell verwendet und ein Optimierungsproblem löst, unterscheidet sich vom linearen
MPC zum einen durch die Art der Kostenfunktion und zum anderen wird keine Referenz
für die Regelung verwendet, wodurch die Wahl einer geeigneten Referenztrajektorie
wegfällt. Stattdessen wird die Optimierung unter Randbedingungen ausgeführt welche
durch die Anforderungen des Systems definiert werden. So können z.B. für Heizungsan-
lagen die Komfortbedingungen an die Raumtemperatur mit Hilfe der Randbedingungen
definiert werden. Dieser Ansatz wird zum einen um zeitabhängige Randbedingungen er-
weitert und zum anderen um diskrete Stellsignale, wodurch die Anwendung eines EMPC
auf Anlagen mit schaltenden Stellsignalen ermöglicht wird. Durch die Einführung von
diskreten Stellsignalen wird das Optimierungsproblem zu einem gemischt-ganzzahligen
Problem, wodurch die Lösung wesentlich komplexer und zeitaufwendiger wird. Der
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EMPC wurde auf eine Heizungsanlage angewandt und die Simulationsergebnisse mit
denen des linearen MPC verglichen. Anschließend wurde der EMPC in einer realen
Heizungsanlage implementiert und das Echtzeitverhalten dieser Regelung untersucht.

Die vorgestellten prädiktiven Regelungen verwenden ein lineares Modell des Systems.
Wenn die Beschreibung des Systemverhaltens durch ein lineares Modell nicht ausrei-
chend genau ist, führt dies im Allgemeinen zu nichtlinearen Modellen. Eine Unterklasse
der nichtlinearen Modelle bilden die multilinearen zeit-invarianten (multilinear time-
invariant MTI) Modelle. Unter Verwendung von MTI Modellen wurde die Struktur des
modellprädiktiven Optimierungsproblems untersucht. Dabei stand die Konvexitätsana-
lyse im Vordergrund und es konnte gezeigt werden, dass das Optimierungsproblem für
Unterklassen der MTI Systeme und bestimmte Vorhersagehorizonte konvex ist.

Ein weiterer Ansatz, um Messdaten zu verwenden, ist die iterativ lernenden Regelung
(iterative learning control - ILC). Dabei nutzt ein ILC die gespeicherten Daten, um das
Stellsignal der nächsten Iteration zu berechnen. Es wurde ein datanbasierter ILC einge-
führt und Auswahlkriterien für die Wahl eines gespeicherten Datensatzes definiert und
in einem Optimierungsproblem zusammengefasst. Die Kombination eines datenbasierte
ILC mit einem linearen MPC wurde vorgestellt und am Anwendungsbeispiel getestet.
Der datenbasiert lernende MPC wurde in einem prototypischen Heizungssystem imple-
mentiert und erste Messdaten ausgewertet. Der datenbasierte ILC speichert die Daten
von vergangen Iterationen. Um eine Anwendung eines solchen ILCs auch auf Plattformen
mit wenig Speicherplatz zu ermöglichen, wurden die Messdaten in einer Tensorstruktur
gespeichert und die kanonisch-polyadische (canonical polyadic - CP) Tensorzerlegung
auf die Messdaten angewandt. Es konnte gezeigt werden, dass die Berechnungen des
Ähnlichkeitskriteriums für die Auswahl eines historischen Datensatzes auf Basis des CP
Tensors erfolgen kann und somit der benötigte Speicherbedarf um ein Vielfaches gesenkt
werden konnte.

Das heißt, in dieser Arbeit wurden Messdaten zum einen für die Modellbildung für
prädiktive Regelungen verwendet um das zukünftige Verhalten des Systems zu berück-
sichtigen und zum anderen für die iterativ lernende Regelung, welche aufgrund der ver-
wendeten Messdaten das vergangene Verhalten des Systems berücksichtigt und in die
Regelung mit einfließen lässt. Die entwickelten Regelungen wurden auf Heizungssysteme
angewandt und die Ergebnisse mit denen der Standardregelungen verglichen.
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Chapter 1

Introduction

An overview of the energy consumption of buildings related to the heat supply is given
first. The basics of heating systems are stated next, before the research question and
the state of research are introduced. The introduction ends with the presentation of the
thesis structure.

1.1 Energy consumption of buildings

Energy efficiency and the associated potentials of energy savings have become an actual
and omnipresent theme, due to the constantly increasing consumption of primary energy,
the climate change, the limited resources of fossil energy carriers and the greenhouse gas
emission. The German government has defined extensive goals for the reduction of the
greenhouse gas emission. In 2050 the emission of greenhouse gases shall be reduced by 80
to 95 % compared to the emission in 1990 [1]. To reach the climat protection goal many
different activities are defined. One is the reduction of the heat demand for buildings by
optimizing the building envelop but also optimizing the building automation systems,
such as control algorithms for heating systems. The energy consumption of buildings
has increased over 40% of the total energy consumption in Germany (2011), which shows
the large possible savings [1].

In the years 2013 to 2016, 55 % for commercial buildings and even 80 % for residential
buildings of the total energy consumption for buildings was used for heating the rooms
and supplying the buildings with warm water [79]. An energy waste of 5 % up to 30 %
for the heat supply of buildings due to badly tuned controllers is stated in [61]. The
presented numbers are related to the energy consumption in Germany. But also for
other developed countries these numbers are in the same region [63].

The evaluation of the energy consumption for heating systems on the on hand and the
potential for energy savings due to optimized controllers on the other hand, points out
the advantage of advanced control methods for heating systems as contribution to reach
the goal of a heat demand reduction of 80 % until the year 2050.
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1.2 Heating systems

A heating system provides thermal power to satisfy the heat demand of a building,
which means in general, there is a supply part and a consumer part. The heat demand
depends on the environmental conditions and the defined comfort room temperature for
the building users. The environmental conditions depend on the location of the building
and can change over a year with the seasons. The comfort room temperature depends
on the use of the building. For residential buildings there are other conditions as for a
commercial building, which is only occupied at daytime. Also the architecture and the
construction of a building influences the heat demand. This results in the fact, that each
heating system has to be planned individually for a building to ensure that the room
climate or temperature remains in the same comfort zone for different environmental
conditions.

The supplier is a heat generation unit, e.g, a boiler with a burner. The heat generation
unit can also be a solar thermal collector, an oven or an electric heat pump. Also the
energy source can be different for the devices, such as solid fuel, liquids, gases, solar
radiation or electricity. The investigated heating systems in this thesis uses a boiler
with a burner as heating unit. All of these devices heat up a medium to transfer and
distribute the heat into the building. Radiators can be supplied via pipes with the heated
medium to transfer the heat to the surrounding air and heat up the rooms of a building.
According to the length of the pipes and the mass of the building there is a time delay
between the heat supply and the heat consumption in a room. If the heated medium
is air, then the heat can be transferred into the rooms via a ventilation system without
using a radiator. The heating systems, which are introduced in this thesis uses radiators
for the heat distribution and it is assumed that the heat transfer medium is water. The
radiators together with the building are the consumer part of the system, whereas the
boiler is the supply part.

Boiler
Burner

Building/
Radiator

V̇Ts

Tr

Figure 1.1: Scheme of a simple heating system

The boiler heats up the water, which leaves the boiler with a supply temperature Ts.
A pump provides a volume flow V̇ in the pipes to transfer the heated water with the
supply temperature Ts to the radiators. The radiators release the heat to the rooms,
which means that the water in the radiators gets colder. The water leaves the radiators
with a return temperature Tr and returns to the boiler where the water is heated up
again. The supply temperature of the boiler to satisfy the heat demand of the building
is given by a heating curve which defines a reference supply temperature according to
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the ambient conditions or more specific the outside temperature Tout. The described
heating system is shown in Figure 1.1.

1.3 Research question

The energy consumption for heating rooms and for supplying buildings with warm water
is up to 80 % of the total energy consumption of the buildings [79]. Due to the climate
protection goals of the government the energy consumption of buildings have to be
optimized. One aspect is energy waste according to badly tuned controllers, which also
includes the difficulties of well suited references for the individual buildings [61]. This
points out the large potential of energy savings by using optimized and advanced control
methods. Many processes are monitored today and the number of sensors increases.
As a result the amount of available data increases too. This data is often used for
monitoring and analysis purposes only, e.g., for the evaluation of the energy consumption
of buildings. It is rarely used for control purposes for heating systems.

This leads to the research question, which is investigated in this thesis.

How can control methods for heating systems be improved
by direct use of stored measurement data?

It is obvious that data can be used in many different ways, so that not all possibilities
can be stated here. One way to use the data indirectly is the modeling process, for
instance the whole model or only the unknown system parameters can be estimated from
measurement data. This developed models can be used for model predictive control
(MPC) algorithms [54]. The linear MPC problem is established and also applied to
heating systems with a potential to decrease the energy demand [31, 53]. A model
predictive controller uses the model to predict the future behavior of the system for the
calculation of the control signals. Predictive controllers are useful for systems with delay
times, such as heating systems. But if a linear model is not sufficient for the system
dynamics the linear MPC changes into a nonlinear MPC. Heating system models are
inherited in the class of multilinear models, which are nonlinear models, but there are
no structural investigations about the model predictive control optimization problem if
a multilinear model is used instead of a linear model.

A linear MPC uses a reference of the system. Finding a suitable reference can be dif-
ficult, which means that a model predictive controller without using a reference could
be beneficial for applications. Due to the advantages of a linear MPC, a simple lin-
ear model can be used, the problem is well known and the results for heating systems
are very promising [66, 73]. Besides the modeling part, the question arises if the mea-
surement data can be used for control in other ways. Iterative learning control (ILC)
uses stored measurement data to calculate the input signal of the next iteration, which
means learning from the past [18, 76]. This works perfectly well for periodic processes.
Heating systems show a periodicity in the ambient conditions or the disturbances, e.g.,
the outside temperature, which increases during the day and decreases during the night.
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Finding a way to apply an ILC to a linear MPC for improving the MPC performance
could be very useful for applications. Such approach would connect the use of data for
the modeling and the prediction of the future and the use of historic data for learning
from the past.

All of the investigated control algorithms will be applied to heating systems with the
main goals to save energy and keeping the room temperatures in a comfort zone defined
according to the German norm DIN-EN15251 [24].

1.4 State of research

For today’s applications classical controllers, like a bang-bang controller, three-point con-
troller and proportional-integral-derivative (PID) controller, are well known and widely-
used, also for the control of heating systems [10]. Much research is going on in the field
of model predictive control [46, 51]. An overview of predictive control methods is given
in [55]. MPC is applied in various industrial fields, like automotive, food processing or
chemicals industry [67]. But also the field of MPC for heating and cooling systems is of
a strong scientific interest [10, 31, 53]. An applied MPC to a building heating system
with respect to the weather forecast with energy savings from 15 % up to 28 % compared
to the classical control approach is shown in [66, 73]. This shows the large potential of
a linear MPC in contrast to the conventional implemented control strategies. Using a
nonlinear model, e.g. an multilinear time-invariant (MTI) model, leads to a nonlinear
MPC problem [26]. A few investigations of an NMPC for heating systems exist. An
NMPC for a heating system using a bilinear model is investigated in [34]. An NMPC
for a heating system using a nonlinear model for an optimized storage tank loading is
introduced in [61].

Other predictive control approaches, like economic model predictive control (EMPC),
are also applied to heating systems. An application for load shifting of an electrical
heat pump or a chiller for buildings, due to varying electricity prices with constant
constraints is given in [30, 56]. An application of an EMPC for energy minimization of a
cooling system of a commercial building by calculating new setpoints for the underlying
controller is give in [52]. All of these mentioned EMPC approaches consider varying
electricity prices over time.

The field of iterative learning control shows various industrial applications where ILC
algorithms are used. An overview of iterative learning control applied to batch proceses
is given in [45]. For the wafer production iterative learning controllers are used for the
temperature control as well as for the precise positioning of wafer scanners [58, 78].
But also in other application fields, like the control of a free-electron laser, an ILC
is applied [64, 69]. First approaches of iterative learning control for heating systems
and building temperature control are introduced in [57, 77] and a data-driven control
approach which uses varying energy costs over time is given in [23].

The literature overview shows that the most common controllers are the bang-bang or
three point controllers and the PID controllers or PI controllers. But also the linear
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MPC with a focus on heating systems are investigated in theory with proposed energy
savings up to 28 % in comparison to the classical control strategy. First experimental
results are published where a linear MPC with respect to the weather forecast was used.
Other advanced control approaches only show a few first investigations with a focus on
heating or cooling systems and there is a lack of strategies combing iterative learning
methods with predictive approaches for such systems. No structural investigations about
the model predictive control optimization problem exists if a multinlinear time-invariant
model is used instead of a linear model. In general, there is a lack of real-time applications
of advanced control strategies.

1.5 Thesis structure

Chapter 2 introduces different model classes in state space representation, followed by the
heating system modeling. The component-wise modeling of the different heating system
parts, for instance the boiler, are shown. Chapter 3 gives an overview over different
control methods which are relevant for this thesis. The overview starts with classical
control, like bang-bang or proportional-integral-derivative (PID) control, followed by
predictive control methods, e.g., linear model predictive control (MPC), and ends by the
data-based control methods, such as iterative learning control (ILC). A heating system
model of a test facility for an office of a non-residential building is introduced and a
PI controller and an MPC are applied to this model. The simulation results of both
controllers are compared. Chapter 4 deals with predictive control methods. First an
economic model predictive controller (EMPC) is introduced for the control of continuous
control signals and for discrete and continuous control signals. Structural investigations
of the MPC optimization problem if a multilinear model is used instead of a linear one are
presented. Chapter 5 shows a data-driven iterative learning control approach, which uses
stored measurement data. The data-driven ILC is combined with an MPC to a data-
driven learning MPC. For storage demand reduction, a tensor decomposition method
is applied to the data-driven ILC with the result of a data-driven tensor ILC. These
control approaches are applied to a heating system example and the simulation results are
presented. Chapter 6 introduces the hardware components for real-time implementation.
After the presentation of hardware-in-the-loop test, the real-time application of a data-
driven learning MPC is shown. Followed by the application of an EMPC to a heating
system of an office building. The thesis ends with a conclusion and an outlook for further
investigations.
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Chapter 2

Model classes and heating system
modeling

This chapter describes the relevant model classes in state space representation, like non-
linear and linear state space models, as well as the modeling of the dynamical behavior
of heating systems. Each building has different requirements to a heating system and the
single components are combined individually. This suggests a component-based mod-
eling of the system, so that the models of the single components can be reused for the
models of different systems. The basic components of the heating system models are
presented.

2.1 State space models

The dynamical behavior of a physical system can be described mathematically, which
means the relation between the input signal u(t) and the output signal y(t) of the system.
That is described by the system block in Figure 2.1.

Systemu(t) y(t)

Figure 2.1: System block with inputs and outputs

A standard model representation for the dynamical behavior of the systems with time-
independent parameters are time-invariant state space models, with the general form of
time-invariant nonlinear state space models. Mathematical descriptions of the dynamical
system behavior can be found, e.g. in [19] or [71].
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2.1.1 Nonlinear model

The general form of time-invariant model classes are the nonlinear time-invariant mod-
els [35]. The dynamical behavior of the system can be described by the ordinary dif-
ferential equation (ODE) of nth order for many applications. The differential equation
describes the behavior between the input u(t) and the output y(t) of the system in the
continuous-time domain. In general, the ODE of order n can be written as a system
of first order ODEs and the right hand sides of the ordinary differential equations are
nonlinear. The system of first order ODEs leads to the description of the dynamical
system behavior as a nonlinear continuous-time state space model

ẋ(t) = fc(x(t),u(t)), (2.1)
y(t) = gc(x(t),u(t)), (2.2)
x(0) = x0, (2.3)

where fc is the state transition function, gc is the output function, x(t) ∈ Rn is the
state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector, x0 is the
initial state vector, t denotes the time and the subscribed c indicates that the model is a
continuous-time model. The system has n states, m inputs and p outputs. The temporal
development of the system states is given by the state equation (2.1). The system output
is given by the output function (2.2).

So far, all signals were assumed to be known at any time t, which leads to a continuous-
time description of the system. For the description in the discrete-time domain, the
state, input and output signals are only known at fixed sample time steps, e.g., for an
input [u(0 · ts), u(1 · ts), ...], with the sample time ts. For a simpler notation the sample
time will be omitted, so that u(k · ts) = u(k), where k ∈ N0 is the time step index.
The system behavior in discrete-time is described by difference equations and not by
differential equations such that the states of the system x(k + 1) at time k depend on
the actual and past states and inputs. The nonlinear discrete-time state space model is
given by

x(k + 1) = f(x(k),u(k)), (2.4)
y(k) = g(x(k),u(k)), (2.5)
x(0) = x0. (2.6)

Nonlinear state space models are a general model class. More restrictive model classes
are the multilinear state space models or the linear state space models.

2.1.2 Multilinear model

The multilinear model class restricts the general class of nonlinear models. A definition
of the multilinear time-invarinat (MTI) models can be found in [47]. The description of
the dynamical behavior of a system with nonlinear state space models allows arbitrary
functions as right hand sides, where as the right hand side of the ordinary differential
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equations of a multilinear state space model have to be multilinear. First the monomial
vector is introduced to define the multilinear state space.

Definition 2.1 The monomial vector is defined as

m(x(t),u(t)) =

(
1
um

)
⊗ · · · ⊗

(
1
u1

)
⊗
(

1
xn

)
⊗ · · · ⊗

(
1
x1

)

=

(
1⊗

i=m

(
1
ui

))
⊗

(
1⊗

i=m

(
1
xi

))
, (2.7)

where x ∈ Rn with the elements xi, i = 1, . . . , n is the state vector and u ∈ Rm with
the elements uj, j = 1, . . . ,m is the input vector and ⊗ denotes the Kronecker product,

as defined in Appendix B.1. For the sequence of Kronecker products
1⊗

i=m

the index i is

decremented in every step.

Example 2.1 The monomial vector with two states, x1 and x2 and one input u1 is
given by

m(x,u) =

(
1
u1

)
⊗
(

1
x2

)
⊗
(

1
x1

)
=



1
x1

x2

x1x2

u1

u1x1

u1x2

u1x1x2


.

The state space model of a continuous-time multilinear time-invariant (MTI) system
with n states, m inputs and p outputs in matrix representation is given by

ẋ(t) = Fcm(x(t),u(t)) (2.8)
y(t) = Gcm(x(t),u(t)) (2.9)

with the transition matrix Fc ∈ Rn×2n+m and the output matrix Gc ∈ Rp×2n+m , in which

the notation R×2n means R

n times︷ ︸︸ ︷
2× . . .× 2.

The state space model of a discrete-time MTI system reads as follows

x(k + 1) = Fm(x(k),u(k)) (2.10)
y(k) = Gm(x(k),u(k)). (2.11)
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Example 2.2 The state transition function of model with two states one input is given
by

(
x1(k + 1)
x2(k + 1)

)
=

(
f1,1 f1,2 f1,3 f1,4 f1,5 f1,6 f1,7 f1,8

f2,1 f2,2 f2,3 f2,4 f2,5 f2,6 f2,7 f2,8

)


1
x1(k)
x2(k)

x1(k)x2(k)
u(k)

u(k)x1(k)
u(k)x2(k)

u(k)x1(k)x2(k)


.

2.1.3 Linear model

A description of the restricted class of linear time-invariant models can be found in [49]
or [70]. The dynamical behavior of linear systems is described by linear ODEs, which
means that the right hand sides are linear functions. Thus, a linear continuous-time
state space model is given by

ẋ(t) = Acx(t) + Bcu(t), (2.12)
y(t) = Ccx(t) + Dcu(t) (2.13)

where Ac ∈ Rn×n is the system matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the
output matrix and Dc ∈ Rp×m is the feedthrough matrix.

The discrete-time linear state space model is given by

x(k + 1) = Ax(k) + Bu(k), (2.14)
y(k) = Cx(k) + Du(k) (2.15)

Example 2.3 The state equation of a linear state space model with two states and one
input is given by (

x1(k + 1)
x2(k + 1)

)
=

(
a1,1 a1,2

a2,1 a2,2

)(
x1(k)
x2(k)

)
+

(
b1,1

b2,1

)
u(k).

For some applications input signals can be discrete and not only continuous, which
means, that an input can only switch between different states, such as an on-off switching
signal. That makes the introduction of the so-called hybrid state space models necessary,
where discrete and continuous input signals can be used.

2.1.4 Hybrid model

The hybrid model that is used in this thesis is a linear state space model with a mixture
of continuous and discrete input signals [14]. The description of standard linear state
space model (2.12) and (2.13) for the continuous-time domain and (2.14) and (2.14) for
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the discrete-time domain, is extended by an additional input vector udis, which includes
the discrete input signals and the corresponding parameter matrix Bdis. The values
of udis have to be part of the natural number set N0. The hybrid linear continuous-time
state space model is given by

ẋ(t) = Acx(t) + Bcu(t) + Bc,disudis(t), (2.16)
y(t) = Ccx(t) + Dcu(t) + Dc,disudis(t) (2.17)

with the input matrix Bc,dis ∈ Rn×mdis and the input vector udis ∈ Nmdis
0 of the discrete

signals and the number of discrete inputs mdis.

The hybrid linear discrete-time state space model is given by

x(k + 1) = Ax(k) + Bu(k) + Bdisudis(k), (2.18)
y(k) = Cx(k) + Du(k) + Ddisudis(k). (2.19)

The developed models are part of one of the model classes introduced and it is stated at
the corresponding part to which class the model belongs.

2.2 Modeling of heating systems

In general heating systems are planned and built individually for each building, due
to different requirements based on the location and use of the building. Each building
has its own combination of heating system components, but the single components are
similar and every building needs a supply part, e.g., a boiler. This means, that the
modeling has to be done individually for each heating system and building. Thus, a
component-wise modeling is suitable for heating systems, because the physics of each
component is similar for different heating systems. The single components can be reused
for varying heating system setups and only the parameters of the components have to be
adjusted, for instance the maximum heating power of a boiler. This procedure simplifies
the modeling process for different heating systems.

The heating system components are modeled by thermal heat balances, based on the fact
that energy can neither be created nor destroyed. Energy can only be transformed from
one form into another. The law of conservation of energy means, that the sum of the
supplied and removed thermal power of each component of the system has to be zero.
The supplied thermal power is a positive and the removed thermal power a negative
contribution creating a thermal power balance.

The thermal power Q̇ is the time derivative of the thermal energy

Q(t) = cρV (t)T (t) (2.20)

where c is the specific thermal capacity and ρ the density of a medium with the temper-
ature T and the volume V . The thermal power is given by

Q̇(t) =
dQ(t)

dt
= cρV (t)

dT (t)

dt
+ cρT (t)

dV (t)

dt
. (2.21)
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Depending on the context where the thermal power balance is calculated, either the
volume V or the temperature T is assumed to be constant. This modeling concept for a
heating system is introduced in [38] and [61].

Figure 2.2 shows a heating system component with a thermal power input Q̇in(t), a
thermal power output Q̇out(t) and thermal losses Q̇loss(t) to the environment. Each of
the heating system components have some in- and outflows of thermal power, e.g. a
burner supplies a boiler with thermal power and heats up the water. The warm water
from the boiler flows to the radiators, the radiators heat up a room or building and the
cold water from the radiators returns to the boiler and the building has thermal losses
to the environment.

Heating System
Component

Q̇in Q̇out

Q̇loss

Figure 2.2: Heating system component

The thermal power Q̇com(t) of the heating system component shown in Figure 2.2 is
given by

Q̇com(t) = Q̇in(t)− Q̇out(t)− Q̇loss(t) (2.22)

which leads to the differential equation

cρVcomṪcom(t) = cρV̇in(t)Tin(t)− cρV̇out(t)To(t)− kloss (Tcom(t)− Tenv(t)) (2.23)

of the component temperature Tcom with the volume Vcom. The medium flows in the
component with the temperature Tin and the volume flow V̇in, and leafs the component
with the temperature To and the volume flow V̇out. It is assumed that the medium of
the component is mixed instantaneously so that Tcom is the temperature for the en-
tire volume Vcom of the component, which means that To(t) = Tcom(t). The thermal
losses Q̇loss(t) are assumed to be proportional to the difference of the component tem-
perature Tcom(t) and the temperature of the environment Tenv(t)

Q̇loss(t) = kloss (Tcom(t)− Tenv(t)) (2.24)

with the proportional factor kloss for the heat transfer.

The unknown parameters, such as the proportional factor kloss, will be estimated from
measurement data with the advantage that no pre-knowledge of the parameters is nec-
essary but the measurement data has to be available. This modeling, where physical
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equations are used to approximatly capture the main dynamics of the systems and the
parameters are estimated from measurement data, is called grey-box modeling, with the
advantage that the internal signals have a physical meaning and the model complexity is
reduced because of the neglection of minor dynamical effects. In contrast to the grey-box
modeling, white-box modeling is also based on physical equations, but all parameters
have to be known from data sheets with the advantage that no measurement data is used
and the model can be derived even if the system does not exist at that moment. The
drawback of the white-box modeling is that very detailed information has to be available
to describe the dynamical effects mathematically, which leads to complex and accurate
models. In contrast to the white-box modeling where every parameter and equation have
to be known, the black-box modeling uses measurements of the input and output signals
of the system to estimate a model which represents the input-output behavior of the
system without any knowledge of the system physics. Consequently, the internal signals
of the model have no physical meaning, hence being given the name black-box model.
Further information about the different modeling methods can be found, e.g., in [48]. For
all developed models it is assumed, that the estimated parameters are constant, which
means time independent.

The models of heating systems, which are modelled on the basis of thermal heat balances
belong to the class of multilinear models, introduced in Section 2.1.2, because of the
multiplication of temperature and volume flows [61].

For a junction where n different volume flows V̇ (t) with a temperature T (t) are connected
together, the resulting volume flow is given by

V̇res(t) = V̇1(t) + V̇2(t) + · · ·+ V̇n(t). (2.25)

The resulting temperature can be calculated by the heat balance for this junction

Q̇res(t) = Q̇1(t) + Q̇2(t) + · · ·+ Q̇n(t) (2.26)

and with equation (2.25) follows for the resulting temperature

cρV̇res(t)Tres(t) = cρV̇1(t)T1(t) + cρV̇2(t)T2(t) + · · ·+ cρV̇n(t)Tn(t)

Tres(t) =
V̇1(t)T1(t) + V̇2(t)T2(t) + · · ·+ V̇n(t)Tn(t)

V̇1(t) + V̇2(t) + · · ·+ V̇n(t)
. (2.27)

Some heating system components are modeled in Simulink and summarized in a Simulink
library called HeatLib [38]. This library is used for the following component modeling.

2.2.1 Boiler

A boiler supplies a heating system with the thermal power to satisfy the heat demand of
a building. A boiler heats the water and supplies the heating circuits with the warmed
water. The heated water with the supply temperature Ts(t) leaves the boiler with the
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volume flow V̇s(t) and the thermal power Q̇s(t). The returned water from the heat-
ing circuits with the return temperature Tr(t) flows into the boiler with the volume
flow V̇in(t) and the thermal power Q̇r(t). A burner heats the water inside the boiler with
the volume Vboiler, which leads to the thermal power Q̇P (t) and the boiler has thermal
losses Q̇b,loss(t) to the environment. Figure 2.3 shows a scheme of the boiler with the
thermal power in- and outflows.

The thermal power balance of the boiler is given by

Q̇b(t) = Q̇P (t) + Q̇r(t)− Q̇s(t)− Q̇b,loss(t). (2.28)

This leads to the differential equation for the supply temperature of the boiler

cρVboilerṪs(t) = cρV̇s(t)Tr(t)− cρV̇s(t)Ts(t)− kb,loss (Ts(t)− Tb,env)

Ṫs(t) =
1

Vboiler
V̇s(t) (Tr(t)− Ts(t))−

kb,loss
cρVboiler

(Ts(t)− Tb,env) (2.29)

where ρ and c are the density and the specific heat capacity of water, kb,loss is the heat
transfer coefficient from the boiler to the environment, Tb,env is the temperature of the
surrounding of the boiler and assuming that V̇in = V̇s. The thermal power Q̇P = αPmax
is controlled by the modulation signal α ∈ [0, 1], where Pmax is the maximum power of
the boiler.

Boiler
Burner

Q̇s

Q̇r

Q̇P

Q̇b,loss

Figure 2.3: Scheme of a Boiler

2.2.2 Consumer

The consumer model consists of two parts, the radiators model and the building model.
The supplier, e.g. a boiler, provides the radiators with the thermal power Q̇s and the ra-
diator transfers the thermal power to the building to satisfy the heat demand Q̇d. Warm
water flows into the radiator with the volume flow V̇r and the supply temperature Ts,
and leaves the radiator with the same volume flow V̇r and the return temperature Tr,
which corresponds to the returning thermal power Q̇r. Figure 2.4 shows a scheme with
the thermal in- and outflows of the radiator and the building.
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Consumer

Radiator/Building
Q̇r

Q̇s

Q̇room,loss

Figure 2.4: Scheme of a consumer

The heat balances of the radiator is given by

Q̇radiator(t) = Q̇s(t)− Q̇r(t)− Q̇d(t),

where the heat demand of the building

Q̇d(t) = kr,room (Tr(t)− Troom(t))

corresponds to the thermal power, which is transferred from the radiator to the building
and is assumed to be proportional to the difference between the return temperature Tr
and the room temperature Troom. The heat transfer proportional factor from the radiator
to the room is denoted by kr,room. The ODE of the return temperature is given by

cρVrṪr(t) = cρV̇r(t)Ts(t)− cρV̇r(t)Tr(t)− kr,room (Tr(t)− Troom(t)) ,

Ṫr(t) =
1

Vr
V̇r(t) (Ts(t)− Tr(t))−

kr,room
cρVr

(Tr(t)− Troom(t)) (2.30)

with the overall volume of the radiators Vr.

The thermal heat balance of the building is given by

Q̇room(t) = Q̇d(t)− Q̇room,loss(t).

with the thermal losses Q̇room,loss = kroom,o (Troom − Tout) from the building to the envi-
ronment, where Tout is the outside temperature and kroom,o the heat transfer coefficient
from the building to the outside. The ODE of the room temperature is given by

Ṫroom(t) =
kr,room
Croom

(Tr(t)− Troom(t))− kroom,o
Croom

(Troom(t)− Tout(t)) . (2.31)

with the thermal capacity of the building Croom.

From an application point of view, the model should be as simple as possible to reduce
the modeling effort but with respect to the task which uses the model. In this thesis not
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every room is modeled explicitly but the entire building is represented by one room with
the temperature Troom and every single radiator of the building is summarized to one
radiator with the temperature Tr, or the rooms and radiators of each floor are modeled
as a single zone. These models do not capture every single thermal transition from one
room to another but the main thermal dynamics of a floor or the building are represented
by those one zone models. Such models are sufficient to evaluate controller designs [61].

2.2.3 Valves

A three-way or four-way valve mixes together two volume flows V̇1 and V̇2 with the
temperatures T1 and T2, e.g., to reduce the supply temperature of one heating circuit
by mixing water from the return to the supply. Figure 2.5 shows the schemes of the
three-way valve. If the mixing ratio

φ3 =
V̇2

V̇1

(2.32)

is known, the resulting volume flow for a three-way valve can be calculated by

V̇m = V̇1 + V̇2 = (1 + φ3) V̇1 (2.33)

and the resulting temperature is given by

Tm =
T1V̇1 + T2V̇2

V̇1 + V̇2

=
1

1 + φ3

(T1 + φ3T2) (2.34)

The mixing ratio is determined in the interval [0, 1], which means that the volume flow V̇m
is maximum twice the volume flow V̇1. A mixing ratio of zero means that V̇1 = V̇m and
nothing is mixed to the volume flow V̇1.

φ3

T1, V̇1

T2, V̇2

Tm, V̇m

Figure 2.5: Scheme of a three-way valve

Figure 2.6 shows a scheme of the four-way valve.
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φ4

Tm,1, V̇1

T2, V̇2

Tm,2, V̇2

T1, V̇1

Figure 2.6: Scheme of a four-way valve

The resulting temperatures Tm,1 and Tm,2 of a four-way valve are given by

Tm,1 =
(1− φ4)T1V̇1 + φ4T2V̇2

(1− φ4) V̇1 + φ4V̇2

(2.35)

Tm,2 =
φ4T1V̇1 + (1− φ4)T2V̇2

φ4V̇1 + (1− φ4) V̇2

(2.36)

with the mixing ratio φ4 ∈ [0, 1].

2.2.4 Pump

The pump represents the hydraulic part of the heating system, which is described as
changes of the volume flow in dependency of the room temperature. It is assumed that
the hydraulic is adjusted and works fine. The pump determines the volume flow V̇ (t)
in dependency of the difference between the room temperature Troom(t) and a reference
room temperature Troom,r(t). For large differences between Troom(t) and Troom,r(t) the
volume flow V̇ (t) is in saturation. Such behavior is known from thermostatic valves
of radiators. The position of a thermostatic valve defines the reference room tempera-
ture Troom,r(t). The pump reproduces the impact of thermostatic valves on the volume
flow of the heating system with respect to Troom,r(t). The assumption that the difference
between Troom(t) and Troom,r(t) is not too large, which means that the thermostatic valve
is not completely open or closed, leads to the linear relation

V̇ (t) = V̇mean + bvol (Troom,r(t)− Troom(t)) (2.37)

with the slope bvol and the mean volume flow V̇mean. If the behavior of the volume
flow can not be assumed as constant or linear as described previously, then the pump
is modeled by a Black-Box-Model by using measurement data. For the estimation the
MATLAB function n4sid of the System Identification Toolbox was used [9].

2.2.5 Simple heating system model

A simple example of a heating system consists of a boiler, a radiator, a building and a
pump. Figure 2.7 shows the setting of such a heating system. The model was introduced
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in [40] and the paper shows how such a model in state space representation can be used
for different tasks like control design or fault detection. In this thesis the developed
models are used for control design only.

Boiler
Burner

Building/
Radiator

Tout

V̇Ts

Tr

Troom

Figure 2.7: Scheme of a simple heating system

The heating system is modeled as a grey box model, where only the main dynamics
are captured by the model. The supply part is represented by a boiler as introduced in
Section 2.2.1. The consumer, introduced in Section 2.2.2, which includes the radiators
and the building is modeled as a one zone model. The changes of the volume flow over
time are represented by the pump, see Section 2.2.4.
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Figure 2.8: Comparison of the measured and simulated room temperature [40]

The dynamical behavior of the heating system is described by three differential equa-
tions (2.29), (2.30) and (2.31) and the equation for the volume flow (2.37). As an exam-
ple, the ODE of the room temperature (2.31) includes the unknown parameters Croom,
kr,room and kroom,o. These three unknown parameters are estimated from measurement
values. The resulting model consists of the multilinear model class as introduced in
Section 2.1.2. Figure 2.8 shows the comparison of the measured and simulated values of
the room temperature after the parameter estimation.
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The measurement values for the parameter estimation are taken from a school building.
The results show that the simple one zone model represents the main dynamical behavior
of the heating system. The estimated parameters of this model are summarized in the
appendix section in Table A.1.

The next chapter gives an overview of different control methods for heating systems and
compares simulation results of two control strategies. A proportional-integral controller
and a model predictive controller is applied to the same heating system model.
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Chapter 3

Control methods for heating systems

The first part of this chapter gives an overview of different control methods for heating
systems or more generally heating, cooling and ventilation systems (HVAC) and refers
to the corresponding literature. It gives the reader an impression about different control
strategies, which are relevant for this thesis, with a focus on model predictive control
and iterative learning control. A more detailed description, including formulas, is given
for the controllers, which are used in this thesis. The second part introduces a heating
system model and considers two control strategies in detail, the proportional-integral
control and the model predictive control, which are used as reference control strategies
in the following chapters of this thesis.

3.1 Standard control methods

Standard control methods, such as bang-bang and three point control with discrete
control signals udis and proportional-integral-derivative (PID) control with continuous
control signals u will be introduced next. These control methods are commonly used in
many of today’s applications and also for the control of heating systems [10].

SystemController
-

Control
signals

u

Measurement
signals

y

Reference
signals

r

Error
signals

e

Disturbances ddisturb

Figure 3.1: Scheme of a standard control loop

The control goal is the tracking of a given trajectory or setpoint. Figure 3.1 shows a
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scheme of a standard control loop, with the control signals u, reference signals r, error
signals e, disturbances ddisturb and the measured output signals y. A classical reference
signal for heating systems is the reference supply temperature, e.g., for a boiler, given
by a heating curve with respect to the outside temperature.

3.1.1 Heating curve as reference signal for heating systems

A heating system, as introduced in Section 2.2, provides a building with the thermal
power to satisfy the heat demand of the building with the goal to reach a desired room
temperature. A boiler supplies the radiators with warm water with the supply tem-
perature Ts. The reference supply temperature rs is defined by a heating curve with
respect to the outside temperature Tout. The given reference temperature is inversely
related to the outside temperature, which means that the heat demand increases if the
outside temperature decreases. A simple heating curve is a linear equation defined by
the slope a and the intercept of the y-axis b and with an upper and lower limit where rs
is in saturation. The two saturation points are defined by the coordinates (Tout,1, rs,1) as
upper limit and (Tout,2, rs,2) as lower limit for the reference supply temperature, which
leads to the definition of the heating curve

rs =


rs,1 if Tout < Tout,1

a · Tout + b if Tout,1 < Tout < Tout,2

rs,2 if Tout > Tout,2.

(3.1)

Figure 3.2 presents a heating curve estimated from measurement values of a heating
system test facility for an office building of a non-residential building and will be used
in the following of this thesis.
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Figure 3.2: Heating curve estimated from measurement values
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The heat demand differs from building to building due to the building size, the architec-
ture, the materials, the location and so on. Also, the heating system of each building is
individually planned and build. This means that every building needs its own heating
curve or reference to satisfy the heat demand according to the outside temperature. Be-
cause of that, finding a suitable reference, which supplies the building with enough heat
by wasting as less energy as possible, can be very difficult.

The control of the different components of the heating system, especially the thermal
power of the boiler, and the tracking of the given references can be implemented with
different control methods. An overview is given in the following.

3.1.2 Bang-bang and three-point control

A bang-bang or two step controller switches between two states. A three-point controller
switches between three states. These controllers are used for systems which can not be
controlled continuously, for instance, a system can be switched on and off or the power of
a system can be controlled in three steps 0-1-2, e.g., zero means the system is switched off,
one means 50 % of the maximum power is provided and two means the maximum power is
provided by the system [28]. Because of the defined switching states these control signals
are belong to the class of discrete control input signals udis. The controller regulates the
system, which is influenced by disturbances, according to a reference signal or setpoint,
which means, that a measured output signal has to be fed back to the controller for
comparison with the given reference signal. Figure 3.1 shows the scheme of a standard
control loop.

To prevent the system from switching often, a hysteresis is used for such controllers. A
hysteresis means that two thresholds are defined around the setpoint. The first one de-
fines when the system switches on and the second one defines when the system switches
off again. This also means, that the measured signal oscillates between the two thresh-
olds. The distance between the two thresholds defines the switching frequency and also
the amplitude of the oscillation. According to this, a three-point controller uses two
setpoints with hystereses.

A simple example is an electric heater which switches on if the room temperature falls
below the defined threshold and switches off again if the room temperature reaches the
second threshold, with a hysteresis to prevent the heater from switching on and off again
that often. Some boilers of today’s heating systems are controlled by a three point
controller, which uses the same principle, but with additional requirements like a second
setpoint with hysteresis. The reference supply temperature rs for the boiler is given by a
heating curve, as introduced in Section 3.1.1. If the supply temperature Ts of the boiler
is below the reference temperature the boiler switches from off to the first power level or
from zero to one. According to the hysteresis the boiler switches off again if the certain
threshold is reached. Otherwise, the boiler switches from the first power level to the
maximum power level or from one to two, and again, if the given threshold is reached
the boiler switches back from state two to one. Depending on the reference temperature
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the boiler switches off or back again to the second state and so on. If the control input
is a continuous control signal a PID controller can be used.

3.1.3 Proportional-integral-derivative control

A proportional-integral-derivative controller is a standard controller. The controller con-
sists of three parts: the proportional part, the integral part and the derivative part. A
controller without the derivative part is called proportional-integral (PI) controller. The
PID controller continuously calculates the control or input signal u(t). The PID con-
troller uses an error signal e(t), like other standard single loop controllers, which is the
deviation between a reference signal r(t) and a measured output signal y(t). The mea-
sured signal y(t) has to be fed back to the PID controller to calculate the error signal.
The PID controller adjusts the input signal u(t) of the system with the goal to minimize
the control error over time.

The error signal or control error is given by

e(t) = r(t)− y(t), (3.2)

with the reference signal r(t) and the output signal y(t). The three parts of the PID
controller, the proportional, integral and derivative part result in the computation of the
control signal

u(t) = Kpe(t) +KI

∫ t

0

e(τ)dτ +KD
de(t)

dt
, (3.3)

with the three coefficients of the proportional part Kp, the integral part KI and the
derivative part KD. The effect of the three different parts of the PID controller can be
described as follows; the proportional term changes the control signal proportional to
the control error, which means that a large positive control error leads to a proportional
large positive control signal. The integral term changes the control signal as long as the
error signal is unequal to zero. The derivative term only reacts to changes of the control
error [49]. The control loop scheme is already shown in Figure 3.1.

A PID or PI controller is used for the control of the continuous signals, like the continuous
control of the boiler power to minimize the difference between the reference supply
temperature rs and supply temperature Ts or to control a three-way valve for heating
systems.

These classical controllers are well known and common in real-time applications, also for
the control of heating systems [10]. These controllers react only on the actual output
of the plant and disturbances, which means to the present. More advanced controllers,
such as predictive controllers, consider the future behavior of the plant, whereas learning
controllers learn from the past.
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3.2 Predictive control methods

Predictive control methods use a model of the system to predict the dynamical behavior
of the plant with the advantage to take the futur dynamics of the system and the changes
of the disturbances into account for the calculation of the control signals by optimizing
a given cost function, which defines the control goal. An overview of predictive control
methods is given in [55], and with a focus on heating systems in [10].

3.2.1 Linear model predictive control

A linear model predictive controller (MPC) uses a linear model of the system for the
calculation of the control inputs. An introduction to the MPC design by using a linear
state discrete-time space model, as introduced in Section 2.1.3, is given in [54]. The MPC
uses a linear model to predict the behavior of the system for future control inputs. The
MPC calculates the optimal future input trajectory over a given prediction horizon Hp

by using a model of the system and with respect to a cost function, which defines the
control goal, e.g, minimizing the difference between the reference rmpc(k) and the output
signal y(k) with minimal control effort. The prediction horizon defines the number of
time steps k, which the controller uses to calculate the future behavior of the plant. The
controller optimizes the future input trajectory by minimizing a quadratic cost function.
The measured actual states x(k) of the plant are fed back to the controller to initialize
the model of the system for the optimization. An MPC is well suited for systems with
large time delays because of the dynamical prediction of the system by using a model.
The MPC optimization problem with a quadratic cost function and a linear state space
model is convex and can be efficiently calculated by standard quadratic solvers, which is
important for real-time applications, because the optimization results have to be available
in one sample time step [17].

MPC

Optimizer

Quadratic cost function

Model

System

Control
signals

u

Disturbances ddisturb
Disturbance

predictions ddisturb,pre

Measurement
signals
y x

Reference
signals
rmpc

Figure 3.3: Scheme of a control loop with an MPC

The system is influenced by the control signals u(k) and the disturbances ddisturb(k).
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The MPC calculates the optimal input trajectory of a given control horizon Hu, which
means Hu changes allowed but Hp time steps, by minimizing a cost function with respect
to the future behavior of the plant and the disturbance predictions ddisturb,pre(k). But
that means also that a disturbance prediction as well as the future reference trajectory
has to be available for the prediction horizon Hp. The future behavior of the plant is
calculated for different control inputs over the prediction horizon Hp, which means for Hp

time steps, and is evaluated according to the cost function

J(k) =

Hp∑
i=1

‖y(k + i)− rmpc(k + i)‖2
Q(i) +

Hu−1∑
i=0

‖∆u(k + i)‖2
R(i), (3.4)

with the input changes ∆u(k+ i) = u(k+ i)−u(k+ i−1) from one time step to another,
where i = 1, . . . , Hu and the weighting matrices Q ∈p×p and R ∈m×m. It is assumed
thatHu ≤ Hp and that ∆u(k+i) = 0 if i ≥ Hu, which means that u(k+i) = u(k+Hu−1)
if i ≥ Hu, so that the input signal does not change anymore during the optimization
process for i ≥ Hu. The system response y(k + i), i = 1, . . . , Hp, is predicted by the
model of the plant. Exemplary for the first term of (3.4) the quadratic form is defined
as follows

Hp∑
i=1

‖y(k+i)− rmpc(k+i)‖2
Q(i) =

Hp∑
i=1

(y(k+i)− rmpc(k+i))TQ(i)(y(k+i)− rmpc(k+i)).

The cost function (3.4) is minimized by solving the optimization problem

min
u∈U

J(k) s.t. umin ≤ u(k) ≤ umax, (3.5)

where U is the set of optimization variables and with constraints on the input signals.
The weighting matricesQ andR are used to adjust the reference tracking and the control
effort. An increase of R penalizes the changes of the control signals more, which results
generally in a slower reference tracking. Otherwise, an increase of Q weights the output
reference tracking more, which in general leads to a larger control effort. This means
there is always a trade off between the reference tracking and control effort. This is not
only true for MPC, but also for other control strategies with reference tracking.

The optimization of the cost function is solved in every time step for the entire prediction
horizon, but only the first element of the input trajectory is applied to the plant. This
concept is called the moving horizon principle.

3.2.2 Economic model predictive control

An economic model predictive controller (EMPC) uses the same principle as the MPC.
The input trajectory of a given prediction horizon is calculated by optimizing a cost
function with respect to a linear model of the system. But, insteadt of a quadratic
cost function a constrained linear cost function is used and every input variable can be
individually weighted or rated by economic costs, which leads to an EMPC [12, 25].
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This means, that economic aspects define the goals of advanced control strategies, like
cost savings, and because of the linear cost function an economic optimization can be
performed [68].

EMPC

Optimizer

Linear cost function

Model

System

Control
signals

u

Disturbances ddisturb
Disturbance

predictions ddisturb,pre

Measurement
signals
y x

Figure 3.4: Scheme of a control loop with an EMPC

Figure 3.4 shows a scheme of the control loop with an EMPC. For an EMPC with
continuous control signals the linear cost function is given by

J(u) =

Hp−1∑
i=0

cTu(k + i) =

Hp−1∑
i=0

(c1u1(k + i) + . . .+ cmum(k + i)) (3.6)

with the weighting factors or economic costs cj, the optimization variables uj and with
the index j = 1, . . . ,m, where m is the number of inputs, which also corresponds to the
number of optimization variables. The cost function shows that no deviation from a
reference is evaluated but the control signals are rated by individual costs. Minimizing
the cost function J(u) without constraints would lead to minus infinity, due to the
linearity of the cost function and the fact, that the range of optimization variables are
not resctricted. Because of that, the optimization is performed with constraints, which
leads to the optimization problem [25, 30]

min
u
J(u) (3.7)

s.t. x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

umin ≤u(k) ≤ umax

∆umin ≤∆u(k) ≤ ∆umax

ymin ≤y(k) ≤ ymax.

(3.8)

The optimization is calculated with respect to the linear state space model of the system.
The measured actual states x(k) of the plant are fed back to the controller to initialize
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the model of the system for the optimization. Additionally, the input signals u(k), the
outputs signals y(k) and the changes of the input signals ∆u(k) are restricted with
lower and upper limits for the optimization. The result of (3.7) is the input signals with
minimized costs for the entire prediction horizon. For the EMPC application also the
moving horizon principle is used.

3.2.3 Nonlinear model predictive control

A nonlinear model predictive controller (NMPC) uses the introduced principles of model
predictive control. If a linear model is not accurate enough to represent the dynamical
behavior of the plant and nonlinear effects have to be taken into account, the resulting
model is a nonlinear model. Using a nonlinear model for the MPC leads to a nonlinear
MPC problem [26]. In general, the NMPC optimization problem is not convex, which
can lead to a high computational effort. This causes the problem for applications, that
on the one hand, the global optimum is not always found and on the other hand, the
optimization time increases due to the complexity of the problem and can easily be
longer than the sample time, which means that the optimization result is not solved
in one time step [17]. But nevertheless, this can also happen using a linear MPC with
a convex optimization problem. The sample time has to chosen in accordance to the
complexity of the optimization problem.

3.3 Data-based control methods

Data-based control methods are a large field of control methods, which use collected
data of a system for calculating the input signals of next iterations, adjusting model or
control parameters or use the data to learn from the past. Data-based methods, like
machine learning or artificial neuronal networks are not in focus of this thesis and will
be not considered any further. A short summary on adaptive control will be given next,
but is not in the focus of this thesis. A detailed description on iterative learning control
will be stated next.

3.3.1 Adaptive control

Adaptive control is used to adapt the model parameters of a system or a controller
by using the measurement data of the system, which are fed back to the controller.
Processes can be changed or the environment and disturbances differ over time. If the
system dynamics vary, the initial set of parameters are not suitable anymore [37]. For
example, the mass of an airplane changes due to the fuel consumption during the flight.
An adaptive controller takes the changes of a system or process into account. On the
one hand, if a model is used for control purposes the adaptive controller adjusts the
model parameter to the new environmental conditions. On the other hand, the adaptive
controller can be used for tuning the parameters of ancillary controllers. One known field
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of adaptive control is aircrafts where the controllers have to deal with different masses
and Mach numbers [15, 74]. In the field of heating systems for buildings adaptive control
methods are also applied. For example, a self-tuning controller for the optimum start
time of the heating system is investigated in [27] and an adaptive predictive controller
for a floor heating system is introduced in [20].

3.3.2 Iterative learning control

Iterative learning control (ILC) is based on the idea that the performace of a system,
which executes the same task again and again, can be improved by learning from previous
trials or iterations [18, 76]. This is well known and established for industrial periodic
processes where the same task is performed multiple times. Also for periodic references
or periodic disturbances an ILC is a suitable choice. The ILC uses the measurement data
of a past iteration to calculate the input trajectory of the next iteration. This means,
that the performance increases from one iteration to the next iteration if the process has
the same periodicity from one iteration to the next iteration.

A basic ILC algorithm calculates the input signal of the next iteration ud+1(k) by using
the input signal of the last iteration ud(k) and the deviation of the output signal yd(k)
from the reference signal rilc(k), weighted by the learning gain γ ∈ R, [11]

ud+1(k) = ud(k) + γ (rilc(k)− yd(k)) = ud(k) + γed(k), (3.9)

with the index of the iteration d ∈ N and the error signal ed(k), which is deviation
from the reference ed(k) = rilc(k)− yd(k). As before, k denotes the discrete time index.
Figure 3.5 shows a scheme of the control loop with the system and the ILC.

System

Data storage
(One iteration d)

ILC

Reference
signals
rilc

ud+1

Control signals
(next iteration)

ed

Measurement
signals
yd

ed

Error signals Control signals
ud

-

Figure 3.5: Scheme of a system with an ILC

The input and error data of the last iteration d have to be stored for the calculation of
the ILC update (3.9) and the input signals are calculated for the entire next iteration.
The number of stored elements for one signal is given by the quotient of the time length
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of one iteration tt and the sample time ts, which results in the number of samples per
iteration Nm.

The focus in the following is on the iterative learning control for the adjustment of
the control signals or the references by using measurement data and not on the adaptive
control where the model parameters or controller parameters are adjusted. Also different
predictive control approaches will be investigated. Real-time implementations of the
presented control strategies will be applied to heating systems.

3.4 Control for a heating system example

The common control strategy for heating systems is a proportional-integral controller,
where the reference is the supply temperature given by a heating curve with respect to
the outside temperature. Another control strategy which is often discussed in literature
is an MPC, which uses a linear model of the plant and takes the weather forecast into
account. Because of this, a heating system example is introduced with the two well
known control strategies, the PI controller and the MPC. The simulation results of these
examples will be compared to each other and serve as basis for further discussions. For
control systems the controllability and observability are important properties for the
regulation of the system [50]. The used state space models should be controllable and
observable. This is checked and true for all models used in this thesis. It is also assumed
that all states are measurable, otherwise this is stated in the text.

3.4.1 Heating system model

The heating system consists of a supplier and a consumer and the single components are
introduced in Section 2.2. Figure 3.6 shows a scheme of the heating system. The supplier
includes a boiler with the burner, which satisfies the heat demand of the consumer. The
signal α ∈ [0, 1] controls the thermal power of the burner. The consumer contains the
building and the radiators. These components are modeled by heat balances according to
the equations (2.29), (2.30), and (2.31). The pump provides a volume flow V̇ . The model
of the four-way valve is a linear black-box model, which is estimated by measurement
data and includes two states, three inputs and two outputs. The inputs of the black-
box model are the supply temperature of the boiler Ts,b, the return temperature of the
radiator Tr,r, and the control signal of the valve φ ∈ [0, 1]. The outputs of the four-way
valve model are the supply temperature of the radiator Ts,r and the return temperature of
the boiler Tr,b. Depending on the valve position the valve mixes cold water of the radiator
return to the supply of the radiator, and warm water from the boiler supply to the boiler
return. The overall model of the heating system consists of two control signals α and φ as
inputs and two additional inputs, the outside temperature Tout and the volume flow V̇
which are interpreted as disturbance inputs. The output signals are the supply and
return temperature of the radiator Ts,r and Tr,r, the room temperature Troom, and the
supply temperature of the boiler Ts,b.
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Figure 3.6: Scheme of the heating system

The entire model of the heating system is implemented in Simulink and the unknown
parameters of the overall model are estimated and validated by measurement data us-
ing the Simulink parameter estimation tool. The Simulink model is linearized by using
the MATLAB function linmod. The resulting continuous-time state space model is dis-
cretized applying the MATLAB function c2d to get a linear discrete-time state space
model of the heating system, which is used for the MPC.

The heating system is a real prototype test facility for an office of a non-residential
building. A Figure of the plant is shown in Section 6.3.1. PI control is a standard
control strategy for heating systems. The reference is the supply temperature calculated
by a heating curve with respect to the outside temperature. The results of the simulation
with the PI controller is compared to the simulation results with an MPC.

3.4.2 Proportional-integral control for a heating system

PI control is one of the standard control strategies and a special form of the general PID
controller [49]. The PID controller is introduced in Section 3.1.3 and Figure 3.1 shows a
scheme of the control loop.

The control error (3.2) is used to calculate the input signals u(t). For the heating system
example the control error is the difference between the reference supply temperature rs
and the supply temperature Ts and the disturbance ddisturb is the outside tempera-
ture Tout. The heating curve is introduced in Section 3.1.1 and shown in Figure 3.2. The
PI controller uses only the proportional and integral part of equation (3.3) as follows

u(t) = Kpe(t) + KI

∫ t

0

e(τ)dτ, (3.10)

The PI controller reacts on the actual control error e(t) without any knowledge about
the future dynamical behavior of the plant or the disturbances. To consider the future
dynamical behavior for the control of the heating system an MPC is used.
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3.4.3 Model predictive control for a heating system

The linear MPC calculates the control inputs u(k) by using a discrete-time linear state
space model of the plant. Basics of model predictive control are introduced in Sec-
tion 3.2.1. The linearized model of the heating system, as introduced in Section 3.4.1, is
used to predict the system behavior for future control inputs. The optimal future input
trajectory is calculated by minimizing the quadratic cost function (3.4) with respect to
the system model. Figure 3.3 shows the control loop of a system with an MPC.

The heating system is influenced by the two control signals α and φ. The disturbance
signal ddisturb is the outside temperature Tout and the disturbance prediction ddisturb,pre
is the outside temperature forecast Tout,for. The reference rmpc for the entire prediction
horizon Hp is calculated according to the heating curve shown in Figure 3.2 and the
outside temperature forecast Tout,for.

The MPC uses the moving horizon principle, which means that the optimization prob-
lem (3.5) is solved in every time step k, but only the first element of resulting optimal in-
put trajectory is applied to the plant. The three measured state signals

[
Ts,b Tr,r Troom

]
of the plant are fed back to the controller to initialize the model of the system in every
time step. The MPC is implemented in Simulink using the MPC block of the MATLAB
MPC Toolbox [2]. The two states of the four-way valve black-box model are not mea-
surable. They are marked as unknown for the Simulink MPC block and the two states
are estimated by the internal observer of the MPC block. A detailed description can be
found in the documentation of the MPC Toolbox [32].

The MPC optimization problem (3.5) with a quadratic cost function and linear con-
straints by using a linear model is convex and can be effecitenly computed with stan-
dard quadratic solvers [17]. This is important for MPC applications because it has to
be ensured that the optimization result is available at the next time step. The following
Section shows a comparison of the simulation results of a PI controller and an MPC
applied to the heating system model.

3.4.4 Simulation results of a heating system example

The heating system model, as shown in Section 3.4.1, is used for simulations with a
PI controller, as introduced in Section 3.1.3 and 3.4.2, and an MPC, as described in
Section 3.2.1 and 3.4.3. The simulation results are compared to each other. The main
goal of the controllers is to keep the room temperature in a given comfort zone, which
means the rooms of the building have to be warm enough for the users. Otherwise, the
heating energy and in the end the money should not be wasted. For both controllers the
same heating curve, as presented in Figure 3.2, is used as reference supply temperature
for the simulation and the same outside temperatures Tout as disturbance signal. The
outside temperature is also used as disturbance prediction for the MPC and for the
calculation of the reference supply temperature for the prediction horizon. According to
this reference each controller uses the two control signals α and φ to adjust the supply
temperature of the radiator Ts,r. The MPC uses a discrete-time linearized model of the
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heating system and for the simulation a prediction horizon of Hp = 5 h, a control horizon
of Hu = 4 h and a sample time of ts = 60 s.
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Figure 3.7: Simulated results of the PI controller compared to the MPC controller

The comparison of simulated room temperatures are exemplarily shown for five days in
Figure 3.7. The desired comfort zone for the room temperature is defined according to
the German norm DIN-EN15251 [24]. This norm defines a comfort room temperature
of 22± 2 ◦C in winter and is indicated by the black solid lines in Figure 3.7.

The results show that the room temperatures are in the same range for both controllers
and on the upper limit of the defined comfort zone. The progression of the room temper-
atures are nearly the same, but the room temperature of the MPC is a little smoother.
The evaluation of the daily heating power over the mean values of the daily outside
temperatures for two months is presented in Figure 3.8. For most of the days the MPC
has decreased the heating power and thus the energy consumption. In total, the MPC
reduces the heating power at about 4 % for the simulated time period of two months.
This simulation shows that even for small heating systems, which includes one room only
and thus a short delay time, the MPC is able to decrease the energy consumption.
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Figure 3.8: Comparison of the heating power of the PI controller and the MPC

The comparison of the control strategy with an MPC and a PI controller has shown,
that the MPC decreases the heating power by keeping the room temperature in the
same range as with the PI controller, which points out the advantage of model predictive
control strategies with respect to the weather forecast for heating systems. Nevertheless,
a linearized model of the heating system is used, which is inherited a multilinear model.
Using a multilinear model would lead to a nonlinear MPC, which leads in general to a
complex nonlinear optimization problem. This results in the question, how the structure
of the MPC optimization problem is, if the multilinear model is used directly instead
of a linearized model? Specifically, investigations about convexity properties of the
optimization problem with a multilinear model are interesting for applications. Also the
problem to find a suitable reference trajectory for the system still remains. This opens
the question if there are predictive control methods which can keep the room temperature
in the desired comfort zone without using any reference? Otherwise, if the well known
linear MPC is used, are there possibilities to use measurement data for control, besides
the modeling part, to improve the control results of a linear MPC?

The next chapter focuses in the investigation of a model predictive control approach
without any references and the convexity properties using an MTI model for the MPC.
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Chapter 4

Predictive control for linear and
multilinear systems

The standard linear MPC with a quadratic cost function, which uses a linear state
space model, was introduced in Section 3.4.3. The results of the linear MPC depends
on the accuracy of the linear model as well as on the given reference trajectory. Due
to the multiplication of the volume flow and the temperatures, heating system models
are in the class of multilinear models. On the one hand, this leads to the question,
how the structure of the MPC optimization problem changes related to the convexity of
the problem if the multilinear model is used instead of a linearized model. On the other
hand, there is the question how the reference trajectory can be optimized or how a model
predictive control method can be applied without the use of a reference trajectory?

4.1 Economic model predictive control with continu-
ous and discrete control signals

The basic pirinciple of an EMPC is already intrudoced in Section 3.2.2. An EMPC uses
a model of the system for the prediction of the dynamical system behavior and a cost
function is optimized by an optimization algorithm, which means that the basic principle
of an EMPC is similar to the linear MPC, as introduced in Section 3.2.1. But the cost
function of the EMPC differs from the quadratic cost function of the MPC. An EMPC
uses a linear cost function (3.6). Due to the linearity of the cost function it is possible
to use economic costs in e.g. euros of a process as weighting factors. This means, that
the optimization of an EMPC can be an economic optimization and the real costs in
euro of a specific process or system are minimized. The requirement of such an economic
optimization is the knowledge about the specific process costs, otherwise it is a linear
optimization with weighting or tuning factors. The EMPC does not use and evaluate a
reference for the optimization. This is another difference to the standard MPC, where
the deviation from a reference was evaluated for the optimization.

Figure 3.4 shows the control loop of a system with an EMPC. The comparison with the
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control loop of the standard MPC, in Figure 3.3, shows that the basic concept of these
two controllers is the same. The differences are the linear cost function and the absence
of any references. An EMPC for the control of continuous control signals is introduced
and will be extended to the control of discrete and continuous control signals. Both
controllers are applied to a heating system example for the control of the heating power
of a boiler and the position of a valve. The results will be compared to the results of a
linear MPC.

4.1.1 Economic model predictive control for continuous control
signals

For an EMPC with continuous control signals the linear cost function (3.6) is already
introduced in Section 3.2.2. The result of optimization problem (3.7) is the input sig-
nals with minimized costs for the entire prediction horizon. Assuming, that the con-
straints (3.8) are linear as well as the cost function, a linear optimizer can be used for
solving the optimization problem (3.7), such as the linprog function of the MATLAB
Optimization Toolbox [6].

The linprog function of MATLAB uses the standard expression for linear programming

min
xopt

cTxopt(k) (4.1)

s.t. Aineqxopt(k) ≤ bineq (4.2)

where xopt(k) is the vector of optimization variables and the matrix Aineq and the vec-
tor bineq define the linear inequality constraints. The constraints (3.8) have to be rewrit-
ten according to the general form of inequality constraints (4.2). The temporal evolution
for the prediction horizon Hp of the state space model is written as a lifted system for
the inequality constraints.

It may not always be possible to meet the hard constraints of the optimization problem,
particularly if the system signals are close to the given constraints and the model is
initialized by the measured values for each time step k. If one signal is outside of the
defined constraints, this would lead to an infeasible optimization problem and the control
algorithm stops, e.g., for heating systems, a measured temperature is outside of the
desired range. The EMPC problem is relaxed by introducing some slack variables s(k)
for the outputs y(k) with the associated weighting factors or economic costs η. The
weighting factors η of the additional variables should be set sufficiently large, such that
the violation of the output constraints are penalized by high costs and the constraints
are met when ever possible.

This leads to the new cost function

J(u, s) =

Hp−1∑
i=0

(cTu(k + i) + ηT s(k + i))

=

Hp−1∑
i=0

(c1u1(k + i) + . . .+ cmum(k + i) + η1s1(k + i) + . . .+ ηpsp(k + i))

(4.3)
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and the optimization problem

min
u,s

J(u, s) (4.4)

s.t. x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

umin ≤u(k) ≤ umax

∆umin ≤∆u(k) ≤ ∆umax

ymin ≤y(k) + s(k)

ymax ≥y(k)− s(k)

s(k) ≥ 0,

(4.5)

with the added slack variable and the constraint that s(k) has to be greater or equal to
zero. The resulting inequality constraint matrices Aineq and bineq of the constraints (4.5)
are introduced in the appendix Section C.1.

Constant minimum and maximum values are not suitable for the constraints of any
signals, e.g., the room temperature or the supply temperature of a heating system of
non-residential buildings should be reduced during the night. With respect to this fact
the constraints (4.5) are enlarged to time dependent minimum and maximum values for
the output signals

ymin(k) ≤y(k) + s(k)

ymax(k) ≥y(k)− s(k).
(4.6)

For the application of an EMPC, the moving horizon principle is used as introduced in the
MPC Section 3.4.3 and also a disturbance prediction has to be provided. The introduced
EMPC with the cost function (4.3) and the optimization problem (4.4) is only applicable
to systems with continuous control signals. Some applications have additional discrete
control signals, like a simple signal for switching a system on and off. This leads to
the question: How can this EMPC concept be adapted to systems with discrete and
continuous control signals?

4.1.2 Economic model predictive control for discrete and contin-
uous control signals

The extension of an EMPC with only continuous signals to an EMPC with discrete and
continuous control signals changes the optimization problem from a linear optimization
problem to a mixed-integer optimization problem and thus, a nonlinear optimization
problem. A mixed-integer optimization problem can lead to high computational effort
and a lengthy solving time depending on the complexity of the problem, for instance the
number of discrete variables [17, 33]. For solving a mixed-integer optimization problem
the intlinprog function of the MATLAB Optimization Toolbox was used. The benefit
of that function is that the general structure of the EMPC optimization problem for
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continuous signals, as introduced in Section 4.1.1, is preserved. Nevertheless, the opti-
mization problem (4.4) has to be adjusted. First of all, the linear state space model is
replaced by a hybrid state space model (2.16) and (2.17), as introduced in Section 2.1.4,
with the additional discrete control inputs udis(k) ∈ Nmdis

0 .

Two new variables are introduced for each discrete input udis(k). These new variables
separate the up and down switching itself from the discrete input signals udis(k) and will
be denoted by uup(k) ∈ Nmdis

0 and udown(k) ∈ Nmdis
0 . The separation of the up and down

switching process enlarges the opportunities to rate also up and the down switching with
its own costs, besides from rating the absolute value of udis(k). The values of this three
variables at time k result in the discrete input signal of the next time step

udis(k + 1) = udis(k) + uup(k)− udown(k). (4.7)

All of these additional variables udis, uup and udown have their individual weighting
vectors cdis, cup and cdown, which also means that the up and down switching can be
associated with different costs. Furthermore, the variables uup and udown are used to
restrict the step size within one time step to another by setting an upper and lower limit
as follows

uup,min ≤uup(k) ≤ uup,max

udown,min ≤udown(k) ≤ udown,max.

These considerations lead to the new cost function

J(u,udis,uup,udown, s) =

Hp−1∑
i=0

(cTu(k + i) + cTdisudis(k + i) + cTupuup(k + i)

+ cTdownudown(k + i) + ηT s(k + i))

(4.8)

=

Hp−1∑
i=0

(c1u1(k + i) + . . .+ cmum(k + i)

+ cdis,1udis,1(k + i) + . . .+ cdis,mdis
udis,mdis

(k + i)

+ cup,1uup,1(k + i) + . . .+ cup,mdis
uup,mdis

(k + i)

+ cdown,1udown,1(k + i) + . . .+ cdown,mdis
udown,mdis

(k + i)

+ η1s1(k + i) + . . .+ ηpsp(k + i))
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and the new optimization problem

min
u,udis,uup,udown,s

J(u,udis,uup,udown, s) (4.9)

s.t. x(k + 1) = Ax(k) + Bu(k) + Bdisudis(k)

y(k) = Cx(k)

udis(k + 1) = udis(k) + uup(k)− udown(k)

umin ≤u(k) ≤ umax

∆umin ≤∆u(k) ≤ ∆umax

udis,min ≤udis(k) ≤ udis,max

uup,min ≤uup(k) ≤ uup,max

udown,min ≤udown(k) ≤ udown,max

ymin(k) ≤y(k) + s(k)

ymax(k) ≥y(k)− s(k)

s(k) ≥ 0.

(4.10)

The constraints (4.10) of the optimization problem have to rewritten according to the
general form of the inequality constraints Aineqxopt(k) ≤ bineq. Both EMPC controllers
will be applied to a heating system example.

4.1.3 Simulation results of a heating system example

First, the EMPC with continuous control signals is applied to a heating system example,
with the goal to keep the room temperature in a defined comfort zone without using
any references. Second, the EMPC with continuous and discrete control signals is ap-
plied to the same heating system, with the assumption, that one control signal is only
controllable in discrete steps. The modeling of the heating system happens as intro-
duced in Section 2.2. The heating system consists of a boiler, which satisfies the heat
demand of the consumer. The consumer includes the radiator and the building with
thermal losses to the environment. A pump provides a constant volume flow V̇ and a
four-way valve mixes cold water from the return of the radiator to the supply of the
radiator and warm water from the supply of the boiler to the return of the boiler accord-
ing to the equations (2.35) and (2.36). The estimated parameters are presented in the
appendix Section A.2. The heating system is based on a real plant, which is a heating
system test facility for an office of a non-residential building and previously introduced
in Section 3.4.1. Figure 3.6 presents a scheme of the system.

The heating system has two continuous input signals α and φ. The signal α controls
the thermal power of the boiler and the signal φ defines the mixing ratio of the four-way
valve. The model has three outputs, the supply temperature of the boiler Ts,b, the return
temperature of the radiator Tr,r and the room temperature Troom. The three outputs
are also the three states of the model. The return temperature of the boiler is denoted
by Tr,b and the supply temperature of the radiator by Ts,r. A linearized discrete-time
state space model of the system is used for the EMPC.
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For the simulation, a prediction horizon of Hp = 2 hours and a sample time of ts = 60
seconds is used. As the forecast of the outside temperature, measurement values of the
outside temperature were used. The EMPC optimization problem (3.7) for continuous
control signals is solved by using the linprog optimizer of the MATLAB Optimization
Toolbox. Table 4.1 presents the different constraints which are used for the EMPC with
continuous control signals.

Table 4.1: List of the constraints for the EMPC with continuous control signals
Parameter Lower limit daytime (nighttime) Upper limit
Troom 22 ◦C (19 ◦C) 26 ◦C
Ts,b 15 ◦C 70 ◦C
Tr,r 15 ◦C 70 ◦C
φ 0 1
α 0 1

The results of the simulation with the EMPC are compared to the results when a linear
MPC, as introduced in Section 3.4.3, controls the heating system. The simulation results
of the room temperature Troom when an EMPC controls the heating system compared
to the room temperature when an MPC controls the same heating system are shown in
Figure 4.1. Both simulations use the same outside temperatures as disturbance signal and
also the same outside temperature forecast signal, which is not an outside temperature
forecast but real measured outside temperatures and the same as the disturbance signal
itself.
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Figure 4.1: Comparison of the simulated room temperature with an MPC and an EMPC
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The simulation results of the MPC are the same as shown for the comparison with the
PI controller in Figure 3.7. The result with the EMPC shows that the room temperature
can be kept within the defined limits for the room temperature and is moving on the
lower constraint of 22 ◦C. Compared to the result with the MPC the room temperature
is decreased significantly but still fulfills the comfort requirements of the room tempera-
ture. A reduction of the room temperature leads to reduced energy consumption because
the supply temperature also decreases with the reduced room temperature. Figure 4.2
presents the evaluation of the daily heating power over the mean values of the daily
outside temperatures for two months of the heating season (February and March). The
comparison shows that the EMPC reduces the daily heating power significantly in con-
trast to the MPC with an over all reduction of about 15 %. Due to the introduced time
depending constraints of the output signals (4.6), a night setback for the heating system
is realized, which is also shown in Figure 4.1.
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Figure 4.2: Evaluation of the heating power consumption

The EMPC with discrete and continuous control signals were applied to the same heating
plant, with the assumption that the thermal power of the boiler is only adjustable by
the discrete input signal αdis witch the three levels 0-1-2. The first level means that the
boiler is switched off, the second level means that 50 % of the maximum thermal power
is provided and the third level means that the boiler provides the full thermal power.
The constraints are summarized in Table 4.2. The constraint that uup,α + udown,α is in
the interval [0, 1] ensures that the boiler is either switched up or down. The change to a
discrete control signal of the boiler also affects the model class and is part of the hybrid
state space model class as introduced in Section 2.1.4. All other parameters remain as
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before. The simulation results of the room temperature are shown in Figure 4.3. The
room temperature can also be kept in the comfort zone in the same way, even if the
boiler is only controllable by a discrete signal.

Table 4.2: List of the constraints for the EMPC with discrete and continuous control
signals

Parameter Lower limit daytime (nighttime) Upper limit
Troom 22 ◦C (19 ◦C) 26 ◦C
Ts,b 15 ◦C 70 ◦C
Tr,r 15 ◦C 70 ◦C
φ 0 1
αdis 0 2
uup,α 0 1
udown,α 0 1

uup,α + udown,α 0 1

Figure 4.4 shows the differences to the continuous controlled boiler in the supply tem-
peratures of the boilers. The supply temperature of the boiler with the discrete control
signal shows a characteristic oscillation due to the switching of the boiler.
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Figure 4.3: Simulated room temperature of an EMPC with a discrete control signal

The comparison of the time for solving the EMPC optimization problem of the two dif-
ferent controllers shows an increasing time for the EMPC from 0.07 seconds with the
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Figure 4.4: Supply temperature of an EMPC with a discrete control signal

continuous control signals to 0.11 seconds with the discrete control signal, which is equiv-
alent to a factor of 1.5. For both tests, the prediction horizon was set to Hp = 60 and the
sample time to ts = 60 seconds. For the evaluation of the optimization time duration, the
EMPC optimization problem was solved 2880 times for each controller. This corresponds
to two days by using a sample time of ts = 60 seconds. The duration is taken for every
individual optimization process and the presented values are the mean values of the 2880
measured time durations. Changing the prediction horizon from Hp = 60 to Hp = 70
affects the computation time significantly. For a prediction horizon of Hp = 70, the com-
putation time increases from 0.07 seconds to 0.09 seconds with the continuous control
signals and from 0.11 seconds to 3.7 seconds with the discrete control signal. This means,
that the optimization time with a prediction horizon of Hp = 70 increases by a factor
of 38.9 for discrete control signals compared to the computation time with the continuous
control signals. This investigation reveals, that the solving of a mixed-integer problem
is much more complex than a linear one, which leads to an increased optimization time.
The computation of the optimization problem was performed on a computer with an
Intel Core i7-3540M processor (3.0 GHz, up to 3.7 GHz, 4 MB) and 16 GB Ram.

Two economic model predictive controllers for continuous control signals as well as for
discrete and continuous control signals were introduced and applied to a heating system
example. The simulation results have shown that the room temperature can be kept
in the given comfort zones by using a constraint optimization problem without any
references, for instance a heating curve. The advantage of the EMPC is that no references
are needed and the linear cost function opens the possibility to use real costs as weighting
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factors if the process costs of the system are known. Nevertheless, the EMPC also
depends on the accuracy of the linear model. The introduced EMPC, as well as the
MPC, use a linearized model of the system. The Simulink model is linearized by using
the MATLAB function linmod. Due to the modeling of heating systems by using heat
balances, the resulting models are part of the MTI model class, which leads to the
question how are the properties of an MPC optimization problem if an MTI model is
used instead of a linear model?

4.2 Properties of the model predictive control problem
for multilinear systems

For model predictive control applications where a linear model is insufficient for the
description of the physical behavior of the plant, nonlinearities have to be taken into
account. For application areas where the system dynamics are modeled by energy, mass
or heat balances, like heating systems or chemical processes, MTI systems are suitable
to approximate the main dynamics of such systems [62]. The class of MTI models
are introduced in Section 2.1.2 and extend the class of linear systems to squares-free
multiplication of different states and inputs.

The linear discrete-time model predictive control problem was already introduced in Sec-
tion 3.4.3. The use of a linear model in combination with a quadratic cost function leads
to a convex optimization problem, which can be solved efficiently by standard quadratic
programming solvers [54]. If a linear model is not accurate enough and nonlinear effects
have to be considered, the resulting model is a nonlinear model. The use of a nonlinear
model for the MPC results in a NMPC problem. In general, the NMPC optimization
problem is non-convex, but special cases of nonlinear optimization can still be convex.
The result of a non-convex NMPC optimization is not always the global optimum and
the optimization process can lead to high computational effort [17]. Besides the mod-
eling by energy, mass or heat balances where the models are inherited in the class of
MTI models, a better approximation of the dynamical behavior of a nonlinear system
can be reached with MTI models as compared to linear models [41]. But investigations
of the structure of the model predictive control optimization problem using MTI models
are nonexistent. This leads to the question: Is the MPC optimization problem for MTI
models convex? If the optimization problem is convex, in general or for a subclass, then
the MPC optimization problem can be computed quickly and efficiently with standard
algorithms, e.g. interior-point, and results in the global optimum [17]. Some results
of the following investigation are already published in [42]. The required theorems and
lemmas are introduced and for the proofs references to the literature are given.

4.2.1 A subclass of multilinear systems

The general class of MTI models is introduced in Section 2.1.2. The investigation of the
convexity properties focuses on a single-input MTI model. A subclass of single-input
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MTI models, the so-called input linear MTI models, is investigated. In this class, the
input contributes linearly to the state equation and the models are multilinear in the
states only. This leads to the new state transition function

x(k + 1) = F̂m(x(k)) + Bu(k) (4.11)

with the state matrix F̂ ∈ Rn×2n and the input vector B ∈ Rn×1.

Example 4.1 The state transition function of an input linear MTI model with two
states and one input is given by

(
x1(k + 1)

x2(k + 1)

)
=

(
f̂1,1 f̂1,2 f̂1,3 f̂1,4

f̂2,1 f̂2,2 f̂2,3 f̂2,4

)
1

x1(k)
x2(k)

x1(k)x2(k)

+

(
b1

b2

)
u(k) .

4.2.2 Convexity properties of the optimization problem for a
subclass of multilinear systems

Solving a nonlinear optimization problem can lead to a high computational effort and
it is not assured that the global optimum is found. But if the nonlinear optimization
problem is convex, very efficient algorithms exist to solve the optimization problem and
the global optimum is found [17]. For the investigation of the convexity properties the
standard quadratic cost function

J(k) =

Hp∑
i=1

‖x(k + i)− r(k + i)‖2
Q(i)︸ ︷︷ ︸

Jx(u)

+
Hu−1∑
i=0

‖∆u(k + i)‖2
R(i)︸ ︷︷ ︸

J∆u(u)

, (4.12)

as introduced in Section 3.4.3, was used, with the input changes ∆u(k), the reference
signal r(k) and the transition function x(k + 1) = Fm(x(k),u(k)). The control horizon
is denoted by Hu and the prediction horizon by Hp, assuming that Hu ≤ Hp. It is
assumed that the two weighting matrices R(i) ≥ 0 and Q(i) ≥ 0 are diagonal matrices
with the diagonal elements qj(i) and rk(i), such that

Q(i) = diag
j=1,...,n

(qj(i)) , R(i) = diag
k=1,...,m

(rk(i)) .

The optimization problem

min
u∈U

J(k) = min
u∈U

Hp∑
i=1

‖x(k + i)− r(k + i)‖2
Q(i) +

Hu−1∑
i=0

‖∆u(k + i)‖2
R(i), (4.13)

is a minimization problem, where the vector u = (u(k), u(k + 1), ..., u(k + Hp)) ∈ U
represents the optimization variables and U the set of possible inputs. The cost func-
tion (4.12) will be minimized by finding the best input values u. If the set of optimization
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variables U and the cost function J(k) is convex, then the optimization problem without
additional constraints is convex. It is assumed that the set of optimization variables is
convex for the following discussion.

The cost function is convex if the Hessian matrix H or the second derivative of J(k),
with respect to the optimization variables, is positive semi-definite

H = ∇2J(k) ≥ 0. (4.14)

To satisfy the condition H ≥ 0, the eigenvalues λi, i = 1, . . . , Hp of the Hessian matrix H
have to be greater than or equal to zero. A detailed description of convex optimization
problems can be found in [17], as well as the methods to prove the convexity. The fact,
that the sum of convex functions results in a convex function is used to simplify the
investigation and evaluate the convexity of the two terms Jx(k) and J∆u(k) of the cost
function separately. Note that if one the two terms of the sum is convex and the other
one is non-convex does not mean that the sum of the two functions is non-convex. The
second term J∆u(k) is obviously convex because it is a sum of squared terms, independent
of the choice of Hu. This reduces the following convexity analysis to the first term Jx(k)
of the cost function. The convexity of the reduced cost function

Jx(k) =

Hp∑
i=1

‖x(k + i)− r(k + i)‖2
Q(i) (4.15)

=

Hp∑
i=1

(x(k + i)− r(k + i))TQ(i)(x(k + i)− r(k + i))

will be discussed for different prediction horizons Hp in the following.

First, a prediction horizon of one will be investigated, with the general definition of the
MTI systems (2.8), introduced in Section 2.1.2, and the restriction of a single input, the
dependence of x(k + 1) on u can be written as

x(k + 1) = F:,1:2nm(x) + F:,2n+1:2n+1m(x)u(k) (4.16)

with the two constant vectors F:,1:2nm(x) ∈ Rn and F:,2n+1:2n+1m(x) ∈ Rn. The vec-
tors F:,1:2nm(x) and F:,2n+1:2n+1m(x) are constant because they depend on the state x at
time k only, which does not change during the optimization. A MATLAB wise notation
is used and the colon means that the entire row or column of a matrix is chosen. The
notation with a number before and after the colon means, that a subset of elements of a
row or a column is chosen, e.g., for the notation 5 : 10 the elements five to ten.

Lemma 4.1 The optimization problem (4.13) of MTI systems (2.8) with one input
and a one-step prediction horizon is convex [42].

The proof of the Lemma 4.1 for the single-input MTI systems is given in [42].

The prediction horizon Hp will be extended to two. The input linear state transition
function of two time steps is given by

x(k + 2) = F̂m(x(k + 1)) + Bu(k + 1). (4.17)
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Inserting the state transition function (4.11) results in

x(k + 2) = F̂

(
1⊗
i=n

(
1

F̂i:m(x(k)) + Bu(k)

))
+ Bu(k + 1), (4.18)

and the states x(k + 2) can be written in terms of x(k).

Lemma 4.2 The optimization problem (4.13) with a two-step prediction horizon of
input linear MTI systems (4.11) without additional structural constraints is not con-
vex [42].

The lemma 4.2 is proven by a counter example [42].

The class of input linear MTI systems is, in general, not convex for a prediction horizon
of two, which means that this class has to be restricted for further investigations.

Definition 4.1 A subclass of the input linear MTI systems (4.11) is defined with some
structural restrictions to the matrices F̂ and B. These constraints on F̂ and B depend
on each other and the new matrix F̂ has to fulfill the relation

P (F̂) ≤ S (4.19)

elementwise and the required structure of F̂ is defined by the structure of the comparison
matrix S. The operator P is applied elementwise to the matrix F̂, which gives a structure
matrix of F̂ as follows

P (f̂ij) =

{
1 if f̂ij 6= 0,

0 if f̂ij = 0,
(4.20)

filled with zeros and ones. The number of nonzero elements of B is described by l

bi =

{
bi for i = 1, ..., l,

0 otherwise.
(4.21)

The construction of the comparison matrix S is given by

S = e ·

(
n⊗

k=n−l

[
1
1

]
⊗ γ

)T

. (4.22)

where the vector e ∈ Rn is filled with ones and the vector γ ∈ R2l is given by

γi =

{
1 for i = 1, . . . , 2j−1 + 1 j = 1, ..., l,

0 otherwise,
(4.23)

with i = 1, ..., 2l.
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With the new defined subclass of the input linear MTI systems the following theorem is
defined.

Theorem 4.1 The optimization problem (4.13) of an input linear MTI system (4.11)
is convex if the structure condition (4.19) is fulfilled and the prediction horizon Hp is
less or equal to 2 [42].

The proof of the Theorem 4.1 is given in [42].

The convexity of the MPC optimization problem (4.13) is proven by checking the positive
semi-definiteness of the Hessian matrix of the cost function. For the entire class of single-
input MTI systems, the MPC optimization problem is convex if a prediction horizon of
one is used. For a prediction horizon of two, a special subclass of input linear MTI
systems is defined for which the convexity of the optimization problem was shown. This
leads to the question, if there are applications which can use a prediction horizon of two
for the optimization problem.

4.2.3 Use of convexity properties for small prediction horizons
for applications

In general the optimization problem (4.13) is not convex and the optimization results
are dependent on the choice of the initial values. An example with an input linear MTI
system shows how the two step convex optimization problem can be used for the non-
convex optimization problem with a prediction horizon of ten. An input linear MTI
system with one input and two states is given with the state transition matrix and the
input vector as follows

F̂ =

[
0 0 0 1
0 0 0 0

]
, B =

[
1
1

]
.

The optimization problem (4.13) for this system is solved for a prediction horizon of ten,
which means that the problem is not convex. The two weighting matrices Q(i) and R(i)

are chosen as identity and the reference as r(k+ i) =
[
2 2

]T
, i = 1, . . . , 10. The system

input is limited to the interval [−10, 10]. The given system belongs to the subclass
of input linear MTI systems defined by (4.1), which results in a convex optimization
problem for a prediction horizon of two. Therefore, the two step optimization problem is
computed first and the resulting global optimal solution of the inputs uopt(k) and uopt(k+
1) are used as starting values for the optimization problem with a prediction horizon
of ten instead of choosing the entire initial vector randomly u0 ∈ R10. The optimal
solution uopt(k) and uopt(k + 1) of the optimization with Hp = 2 is not the optimal
solution for u(k) if Hp = 10 and is only used as first two elements of the initial vector ũ0.
The new initial vector is then given by

ũ0 =
[
uopt(k) uopt(k + 1) u0,3:10

]T
.

The optimization was solved 1000 times for both approaches with the initial vectors u0

and ũ0 and randomly different initial values. The results are compared to the solution of
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a global optimizer. The evaluation of the optimization with an interior point algorithm
with the two different initial vectors u0 and ũ0 shows, that the algorithm failed 179 times
with u0 and 48 times ũ0. A failed optimization means that the global optimum of the
cost function was not found. The comparison shows that the rate of finding the global
optimum is higher by a factor of 3.7 if the initial vector ũ0 is chosen.

Figure 4.5: Comparison of optimization result with initial values u0 and ũ0 [42]

The simulated state trajectories of the first state x1, with a prediction horizon ofHp = 10,
are shown in the first plot of Figure 4.5. The blue line of top and bottom figure represents
the result of one run if the initial vector ũ0 is used for the optimization and the red line
the result of one run if u0 is used as the initial vector. Only the optimization with the
initial vector ũ0 reached the global optimum. The second plot of Figure 4.5 shows the
trajectory of the cost function over the number of iterations. The final value of the cost
function is much smaller if ũ0 is used than with u0 and the optimization stops much
faster, i.e., with less iterations.

4.2.4 Simulation results of a heating system example

The MPC optimization is applied to a heating system example where the model belongs
to a class of input linear MTI systems. The model was introduced in [42] and only
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the general structure and the results will be stated here. The structure of the heating
system is shown in Figure 4.6 and the modeling process was performed as introduced in
Section 2.2.5.

Boiler
Burner

Building/
Radiator

V̇Ts

Tr

Troom

Figure 4.6: Scheme of a simple heating system

The discretized equations for the supply temperature Ts of the boiler (2.29), the return
temperature Tr of the radiator (2.30), the room temperature Troom of the building (2.31)
and the volume flow V̇ provided by the pump (2.37) lead to a system of discrete-time
difference equations. The model has three states,

[
Ts Tr Troom

]
and one input α,

which controls the thermal power of the boiler. The output of the system are equal to
the system states. The resulting heating system model can be described by an input
linear MTI system with the state matrix and input vector given by

F̂ =

 0 f̂1,2 f̂1,3 0 0 f̂1,6 f̂1,7 0

0 f̂2,2 f̂2,3 0 f̂2,5 f̂2,6 f̂2,7 0

f̂3,1 0 f̂3,3 0 f̂3,5 0 0 0

 , B =
[
b1 0 0

]T
.

According to the equations (4.21) and (4.23) the number of nonzero elements l = 1 and
the vector γ =

[
1 1

]T . Equation (4.22) leads to the comparison matrix

S =

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 .
The structure matrix of F̂ has to be checked by (4.19) which leads to

P (F̂) =

0 1 1 0 0 1 1 0
0 1 1 0 1 1 1 0
1 0 1 0 1 0 0 0

 ≤ S.

The model fulfills the constraints of Definition 4.1 and according to Theorem 4.1 the
MPC optimization problem of such a system is convex for a prediction horizon up to
two. The input is constrained to the interval [0, 1] and thus, the set of optimization
variables U is convex, which leads to the convex MPC optimization problem

min
u(k),u(k+1)∈U

J(u(k), u(k + 1)). (4.24)
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Any starting points u0 =
[
u0(k) u0(k + 1)

]T in [0, 1]× [0, 1] can be chosen, due to the
fact that the optimization problem is convex. The references for the three model states
are set to

r(k + 1) =
[
292K 318K 338K

]T
, r(k + 2) =

[
292K 318K 338K

]T
.

Solving the optimization problem with an interior point algorithm and different initial
values always results in the global minimum

uopt =
[
0.2285 0.4624

]T
,

and converges after a small number of iterations, which is the typical behavior for a
convex optimization problem.

This shows that the MPC optimization for a special class of input linear MTI systems
can be computed very efficiently and reliably for a prediction horizon of Hp = 2. If the
model does not belong to the class of input linear MTI systems or a larger prediction
horizon is used, then the optimization problem is not convex anymore. This leads to the
question of whether there are other possibilities to improve the performance of an linear
MPC with a convex optimization problem but using a simple linear model and the need
of a suitable reference.
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Chapter 5

Data-driven learning model predictive
control

Model predictive control applied to a heating system with respect to the weather forecast
is a promising approach for the optimization of energy consumption, [31, 60, 66] and was
already introduced in Section 3.4.3. Finding a suitable model, which represents the dy-
namical behavior of the system can be difficult and often leads to a nonlinear model and
thus to a nonlinear model predictive control problem. The nonlinear optimization often
leads to a high computational effort due to the fact that the optimization problem is not
convex. One option is to restrict the class of nonlinear models and find subclasses with a
convex optimization problem, for example the subclass of MTI models, as introduced in
Section 4.2. Such optimization problems can be computed effeciently with known algo-
rithms, [17, 54]. Another option is the use of a simple linear model for a standard linear
MPC and combine the MPC with another control strategy to improve the performance
and compensate possible control errors due to the simplicity of the linear model and
overcome the problem of finding a suitable reference trajectory.

Iterative learning control is well known in the field of periodic processes, for example the
compensation of periodic disturbances or the tracking of a periodic reference. Common
application fields are industrial processes, where the same task is performed again and
again, like reference tracking of a robot arm, [18, 76]. But also for other applications an
ILC was used, e.g. for the free electron laser (FLASH) at DESY (Deutsches Elektronen-
Synchrotron) in Hamburg [64], or for HVAC systems [23, 57, 77]. All of these applications
use only the last iteration for the calculation of the next input signal. That means that
for applications with periodic disturbances or references an ILC is a natural choice.

For the application of heating systems the periodicity occurs in the disturbances, e.g.,
the outside temperature increases during daytime and decreases during nighttime. In
comparison to industrial processes, where the same task is performed again and again,
the weather conditions can change from day to day. Because of that, learning from the
past trial is possibly not the best choice. But over a longer time period of a month or
a year, there will be historic trials with similar ambient conditions as for the next trial.
When all past trials are stored, the entire data set can be used for the choice which
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past trial best fits with the next trial on the basis of the ambient conditions. This leads
to the question how the known ILC algorithms can be used for the improvement of an
MPC? How can the stored measured data be used for control besides the modeling of the
system? If all past trials are stored how can a historic data set for the ILC be chosen?
Preliminary results to these questions are introduced in [43] and [44].

5.1 Data-driven iterative learning control for model
predictive control

5.1.1 Iterative learning control

A natural choice of periodic processes with the same periodicity from one iteration d
to the next iteration d + 1 are iterative learning algorithms. The basics of an ILC are
introduced in Section 3.3.2. Figure 3.5 shows a scheme of an ILC with the system.
The input ud(k) and error ed(k) data of the last iteration d are stored and used for the
calculation of the ILC update (3.9). The next example shows the control principle of an
ILC.

Example 5.1 Figure 5.1 (a)-(d) shows the simulation results of a linear model together
with an ILC. This examples illustrates how the ILC algorithm (3.9) works from one
iteration to another. The simulation shows how the output signal yd gets closer to the
reference rilc from iteration to iteration. The periodic reference is chosen arbitrarily
for demonstration purposes only. The example model was a linear second order state
space model with one input u and one output y. The sample time was set to ts = 0.1
seconds, the learning gain to γ = 1.2, and the input signal of the first iteration to zero.
Figure 5.1 (a) shows the simulation results of the first iteration. The other figures show
the results after the second, the sixth, and the twelfth iteration. From iteration to iteration
the output signal gets closer to the reference trajectory and tracks the reference after the
twelfth iteration.

This simple example shows the simulation results, if the input signal ud+1 is calculated
according to equation (3.9) and how the reference tracking works for a repetitive process.
An ILC is the natural choice for systems operating repetitively in a fixed time interval
with the advantage that a model of the system can be uncertain or unknown and there
are no or less information about the system structure and nonlinearity [11].
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(d) Iteration 12

Figure 5.1: Simulation results of different iterations of an ILC

The ILC algorithm (3.9) uses the last iteration only, which means the periodicity has
to occur from one iteration to the next iteration. But if the periodicity is not the same
from one iteration to another but, e.g., every fifth iteration has the same periodicity the
simple algorithm (3.9) cannot react on such periodic structure. In the next Section an
ILC approach is introduced, which chooses one iteration from all stored and available
data of past iterations to calculate the input signal of the next iteration to overcome the
problem, that only simple periodic structures can be used.
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5.1.2 Data-driven iterative learning control

The ambient conditions of some systems can change from trial to trial and thus the
periodicity. But over a longer time period there are past trials with ambient conditions
similar to the current trial. For example, for heating systems the increase and decrease
of the outside temperature varies from day to day and setting one trial as one day is a
useful choice. For such systems the input signal of the next trial cannot be calculated
according to equation (3.9). For this reason, the learning update is not derived from
the previous trial, but from a historic trial of a longer time period. A requirement is,
that the historic data of past iterations is stored in a database or another storage device
and available for the calculation of the next input signal. Thereby, the equation (3.9)
changes to

udnext(k) = uddb(k) + γeddb(k). (5.1)

The input signal udnext(k) of the next trial at time k is derived from a past trial stored
in a database or local storage device indicated by the symbol extension db, i.e. its in-
put uddb and error eddb signals. The criteria for the choice of the best stored trial is
application dependent and will be done by the so-called element selector. One criterion
for that decision is the comparison of the disturbance signals addb , e.g. the measurable
ambient conditions, of the past and the previous trials. That presumes the availability
of a prediction of the disturbance signal apre and the ambient conditions, respectively.
Additionally to the input uddb and error eddb signals of every trial, the disturbance sig-
nals ad have to be stored in a database as well. The ILC, which uses the stored data
of the historic trials will be called data-driven ILC in the following. Figure 5.2 shows a
scheme of the control loop with a system and a data-driven ILC.

System

Element selector

Data-driven ILC

rilc

udnext

apre ad

ed

yd

eddb uddb

-

Figure 5.2: Scheme of a system with a data-driven ILC

Two decision criteria are defined for the element selector. The sum of squares of the
difference at time k, between the stored disturbance signal addb of the past trials and the
prediction of the disturbance apre of the next trial can be used as a similarity measure [43]

ET (ddb) =
∑
k

(addb(k)− apre(k))2. (5.2)
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Additionally, a standard squared error performance measure

Ee(ddb) =
∑
k

(rilc(k)− yddb(k))2 =
∑
k

e2
ddb

(k) (5.3)

is used. The performance measure evaluates the deviation between the output sig-
nal yd(k) and the reference rilc(k) of each past iteration. This leads to an optimization
problem

min
ddb∈D

Ee(ddb), s.t.ET (ddb) < EM , (5.4)

with the set of the historic iterations D and a tuning parameter EM giving a maximum
allowed non-similarity of the ambient conditions, due to the fact that in many cases the
minimum of equation (5.2) and equation (5.3) are not connected to the same iteration.
The choice of the tuning parameter EM influences the solvability of the optimization
problem (5.4) and leads to an infeasable optimization problem if no value ET (ddb) < EM
exists. Especially for the start-up period of the data-driven ILC with less historic data,
the choice of EM is critical. One option to relax the start-up problem is to collect data
first and start the data-driven ILC after the data is taken, but with the disadvantage
that the data-driven ILC cannot run from the beginning. Another option is to start with
a very relaxed limit EM and tighten the limit from time to time, with the disadvantage
of starting with a higher allowed non-similarity but the advantage that the data-driven
ILC can be used from the very beginning. An heuristic approach can be used to set EM
if historic data already exists by evaluating (5.2). The solution of the optimization
problem (5.4) gives the trial ddb, which is used for the calculation of the ILC update (5.1).

For data-driven ILC, the error ed, input ud and disturbance ad signals of all historic
trials have to be available and stored in a database or a local storage device. The storage
demand is given by the product of the samples per iteration Nm and the available past
iterations Nt.

5.1.3 A combined iterative learning model predictive controller

The data-driven ILC uses the historic data to calculate the input signal of the next
iteration, but do not consider the future dynamical behavior of the system, e.g. by using
a model. The model predictive controller uses a model to predict the dynamical behavior
of the system, so that the controller can react early to changes in the environmental
conditions, but do not learn from the past. A combined control strategy with a data-
driven ILC and an MPC would learn from the past and take the future dynamical
behavior into account.

The MPC part uses the standard linear discrete-time model predictive control as intro-
duced in Section 3.4.3 with the definitions of the cost function (3.4) and optimization
problem (3.5).

Finding a suitable reference trajectory rmpc for the MPC can be difficult. Because of
that, and due to the simplicity of the linear model, a data-driven ILC will be used to
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adjust the chosen reference r to a new reference for the MPC

rmpc(k) = r(k) + udnext(k). (5.5)

The signal udnext(k) is calculated according to equation (5.1).

System MPC

Element selector

Data-driven ILC

ddisturb,preddisturb

rilc

udnext

apre ad

ed

yd

y

eddb uddb

rrmpc

-

Figure 5.3: Scheme of a system with a MPC and a data-driven ILC

Figure 5.3 shows a scheme of the control loop with the system the MPC and the ad-
ditional data-driven ILC. This data-driven learning MPC will be applied to a heating
system example.

5.1.4 Simulation results for a heating system example

The model of the heating system used for the simulation is already introduced in Sec-
tion 3.4.1 and is a prototype test facility for an office in a non-residential building.
Figure 3.6 shows a scheme of the heating system.

The MPC uses a linearized state space model of the introduced heating system model, as
introduced in Section 3.4.1, to calculate the two input signals α and φ. The reference of
the MPC is given for the supply temperature of the radiator. The reference r is calculated
by a simple heating curve with respect to the outside temperature forecast Tout,for. The
heating curve was estimated from measurement values of the plant and was already shown
in Figure 3.1.1. The data-driven ILC adjusts this reference r according to equation (5.5)
which results in the new reference rmpc for the MPC. As introduced before, the MPC uses
the moving horizon principle with the prediction horizon Hp and the control horizon Hu.
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Figure 5.4: Different daily profiles of the outside temperature

The periodic disturbances of a heating system are the daily profiles of the outside tem-
perature. Figure 5.4 shows a good example of the increasing and decreasing outside
temperature during day and night, as well as, the changes from day to day, which sug-
gests the use of a data-driven ILC. The outside temperature forecast, shown in red and
also generated from measurement data, illustrates the differences, but also the similarities
between the forecast and some of the past outside temperature profiles.

The comparison of the outside temperatures of different days with the generated outside
temperature forecast shows, that the use of the data from Monday makes more sense
for the calculation of the learning update (5.1), than the use of the data from Thursday,
according to the outside temperature profiles. Therefore, a natural choice for the length
of one iteration d is one day and will be used in the following. Nevertheless, choosing
another time period, e.g. one week if the occupants follow a weekly rythm could also be
a suitable choice but with the drawback that the update calculation is performed once
a week only, which slows down the learning process. Choosing shorter time periods like
one hour would lead to a faster learning process but the natural heat demand periodicity
for buildings is one day due to the increasing and decreasing outside temperature and
the day and night cycle of the occupants.
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Figure 5.5: Results of the optimization problem (5.4)

The data-driven ILC optimizes the reference for the MPC, as presented in Figure 5.3, to
compensate the periodic disturbances due to the outside temperature profile. The goal
of the data-driven ILC is to maintain the room temperature in a specific comfort zone.
Because of that, the reference of the ILC rilc is a profile of the desired room temperature,
with a difference between day and night. At daytime, the reference room temperature
is chosen according to the German norm DIN-EN15251 [24]. This norm prescribes the
comfort room temperature to be 22±2 ◦C, during winter when the outside temperature is
below 16 ◦C. The data-driven ILC uses the outside temperature as the ambient condition
and the outside temperature forecast for the calculation of the similarity criterion (5.2).
This means that the outside temperature forecast is used for both controllers, the MPC
and the data-driven ILC.

Figure 5.5 shows the evaluation of the optimization problem (5.4) with the outside tem-
perature forecast of one iteration as ambient conditions prediction apre, which means the
forecast of one day due to previous discussed fact that one iteration is set to one day for
heating system applications. The x-axis represents the performance criterion (5.3) and
the y-axis the similarity criterion (5.2). The smaller the values of the similarity and the
performance criterion the better. Every single black square represents the evaluation of
one past iteration (day) and the red square marks the chosen iteration (day),
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Figure 5.6: Results of the optimization problem (5.4) for two different predictions apre
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which is the past iteration with the smallest performance value and a similarity value
below the constant criterion EM .

The Figures 5.6 (a) and (b) illustrate the changes of the calculation results of (5.4) for
five historic days (iterations) and two different outside temperature forecasts apre.

The comparison of the two Figures (a) and (b) shows that the calculated values of the
performance criteria are fixed at the horizontal line. This follows directly from the fact
that the stored error signals eddb do not change anymore. In contrast to that, the values
of the similarity criterion vary at the vertical line for different forecasts apre. This is
illustrated by the dashed lines in Figure 5.6 (a) and (b). Due to the tuning parameter EM ,
different days are chosen for different forecasts apre. The chosen day for each outside
temperature forecast is marked with a black circle. The optimization problem (5.4)
is solved by full enumeration and the data of every new iteration is added to the end
of the entire dataset. An improvement to solve the optimization problem could be to
rearrange the historic data in increasing order of Ee, because the stored error signals eddb
do not change anymore. Then starting from the first stored trial, which is the trial with
the smallest value Ee, and check the criteria ET < EM with increasing Ee until the
condition ET < EM is true. This procedure could speedup solving of the optimization
problem because not the entire dataset has to be evaluated. But as a consequence the
data of new iterations has to be inserted with respect to the value Ee.
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Figure 5.7: Comparison of the simulation results with the MPC and the additional
data-driven ILC

For the simulation with the data-driven iterative learning model predictive controller the
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introduced model will be used, see Figure 3.6. The MPC block of the Model Predictive
Control Toolbox of MathWorks will be used for the model predictive controller [2]. A
prediction horizon of Hp = 5 hours, a control horizon of Hu = 4 hours, a learning gain
of γ = 2, and a sample time of ts = 60 seconds was used. First, simulation was performed
with the MPC only. The second time, the additional ILC starts working, with the same
simulation parameters, outside temperature profile and heating curve as before. The
reference room temperature was set to 21 ◦C at daytime with a reduction of 2 ◦C during
the night.

The stored historic data sets of eddb and uddb of the past days are generated by simulation.
The associated stored outside temperature profiles belong to real measured data and
were also used as disturbance signal for the simulation. The entire set of historic data
includes 25 weeks, which is nearly half a year and corresponds to one heating season.
The historic iteration is selected according to equation (5.4) for the calculation of the
ILC update (5.1).

Figure 5.7 exemplary presents five days of a two month simulation and compares the
control results of the MPC and the results of the MPC together with the additional
data-driven ILC. The solid black lines define the upper and lower limit of the comfort
zone for the room temperature Troom and the black dashed line shows the reference for the
night. The red line represents the simulation where only the model predictive controller
was used and the blue line is the result with the additional data-driven ILC.
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Figure 5.8: Heating power comparison with the MPC and the additional data-driven
ILC
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The comparison of the simulation results show that the room temperature Troom can be
kept inside the desired comfort zone at daytime by using the additional data-driven ILC.
The general reduction of the room temperature will lead to a reduction of the heating
power of the building and thus to reduced energy consumption because of the fact that
the heat demand increases and decreases with the room temperature. Additionally, the
desired room temperature reduction during the night can be reached with the combined
control strategy. The defined reference reduction of 2 ◦C leads to the room temperatures
outside the comfort zone at nighttime, which is tolerable because it is a non-residential
building and primarily used at daytime.

The room temperature reduction takes place for all simulated days with the combined
control strategy, even if the reduction is not as strong for every day as shown in Figure 5.7,
the heating power is reduced for every day. The evaluation of the heating power is
presented in Figure 5.8 and shows the daily heating power of two months plotted over
the daily mean values of the outside temperature.

The heating power is decreased in a significant manner for every day if the combined
algorithm controls the heating system. The overall heating power reduction of these
simulation is up to 11 %.

The storage of the data of every past iteration leads to an increasing storage demand.
For devices and implementation hardware without access to a large storage device or
a database, a storage demand reduction is necessary to make the algorithm applicable.
This leads to the question how the storage demand can be reduced and how the storage
demand reduction methods can be applied to the data-driven ILC.

5.2 Tensor based methods for data-driven iterative learn-
ing control

The control algorithm of a data-driven ILC, as introduced in section 5.1.2, collects and
stores the data of all past trials. Not every automation system has access to a database or
large local storage devices. Because of that, from an application point of view, it would
be very useful to reduce the storage demand of the data to make this algorithm applicable
on automation systems without network access and limited local storage devices. This
leads to the questions: How can the storage demand be reduced? How can the calculation
of the comparison criteria be performed with a compressed data set? And how does the
data compression affect the results of the data-driven learning MPC?

Generally, data can be rearranged and stored in a tensor, which means allocation as
multi-index array. For all kinds of data, this is possible in an arbitrary way, but many
data sets have an internal structure, which can be used to adjust the dimensions of the
tensor. In the following, a tensor based data-driven iterative learning controller will be
introduced and a heating system example illustrates how natural data structures can be
used to adjust the tensor dimensions. Preliminary results were introduced in [44].
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5.2.1 Tensor algebra

A standard definition of a tensor and some mathematical operations, for instance the
contracted product or the k-mode product, as well as the canonical polyadic (CP) de-
composed tensor, will be used and can be found, e.g., in [21] or [36].

Definition 5.1 A tensor of order n is a n-way array

T ∈ RI1×I2×···×In . (5.6)

The elements ti1,i2,...,in of the tensor are indexed by ij ∈ {1, 2, . . . , Ij} for j = 1, . . . , n.

Definition 5.2 The outer product of the tensor X of the dimension I1 × I2 × · · · × In
and the tensor Y of the dimension J1 × J2 × · · · × Jm is defined as follows

Z = X ◦ Y ∈ RI1×I2×···×In×J1×J2×···×Jm , (5.7)

with the elements of Z

zi1,...,in,j1,...,jm = xi1,...,inyj1,...,jm . (5.8)

Example 5.2 The outer product of a vector a ∈ RI and a vector b ∈ RJ results in a
matrix

C = a ◦ b =

a1
...
aI

(b1 · · · bJ
)

=


a1b1 · · · a1bJ
a2b1 · · · a2bJ
...

...
...

aIb1 · · · aIbJ

 ∈ RI×J .

Definition 5.3 The hadamard product of two tensors X and Y of the same dimen-
sion I1 × I2 × · · · × In is defined as the element wise product and results in a tensor

Z = X~ Y ∈ RI1×···×In (5.9)

with the elements given by

zi1,...,in = xi1,...,inyi1,...,in . (5.10)

Example 5.3 The hadamard product of two matrices A ∈ RI×J and B ∈ RI×J results
in a matrix

C = A~B =


a1,1b1,1 · · · a1,Jb1,J

a2,1b2,1 · · · a2,Jb2,J
...

...
...

aI,1bI,1 · · · aI,JbI,J

 ∈ RI×J .
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Definition 5.4 The k-mode product of a tensor X of dimension I1× I2× · · · × In and
a vector a ∈ RIk results in a tensor Y ∈ RI1×···×Ik−1×Ik+1×···×In

Y = X×k a, (5.11)

with the elements given by

y1,...,ik−1,ik+1,...,in =

Ik∑
ik=1

xi1,...,iNaik . (5.12)

A tensor with a large number of dimensions has a large storage demand because of the
fact that the number of elements increases exponentially if the dimensionality increases.
Common tools for memory and complexity reduction are tensor decomposition and fac-
torization methods. In various application fields where a massive amount of multidimen-
sional data is available, such as signal processing, machine learning or computational
neuroscience, these decomposition and factorization methods are used [22, 29, 36]. They
are also in the areas of fault detection [59, 72] or modeling and control [39, 47, 62, 65].
For many tensor structures decomposition algorithms exist today, such as Tucker (TU),
Hierarchical Tucker (HT), Tensor Trains (TT) or Canonical Polyadic (CP) [29, 36].

5.2.2 Canonical polyadic decomposed tensors

A canonical polyadic (CP) decomposed tensor structure retains the dimensions of the
original tensor T. Each dimension is represented by one factor matrix of the decomposed
CP tensor T̃, which is an approximate representation of T. The CP decomposition is
well established and the structure helps developing new algorithms. Thus, this thesis
focuses on the CP decomposed tensor structures. Detailed description about the CP
decomposed tensors are given in [21] or [36]. The CP decomposition algorithm applied
to a tensor T ∈ RI1×···×In leads to a decomposed tensor T̃ ∈ RI1×···×In . The CP tensor is
represented by the factor matrices Ti ∈ RIi×R (i = 1, . . . , n) of rank R. The approximate
CP tensor T̃ is given by the factor matrices and the sum of outer products of the column
vectors ti,r ∈ RIi of these factor matrices

T ≈ T̃ = λ[T1,T2, · · · ,Tn] =
R∑
r=1

λrt1,r ◦ t2,r ◦ · · · ◦ tn,r, (5.13)

weighted by the elements of the weighting vector λ ∈ R1×R. It is assumed that λ is
a vector of ones, i.e. λ = (1 1 · · · 1)T if no weighting vector is given. The CP
decomposition reduces the storage demand in a significant manner because only the
factor matrices Ti have to be stored and not the full tensor T̃. This means that the
demand depends on the dimensionality of the tensor and the decomposition rank R,
which results in a reduction from I1 · I2 · . . . · In elements of the full representation
to (I1 + · · ·+ In)R elements of the factor matrices.
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Example 5.4 A three dimensional CP tensor of rank R is given by

T̃ = λ[T1,T2,T3] =
R∑
r=1

λrt1,r ◦ t2,r ◦ t3,r.

Figure 5.4 shows a graphical representation of such a three dimensional CP decomposed
tensor.

= λ(1) + · · ·+ λ(r)

T̃

t1,1

t2,1

t3,1

t1,R

t2,R

t3,R

Figure 5.9: Graphical representation of a three dimensional CP tensor

5.2.3 Data-driven tensor iterative learning control

A data-driven ILC, introduced in Section 5.1.2, collects and stores the disturbance, error
and input signals of all past trials in a database or a local storage device. As mentioned
before, the number of stored elements of one signal, e.g. an input signal, depends directly
on the product of the two parameters, the number of samples per trial Nm and the
number of stored past trials Nt. For the applicability of such control approaches the
storage demand reduction can be very useful for systems without any connection to large
storage resources. Tensor decomposition methods can reduce the storage demand by an
approximative representation of the original data and will be applied to the data-driven
ILC.

As introduced in Section 5.1.2 the data is stored in time series depending on the past
trials. These two-dimensional data sets can be rearranged in a multidimensional tensor
structure with arbitrary dimensions, with the only restriction that the first dimension
represents the samples of one trial ddb. For instance, a four dimensional tensor is a
natural choice for heating systems, with the samples per day as one trial, the days in a
week, the weeks in a year, and the number of years as dimensions. The four dimensional
structure fits for a single signal application and is used in the following. But this four
dimensional structure can easily extended to a five dimensional structure for multiple
signal applications, where the fifth dimension represents the different signals. The dis-
turbance signals or the measurable ambient conditions addb of each trial can be stored,
in general, in an n-dimesional tensor T ∈ RI1×···×In . This tensor has the same number
of elements as before when the data is stored as time series. The stored input and error
signals can be rearranged in the same way. The number of elements remains for the
tensorized structure with no reduction effects on the storage demand whereas the CP
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decomposed tensor reduces the number of stored elements in accordance to the decom-
position rank. The following discussion focuses on the tensor of the ambient conditions
and the calculation of the similarity criterion in CP decomposed tensor representation.

Similarity criterion with a decomposed tensor representation

Disturbances or ambient conditions play an important role, such as the outside tem-
perature for building data and heating systems. The ambient conditions are used for
the similarity criterion as in (5.2). A CP decomposition algorithm is applied to a data
tensor T ∈ RI1×···×In , which results in a rank R decomposed tensor T̃ ∈ RI1×···×In with
the factor matrices Ti ∈ RIi×R (i = 1, . . . , n), as shown in Section 5.2.2.

The main goal is the calculation of the similarity criterion (5.2) on the basis of the factor
matrices Ti without recomputing the full tensor T̃. The first dimension of the data
tensor T represents the samples of one trial ddb. One trial ddb equals one day for the
heating system application but is not fixed to a day and the iteration interval has to be
chosen in accordance to the application. The data is stored in the factor matrices of the
CP decomposed tensor and one trial ddb can be selected via the indices i2, . . . , in. The
CP tensor representation of the similarity criterion is given by

ẼT (i2, . . . , in) =
∑
i1

(T̃(i1, . . . , in)− apre(i1))2

=
∑
i1

(T̃2(i1, . . . , in)− 2T̃(i1, . . . , in)apre(i1) + a2
pre(i1)),

(5.14)

with the data vector of the ambient condition prediction apre ∈ RI1 of the next trial. The
CP tensor ẼT with the dimension I2× · · · × In includes the results of the past trials ddb.
Each term of (5.14) can be calculated separately.

The first term
∑

i1
T̃2(i1, . . . , in) can be computed using only the factor matrices Ti. The

following shows how the square of a CP tensor T̃ can be calculated by using the factor
matrices only.

Lemma 5.1 The square of a CP tensor T̃ with the dimension I1 × · · · × In and the
factor matrices Ti ∈ RIi×R of rank R and i = 1, . . . , n, is also a CP tensor S̃ of the
same dimension with the new factor matrices Si ∈ RIi×Rmax with a maximum rank
of Rmax = R + (R2−R)

2
, introduced in [44].

Proof 5.1 The factor matrices of the new CP tensor S̃ can be calculated as follows

S̃(i1, · · · , in) := T̃2(i1, · · · , in) =

(
R∑
r=1

t1,r(i1) · · · tn,r(in)

)2

=
R∑
r=1

t2
1,r(i1) · · · t2

n,r(in) + 2
R∑
r<k

t1,r(i1)t1,k(i1) · · · tn,r(in)tn,k(in) (5.15)
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All the squared terms are represented in the first sum of equation (5.15). The squared
terms are given by the outer product of the first R column vectors si,r of the factor
matrices Si, with i = 1, . . . , n and r = 1, . . . , R,

R∑
r=1

s1,r ◦ · · · ◦ sn,r. (5.16)

The calculation of the column vectors si,r is given by

s1,r = t1,r ~ t1,r, r = 1, . . . , R

s2,r = t2,r ~ t2,r, r = 1, . . . , R

...
...

...
sn,r = tn,r ~ tn,r, r = 1, . . . , R.

All the cross coupling terms, i.e. the second element of the sum (5.15) can be writ-
ten as an outer product of the last R2−R

2
column vectors si,r of the factor matrices Si,

with i = 1, . . . , n and r = R + 1, . . . , Rmax ,

Rmax∑
r=R+1

s1,r ◦ · · · ◦ sn,r. (5.17)

The column vectors si,r can be calculated as follows

s1,R+1 = 2t1,1 ~ t1,2, · · · , s1,Rmax = 2t1,R−1 ~ t1,R

s2,R+1 = t2,1 ~ t2,2, · · · , s2,Rmax = t2,R−1 ~ t2,R

...
...

...
...

...
sn,R+1 = tn,1 ~ tn,2, · · · , sn,Rmax = tn,R−1 ~ tn,R.

The result is, that the CP tensor S̃ is equal to the squared CP tensor T̃

T̃2 =

(
R∑
r=1

t1,r ◦ · · · ◦ tn,r

)2

=
R∑
r=1

s1,r ◦ · · · ◦ sn,r +
Rmax∑
r=R+1

s1,r ◦ · · · ◦ sn,r = S̃. (5.18)

The square of a CP tensor is also represented by a CP tensor with a new rank. The cal-
culations are performed with the decomposed factors without recomputing the full tensor.
An increasing CP decomposition rank leads to a higher rank of the resulting squared CP
tensor, but the dimensionality remains as before. The higher rank leads to more internal
memory demand but not to a higher local storage demand because every iteration needs
a new calculation of the similarity criterion for the evaluation of the optimization (5.4)
but no long term storage after the optimization is done.

Example 5.5 The squared three dimensional rank two CP tensor T̃ ∈ RI1×I2×I3 results
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in a CP tensor S̃ ∈ RI1×I2×I3 with the new rank Rmax = 3 and the same dimensionality

T̃2(i1, i2, i3) =

(
2∑
r=1

t1,r(i1)t2,r(i2)t3,r(i3)

)2

= (t21,1(i1)t22,1(i2)t23,1(i3) + 2t1,1(i1)t1,2(i1)t2,1(i2)t2,2(i2)t3,1(i3)t3,2(i3)

+ t21,2(i1)t22,2(i2)t23,2(i3)) = S̃(i1, i2, i3).

The factor matrices Si ∈ RIi×3, i = 1, 2, 3 are given by

S1 = [t1,1 ~ t1,1, t1,2 ~ t1,2, 2t1,1 ~ t1,2]

S2 = [t2,1 ~ t2,1, t2,2 ~ t2,2, t2,1 ~ t2,2]

S3 = [t3,1 ~ t3,1, t3,2 ~ t3,2, t3,1 ~ t3,2]

The k-mode product ×k of the first mode with a vector O ∈ RI1 of ones is applied after
computing T̃2 of the first term

∑
i1
T̃2(i1, . . . , in), which results in

Ỹ1(i2, . . . , in) =
∑
i1

(
R∑
r=1

t1,r(i1)t2,r(i2) · · · tn,r(in)

)2

(5.19)

=

(
R∑
r=1

t1,r(i1)t2,r(i2) · · · tn,r(in)

)2

×1 O, (5.20)

with the dimension I2 × · · · × In . The computation of the k-mode product in CP rep-
resentation without recomputing the full tensor is already implemented as MATLAB
function, e.g., in the tensor toolbox [13].

The second term
∑

i1
(−2T̃(i1, · · · , in)apre(i1)) of equation (5.15)is calculated by the k-

mode product of the first mode, which results in a I2 × · · · × In dimensional CP tensor

Ỹ2 = −2T̃×1 apre. (5.21)

The third term
∑

i1
a2
pre(i1) is constant for every index il, l = 2, . . . , n.

The similarity criterion (5.2) can be calculated with the factor matrices of the CP ten-
sor without recomputing the full tensor representation retaining the benefits of the CP
decomposition. The resulting values of the past trials ddb are given by the CP ten-
sor ẼT ∈ RI2×···×In .

This investigation has shown how tensors can be used for a data-driven ILC, which results
in a data-driven tensor ILC. The input, error and disturbance signals are stored in a ten-
sor structure with arbitrary dimensions, with the only assumption, that the first tensor
dimension represents the samples per trial. The similarity criterion can be calculated by
using the factor matrices of the decomposed CP tensor. The number of stored elements
of the ambient conditions is equal to the product Nm ·Nt in matrix representation. The
sum of the dimensions multiplied by the rank of the factor matrices

∑
i Ii ·R, i = 1, . . . , n

gives the number of elements of the CP tensor representation. Thus, the reduction of
the storage demand depends on the dimensionality of the data tensor and the rank R of
the CP decomposed tensor for the ambient conditions.
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5.2.4 Decision process for seasonal structured data on the basis
of a decomposed tensor

The ambient conditions and disturbances, such as the outside temperature for heating
systems, play an important role. Due to social impacts, building data often shows a
weekly structure, which means that the data of Fridays is similar to other Fridays and
less to Saturdays, etc. For example an office building or school is more often occupied
during the week than on weekends. Therefore, a four dimensional tensor structure for the
data storage T ∈ RI1×I2×I3×I4 is a natural choice if a single signal is used. The number
of samples in a day is the first dimension I1, the number of days in a week is the second
dimension I2, the number of weeks in a year is the third dimension I3 and the fourth
dimension I4 is the number of years. The application of a CP decomposition algorithm
to the data tensor T for storage demand reduction leads to the decomposed tensor T̃
with the rank R of one disturbance signal and the four factor matrices [T1,T2,T3,T4].
Section 5.2.3 shows the calculation of the similarity criterion with the factor matrices
without recomputing the full tensor. The data is stored in a CP tensor structure and
one trial equals one day indexed by i2, i3, i4.

For the data-driven tensor ILC, the outside temperature is already used as the ambient
conditions. The data of one year is stored in the four dimensional tensor T ∈ RI1×I2×I3×I4 .
The resulting data tensor T with the dimensions 1440 × 7 × 52 × 1 contains 524160
elements in total. The factor matrices of the CP decomposed tensor T̃ represents an
approximation of the original data tensor T, where the storage demand reduction depends
on the decomposition rank R. A rank one (R = 1) CP decomposition of the data tensor T
results in the four factor matrices

T1 ∈ R1440×1,T2 ∈ R7×1,T3 ∈ R52×1,T4 ∈ R1×1

with 1500 elements in total. This corresponds to a reduction of elements by a factor
of ≈ 350 in comparison to the data tensor T and thus to the matrix representation of
the data-driven ILC. A rank fifteen CP decomposition leads to the factor matrices

T1 ∈ R1440×15,T2 ∈ R7×15,T3 ∈ R52×15,T4 ∈ R1×15

with 22500 elements, which corresponds to a reduction by a factor of ≈ 23.

The Figure 5.10 shows the correlation between the storage demand reduction factor and
the rank of the CP decomposition for a data set of one year and a data set of two years
with the same dimensions as mentioned before. It is also shown that the storage demand
reduction factor increases if the amount of elements of the original tensor increases from
one year to two years of data.

These results show that the decomposition rank has to be chosen as low as possible for
the storage demand reduction. But, there is a trade off between the relative error of the
CP approximation, which depends on the difference between the CP tensor T̃ and the
original data tensor T. The dependency of the relative error of the CP decomposition
on the rank R for a data set of one year is shown in Figure 5.11.
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Figure 5.10: Correlation of the storage demand reduction factor and the rank
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Figure 5.12: Tout: measured - CP decomposed, R = 1
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Figure 5.13: Tout: measured - CP decomposed, R = 5
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The Figures 5.12 and 5.13 show the measured values of the outside temperature over
one year compared to the results of the approximation of a rank one and rank five CP
decomposition based on the same data sets of the outside temperature. The presented
results illustrate how the approximation quality increases from a rank one to a rank five
CP decomposition.

The outside temperature will be stored as decomposed CP tensor T̃ with different ranks
to calculate the similarity criterion (5.14). The results with the CP tensors will be
compared to the result when the original data tensor is used for the calculation.

5.2.5 Simulation results for a heating system example

The simulation was performed with a full tensor representation used to store the data and
calculate the update of the ILC. These results are compared to the simulation results
where the rank five decomposed CP tensor for the outside temperature was used for
the data storage and for the ILC update computation. For all simulations a prediction
horizon of Hp = 5 h, a control horizon of Hu = 4 h, a learning gain of γ = 2 and
a sampling time of ts = 60 s was used, which means each simulation uses the same
parameter set.

The stored values, uddb and eddb , of the data-driven ILC are calculated from simulation
results of past months. The set of available outside temperatures, error and input data
includes 25 weeks or one heating season. The CP decomposed outside temperature tensor
was generated with the tensorlab toolbox for Matlab [75].

First, the calculation of the decision criterion (5.4) with the original data tensor is
compared with the results where the CP decomposed tensors T̃ with different ranks were
used (R = 1, . . . , 20). The decision criterion is computed sixty three times with different
outside temperature predictions. Figure 5.14 presents the percentage in dependency of
the CP decomposition rank, where the calculation of (5.4) with the data tensor T leads
to the same historic day ddb as the calculation with the CP decomposed tensor T̃. This
evaluation shows a strong connection between the rank of the CP tensor, which relates
to the approximation accuracy, and the match of the computation results. A rank one
CP tensor has an accordance of only ≈ 22 %, whereas a rank twenty CP tensor has an
accordance of ≈ 99 %. For some CP decomposition ranks the accuracy decreases. The
CP tensor is an approximation of the original data and the calculation of the similarity
criterion (5.14) is calculated with the factor matrices of the CP tensor. This leads to
the fact, that the result of (5.14) differs from the result of (5.2) with the original data
and can also lead to the few drops of accuracy in Figure 5.14. But nevertheless, the over
all trend follows the expected result of an increasing accordance with an increasing CP
decomposition rank. For the first five ranks the number of matched calculations increases
rather quickly up to ≈ 82 %. Because of these results, a rank five CP decomposition is
used for the simulation to have a good accordance of ≈ 82 %, but also a storage demand
reduction by a factor of ≈ 70 for one year of measured data, as Figure 5.10 shows.
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Figure 5.14: Equal chosen past trials in dependency of the rank

The comparison of the simulation results with the original data tensor and the rank five
CP tensor leads to the same results and room temperatures for ≈ 82 % of the days,
because of the fact that the same day ddb was chosen by the optimization process (5.4).
Figure 5.15 shows the comparison of the simulation results of the room temperature for
one day, if different days ddb were chosen for the ILC update calculation. The dashed line
represents the simulation where the original data tensor of the outside temperature was
used for the calculation and the dot-dashed line shows the result where all parameters
are the same as before except that the tensor T of the outside temperature was replaced
by the rank five CP decomposed tensor T̃. The solid line shows the lower limit of the
defined comfortable room temperature prescribed by the norm [24]. The simulation
result shows that the deviation between the two curves remains under 0.5 K most of the
time, so that the room temperature stays within the defined comfort zone.

The CP decomposition reduces the storage demand in dependency of the chosen decom-
position rank in a significant manner, e.g. for two years of historic data, a full tensor with
the dimensions T ∈ R1440×7×52×2 has 1048320 elements to store, whereas a rank five CP
decomposed tensor with the four factor matrices T1 ∈ R1440×5 , T2 ∈ R7×5 , T3 ∈ R52×5 ,
and T4 ∈ R2×5 has only 7505 elements to store, which leads to a storage demand reduc-
tion by a factor of ≈ 140.
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Figure 5.15: Comparison: room temperatures, different days ddb chosen

The investigations have shown that the similarity criterion can be calculated with the
factor matrices of a CP decomposed tensor without recomputing the full tensor repre-
sentation, which leads to a data-driven tensor ILC. The accordance of the simulation
results with a CP decomposed tensor compared to the results with the original data
tensor depends also on the chosen decomposition rank, e.g., ≈ 82 % for a rank five CP
decomposed tensor. The storage demand reduction is a great benefit, particularly if the
volume of stored data increases and large storage devices are unavailable.

73



Chapter 6

Real-time tests of predictive control
algorithms for heating systems

The implementation and real-time tests of a control algorithm represent special chal-
langes, like access to a real plant, a suitable communication interface between the plant
and the hardware where the control algorithm should be implemented as well as the
hardware itself. The complexity of a real-time test is also shown by the fact that the
review paper, e.g. about MPC for HVAC systems cites many theory papers as opposed
to few application papers where real measurement data is presented [10]. For a proto-
typical implementation of control algorithms, special attention should be given to the
choice of the platform, the communication interfaces between the systems and the avail-
able programming language. All these factors influence the development of the control
algorithms, the variety of available functions and possible restrictions to the algorithm,
e.g., not every optimizer is supported by every hardware system or programming lan-
guage. The developed control algorithms of a data-driven learning model predictive
controller and an EMPC will be applied to a heating system. The real-time setups, the
used hardware devices and the measured results are presented.

6.1 Implementation hardware for the control algorithms

Two different real-time systems were available for the implementation and first tests.
One was a CompactRIO-9035 (cRIO-9035) controller from National Instruments with a
dual-core CPU processor of 1.33 GHz, a random access memory of 1 GB, a local storage
capacity of 4 GB and eight slots for I/O cards, such as I/O cards with digital and analog
inputs and outputs. Also, two standard network ports (RJ45), one display port and
two USB ports are provided by the system. This means that the real-time system can
interact with other systems via the standard network ports or analog and digital signals
of the I/O cards. Figure 6.1 shows a picture of the real-time system CompactRIO-9035.
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Figure 6.1: Real-time system cRIO

The cRIO system is programmed with the graphical programming language LabVIEW [3].
The programmed routines and functions in LabVIEW are called virtual instruments
(VIs), which can be connected with wires to propagate variables. The control algo-
rithms are developed in MATLAB and Simulink, which means, that these algorithms
have to be transferred from MATLAB and Simulink into the LabVIEW environment.
One possibility is to generate C code from the MATLAB source files with the MATLAB
Coder from Mathworks [5]. But the generation of C code is only possible if the MATLAB
functions are supported for code generation. Also Simulink models can be code gener-
ated by the Simulink Coder from Mathworks with the same limitation that the Simulink
functions used are supported for code generation [7]. In this context, a Simulink model
means not only the model of the system but also the control algorithm. The code gener-
ated Simulink model can be integrated in LabVIEW by using the software extension NI
VariStand from National Instruments [4]. Thereby, the code generated Simulink model,
which means the controller, is a LabVIEW VI with inputs and outputs and can be con-
nected with other LabVIEW functions. The definition of the inputs and outputs of the
Simulink model takes place in Simulink with the added NI VariStand Blocks library. The
controller is developed in MATLAB and Simulink and the processing of the measure-
ment data, control signals and program sequence are organized in LabVIEW. Another
possibility is to reprogram the control algorithm in LabVIEW. This path requires that
all functions, are also available in LabVIEW, especially the optimizer.

The second device was a performance real-time target machine from Speedgoat with a
four-core CPU processor of 3.5 GHz, a random access memory of 4 GB, a local storage
capacity of 60 GB and an I/O module with analog inputs and outputs, as well as, digital
inputs and outputs. Also, two standard network ports, two display ports and five USB
ports are provided by the system. Figure 6.2 shows a picture of the performance real-time
target machine.
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Figure 6.2: Real-time target machine

This target machine is programmed with MATLAB/Simulink. The developed Simulink
models can be uploaded directly to the real-time target machine via a network con-
nection. But the MATLAB and Simulink Coder have to be available, as well as, the
Simulink Real-Time toolbox [8]. Therefore, the used MATLAB and Simulink functions
have to be supported for code generation and the Simulink Real-Time Toolbox, which
leads to the same limitations for the developed algorithms as for the real-time device of
National Instruments. The connection from the Simulink model inputs and outputs to
the analog or digital inputs and outputs of the target machine are defined in Simulink
with the added Speedgoat I/O Driver Library.

Another implementation setup is required, if the developed control algorithm uses a
MATLAB function which is not supported by the MATLAB and Simulink coder. Then,
the implemented algorithm runs on a standard computer, e.g. a laptop. The program
sequence and the communication with the plant is also implemented in LabVIEW. The
difference is that the LabVIEW program calls MATLAB for solving the optimization
problem instead of using a code generated Simulink model in the LabVIEW environment,
with the benefit that all MATLAB functions are available for the control algorithm.

In general, a direct-digital-control device (DDC) is connected with the single components
of a heating system. The control algorithm of a heating system is located at the DDC, as
well as the collection of the measurement data for monitoring and control purposes. The
building automation and control networks (BACnet) protocol is used for the network
communication between the different components of the heating system, which is a stan-
dard network protocol for building automation systems. The implementation hardware
of the control algorithm, like the CompactRIO system or the laptop, is connected to the
direct-digital-control device (DDC) of the heating system and can access the control and
measurement signals via the network. The benefit of this implementation setup is, that
the given communication infrastructure of the HVAC system is retained. The DDC and
the implementation hardware communicates via the BACnet protocol, which is realized
in LabVIEW with the software tool BACnet I/P of the company OVAK Technologies.

The predictive control concepts in real-time applications need a disturbance prediction
and the possibility to access this data, e.g., for heating systems the weather forecast
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and especially the outside temperature forecast. The weather forecast station WS-K
ModBus RTU485 by the company HKW Elektronik GmbH, see Figure 6.3, provides
weather forecast data for the European region, i.e., the outside temperature forecast
on an hourly basis for the next four days. The company transmits the forecast data
over a long wave transmitter and the weather station receives the data and provides the
forecasts for further use.

Figure 6.3: Weather station

The communication of the weather station with other devices took place by the ModBus
protocol. The field server EZ Gateway ModBus to BACnet by the company Sierra
Monitor Corporation, see Figure 6.4, converts the ModBus protocol to the BACnet
protocol, with the result that the entire communication between the different devices
took place via the BACnet protocol.

Figure 6.4: Field server

The introduced components are connected through the network and communicate via the
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BACnet protocol. The DDC is the interface from the external implementation hardware
to the heating system. Figure 6.5 shows the implementation structure.
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Figure 6.5: Scheme of the implementation structure

This setting was used for the implementation of a data-driven learning MPC and for an
EMPC for a heating system. A hardware-in-the-loop (HIL) setup is used for testing the
control algorithm in real-time on the cRIO system from National Instruments.

6.2 Real-time hardware-in-the-loop tests

Hardware-in-the-loop (HIL) simulation is used to test the real-time system and new
algorithms, e.g., a control algorithm, before the algorithms were applied to the real
plant. The benefit is that the system in operation is not interrupted if something were
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to go wrong during the first tests of the new algorithm. A scheme of the HIL structure
is shown in Figure 6.6.

CompactRIO

Control algorithm

Speegoat
Model

Control
signals

Measuring
signals

Figure 6.6: Scheme of the hardware-in-the-loop structure

Two real-time systems are connected directly via analog signals. One system is used for
the control algorithm and the other one for the simulation of the dynamical behavior
of the plant by using a model of the system. The control algorithm runs on the cRIO
system and the corresponding model on the real-time target machine. Both system are
described in the Section 6.1. The HIL setup was used for first real-time tests of the
developed control algorithms.

Figure 6.7 shows the results of one real-time HIL test with a data-driven learning model
predictive controller for a heating system, compared to the Simulink simulation results
of the same system. The implemented data-driven learning model predictive control
algorithm was introduced in Section 5.1. The real plant of the heating system is a
test facility for one room of an office building. The model of that system was already
introduced in Section 3.4.1. To summarize, the heating system has two control inputs.
The thermal power of the boiler is controlled by the signal α ∈ [0, 1] and the position of
the four way valve by the signal φ ∈ [0, 1]. The two disturbance inputs are the outside
temperature Tout and the volume flow V̇ , in which V̇ is assumed to be constant for this
test. The disturbance prediction of the outside temperature for the MPC is stored at
the local memory of the real-time device and is the same for every day. The ambient
conditions, like the outside temperature, are taken from measurement data and stored
at the real-time device as well. The model of the heating system was implemented on
the Speedgoat real-time target machine.

The data-driven learning model predictive controller was implemented on the National
Instruments system CompactRIO-9030 and was transferred from MATLAB/Simulink to
LabVIEW as described in the hardware section. The data-driven ILC is used in the
same way as presented in the simulation Section 5.1.4 and adjusts the reference of the
MPC with the main goal to keep the simulated room temperature in a defined range.
The reference of the MPC was provided by a heating curve and the reference of the data-
driven ILC rilc, the room temperature, was set to 22 ◦C according to the German norm
DIN-EN15251 [24], with a reduction of 2 ◦C during the night. A control horizon Hu of
two hours and a prediction horizon Hp of three hours is used. The sampling time ts is set
to 60 seconds. All of these parameters, such as the sampling time, the ambient conditions,
the prediction horizon and so on, are used for the HIL test and for the simulation in
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MATLAB/Simulink. The three day test run was divided into two parts. On the first
two days, the MPC was applied to the system without the data-driven ILC and on the
third day the data-driven ILC was added, indicated by the vertical dot-dashed line.
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Figure 6.7: Comparison of the HIL and simulation results

The compared results of the HIL test and the simulation show no obvious differences in
the room temperatures and the supply temperatures, which means that the transfer of the
control algorithm to the real-time system was successful. The high room temperatures
of the first two days are reduced significantly on the third day, which corresponds to
the start of data-driven ILC with a reference room temperature of 22 ◦C. Also, the
analysis of the supply temperatures show that the data-driven learning MPC works as
expected. On the first two days, according to the MPC algorithm the supply temperature
follows the reference rmpc calculated by a heating curve and on the third day the supply
temperature is reduced by the added data-driven ILC, which is in line with the high
room temperatures of the first two days.

The real-time HIL test has shown that the data-driven learning model predictive control
algorithm works on the real-time system in the same way as in the simulation. This
means that the transfer from MATLAB/Simulink to the LabVIEW environment works
as expected. Also a possible influence of the implemented communication between the
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controller and the heating system, which runs as a simulation on the second real-time
device, could be investigated and did not occur. Thus, the real-time HIL test is a good
way to investigate the new algorithm under real-time conditions and remove possible
malfunction and errors from the algorithm without any impact to the real heating system
and the building users in case of failures, which is a good preparation for the application
of the algorithm to the real system.

6.3 Implementation of a data-driven learning model
predictive controller

The data-driven learning model predictive controller, introduced in Section 5.1, was
implemented to the heating system test facility for one room of an office building, intro-
duced in 3.4.1 and was previously implemented and tested in the HIL setup. The result
of the HIL test was that the data-driven learning model predictive controller runs stable
on the National Instruments real-time system CompactRIO-9030. This system is used
for the implementation of the control algorithm and the application to the real plant.
The main goal of the data-driven learning MPC is to keep the room temperature in a
desired comfort zone by adjusting the reference of the MPC, which is provided by a heat-
ing curve. First, the MPC is applied without the additional data-driven MPC to collect
the learning data for the data-driven ILC. After three days the additional data-driven
controller starts. Another aspect of the application to the test facility is the installation
of a workaround and a hardware setup for the application of new control algorithms to
real heating systems.

6.3.1 Plant - heating system prototype test facility

The heating system test facility for one room of an office building was previously men-
tioned a few times. The system consists of a boiler, a pump, a four way valve and a
radiator.

Figure 6.8 shows a picture of that heating system. A model of this heating system
was introduced in Section 3.4.1 and will also be used for the application to the real
plant. In contrast to the HIL implementation, where the disturbance of the volume
flow is assumed to be constant, the measured volume flow of each time step is used as
prediction and is kept constant over the entire prediction horizon Hp. This means, that
the volume flow is only constant during the optimization but changes from one time step
to another. The disturbance forecast of the outside temperature Tout,for was provided
daily by the weather station introduced in the hardware section, segmented in hourly
increments. The National Instrument system CompactRIO-9030 exchanges the control
and measurement signals via the network with the DDC of the heating system. The
complete implementation setup was shown in Figure 6.5.
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Figure 6.8: The test facility

6.3.2 Measured results - heating system prototype test facility

The measured results of the real-time implementation of the data-driven learning MPC
for a heating system are presented next. For the implementation the reference supply
temperature r for the MPC is calculated by a heating curve with respect to the outside
temperature forecast. The reference rilc of the data-driven ILC is set to 22 ◦C according
to the German norm DIN-EN15251 [24], with a reduction of 2 ◦C during the night, when
the office is unoccupied. The sampling time ts was set to 60 seconds, the control hori-
zon Hu to one hour and the prediction horizon Hp to two hours. The outside temperature
forecast was reloaded on a daily basis. According to this interval, also the data-driven
ILC calculates the learning update (5.1) once a day with a learning gain γ = 2.

Figure 6.9 shows the first measured results of the data-driven learning MPC implemen-
tation of a heating system. Only the MPC is applied for the first three days, due to the
fact that the data-driven ILC needs some historic data for the update calculation (5.1)
and the adjustment of the reference supply temperature according to equation (5.5).
The possibilities for the data-driven ILC start-up are already discussed in Section 5.1.2.
Another benefit is that these initial days can be used for the comparison with the days
where the data-driven ILC is added to the controller. The additional data-driven ILC
on March 27th is indicated by the vertical dashed-dot line.

The measured room temperature Troom at daytime shows high values for all days, as
Figure 6.9 shows. There are no differences between the days where the additional data-
driven ILC is in operation and the days with the MPC only. But the high values of
the room temperature correspond to the measured outside temperatures for these days,
as Figure 6.9 shows. This means, that for these six days, the outside temperature and
ambient conditions influence the room temperature in a significant way during daytime.
But, the comparison between the first three days and the last three days of Troom at
nighttime, shows that the room temperature can be reduced if the data-driven learning
MPC runs. The analysis of the supply temperature Ts,r, as shown in the last sub-
figure of 6.9, compared to the supply reference rmpc, calculated by a standard heating
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curve, shows that the data-driven ILC works as expected and reduces Ts,r, if the room
temperature is above the defined reference rilc of 22 ◦C during daytime and 20 ◦C at
nighttime.
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Figure 6.9: Measured results of the data-driven learning MPC real-time implementation

This application has shown, that the implemented data-driven learning MPC works as ex-
pected and reduces the supply temperature in accordance to the high room temperatures
even if a small number of learning data is available. The reduced supply temperature
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leads to a reduction of the heating power and thus saves energy and in the end money.
Nevertheless, a long run over several weeks would be helpful to acquire more experiences
with this real-time implementation, specifically with outside temperatures below 20 ◦C.
This long run was not done because of the end of the heating season and an increasing
outside temperatures from day to day.

6.4 Implementation of an economic model predictive
control with continuous and discrete control sig-
nals

The EMPC for continuous and discrete signals, introduced in Section 4.1.2, is applied
to a heating system of an office building. This building includes seven floors with offices
and each floor has its own heating circuit. The heat demand is satisfied by two boilers,
which cannot be controlled continuously and the heat is transferred to the offices by
radiators. The fifth floor is also supplied by an additional air ventilation system. The
EMPC is applied to the system with the goal of maintaining the room temperatures in
the defined corridors and comfort zones, without using any references to minimize the
economical costs. Another aim is the reduction of the boiler switching frequency and
energy consumption.

6.4.1 Plant - office building

The modeling of each component of the heating system would lead to a very complex
model because of the high amount of floors and offices and thus to a high computational
effort. For example, each floor includes more than thirty offices and room, respectively.
For this reason, the model was kept as simple as possible, which means that every floor
was modeled as one zone with one room temperature Troom,i (i = 0, . . . , 6) and one ra-
diator with the return temperature Tr,i. The heat demand of the heating circuits is
satisfied by two boilers with the switching control signals α1 and α2, which provide the
overall supply temperature Ts,o. The supply temperature Ts,o is continuously adjustable
for every heating circuit by a three-way valve with the control signal φi. The valve mixes
cold water from the return to the supply of the boiler which leads to the supply tem-
peratures Ts,i of the floors. A pump provides a volume flow V̇i for each floor separately.
The modeling of the consumer and the supplier was done according to the equations
introduced in Section 2.2 and identical to the process for the model of the test facility,
introduced in Section 3.4.1. A scheme of one heating circuit is shown in Figure 6.10.

The fifth floor was provided with heat by an additional air handling unit (AHU), with the
supply temperature Ts,AHU , the volume flow V̇AHU and the return temperature Tr,AHU .
Because of the absence of a three-way valve for the AHU the supply temperature Ts,AHU
is equal to Ts,o. The single return temperatures of the heating circuits are mixed together
and water with the temperature Tr,o returns to the boilers.
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Figure 6.10: Scheme of a heating circuit

The supplier consists of two boilers with a heating power of 140 kW and 230 kW, which
provides water for the heating system with the supply temperatures Ts,b1 and Ts,b2. The
boilers can only be controlled in three steps and not continuously, which means that
the control signals are discrete. Pumps for each boiler provide volume flows V̇b1 and V̇b2
with the assumption that the volume flows are constant and the pumps start if the
corresponding boiler starts. Figure 6.11 shows the supply part of the heating system.

Boiler 1

Burner 1

Boiler 2

Burner 2

α1

α2

Ts,b1

Ts,b2

Tr,b1, V̇b1

Tr,b2, V̇b2

Ts,o, V̇o

Tr,o

Figure 6.11: Scheme of the supplier

The overall supply temperature Ts,o and the volume flow V̇o are calculated according to
the equations (2.27) and (2.25)

Ts,o =
Ts,b1V̇b1 + Ts,b2V̇b2

V̇o
V̇o = V̇b1 + V̇b2.
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A hydraulic separator separates the hydraulic of the supplier and the consumer. For
simplification it is assumed that no water from return is mixed to the supply, so that
the hydraulic separator can be neglected for the model.

That results in a model with 17 states, 18 inputs and 11 outputs. The volume flows of
the heating circuits Tr,i and Tr,AHU are added as disturbance inputs to the model. The 18
inputs are separated into 9 control inputs and 9 disturbance inputs. Table 6.1 gives an
overview of the different states, inputs and outputs. All state and output signals are
measurable.

Table 6.1: List of the states, control signals, disturbances and outputs of the model
States Control signals Disturbances Outputs

Troom,0 (Ground floor) αb1 Tout Troom,0 (Ground floor)
Troom,1 (1st floor) αb2 V̇0 (Ground floor) Troom,1 (1st floor)
Troom,2 (2nd floor) φ0 (Ground floor) V̇1 (1st floor) Troom,2 (2nd floor)
Troom,3 (3rd floor) φ1 (1st floor) V̇2 (2nd floor) Troom,3 (3rd floor)
Troom,4 (4th floor) φ2 (2nd floor) V̇3 (3rd floor) Troom,4 (4th floor)
Troom,5 (5th floor) φ3 (3rd floor) V̇4 (4th floor) Troom,5 (5th floor)
Troom,6 (6th floor) φ4 (4th floor) V̇5 (5th floor) Troom,6 (6th floor)

Ts,b1 φ5 (5th floor) V̇6 (6th floor) Ts,o
Ts,b2 φ6 (6th floor) V̇AHU Tr,o

Tr,0 (Ground floor) Ts,b1
Tr,1 (1st floor) Ts,b2
Tr,2 (2nd floor)
Tr,3 (3rd floor)
Tr,4 (4th floor)
Tr,5 (5th floor)
Tr,6 (6th floor)

Tr,AHU

The model parameters estimated from measurement values are summarized in the ap-
pendix in table A.3. The model parameters were estimated in two steps with the Simulink
parameter estimation tool. Firstly, the parameters of the supply part and the consumer
of each floor are estimated separately to determine the unknown parameters. Secondly,
the entire model was used to repeat the parameter estimation starting with the prede-
fined parameters of the first estimation step. A linearization of this model is used for
the real-time implementation of the EMPC for continuous and discrete control signals.
Because of the discrete control signals of the boilers and the continuous control signals
of the three-way valves the linearized model is a linear hybrid model as introduced in
Section 2.1.4, which results in a complex mixed-integer optimization problem for the
EMPC.
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6.4.2 Measured results - office building

The EMPC algorithm is implemented to the heating system of the office building intro-
duced in 6.4.1. The algorithm runs on a laptop and communicates via the BACnet with
the DDC of the system and the standard control algorithm was overridden.

The standard control algorithm uses a heating curve for every single heating circuit or
floor, respectively, which results in seven heating curves and references Ts,i,ref . The cor-
responding supply temperatures of the particular floor are sent to the supply system
and the highest supply temperature is used as reference Ts,ref and will be provided by
the boilers. According to the heating curves, the three-way valve of each heating circuit
mixes cold water from the return to the supply according to the desired supply temper-
ature Ts,i,ref . The boilers of the system are controlled by a discrete signal, which means
that the boiler can be controlled in three steps 0-1-2, with two different heating power
levels 1 and 2 corresponding to 50 % and 100 % of the maximum power, respectively.
The first boiler has a maximum power of 175 kW and the second boiler a maximum
power of 230 kW. The boiler is switched off if the control signal is zero. According to
the reference supply temperature Ts,ref the boiler is switched to the first level if the
measured temperature Ts,o is below the reference temperature Ts,ref , and switches to the
second level to provide maximum heating power if the heating power of the first level is
not sufficient. If the measured supply temperature Ts,o has reached the reference supply
temperature, the boiler is switched off and starts again if the measured temperature falls
below the desired reference temperature. To prevent the boiler for switching with a high
frequency, a hysteresis for the supply temperature is used.

In comparison to the standard control algorithm to reach the desired supply temperatures
according to the seven heating curves, the goal of the EMPC algorithm is to maintain
the room temperature Troom,i of every floor in a defined corridor, together with a low
switching frequency of the boilers and without any references like heating curves. The
EMPC optimization problem (4.9) is solved with constraints. Table 6.2 gives an overview
of the lower and upper limits of the output and the control signals.

The lower limits of the room temperatures will be decreased by 2 ◦C during the night.
For each floor, one reference room exists where the room temperature is measured. Only
the sixth floor has no reference room or measurement sensor and a mean value of all the
other measured room temperatures is used as room temperature Troom,6. The measured
room temperatures depend on the usage and the orientation of the reference offices.
The orientation of the room defines the influence of the ambient conditions like the
solar radiation to the room temperature. That means that the limits have to be chosen
individually for every reference room and cannot be set necessarily to the same values
for every reference room. In accordance to this, the limits for the first and second floor
differ from the limits of the other floors, see Table 6.2.
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Table 6.2: Constraints of the output and control signals
Outputs Lower limit [◦C] Upper limit [◦C]

Troom,0 (Ground floor) 20 22
Troom,1 (1st floor) 21 23
Troom,2 (2nd floor) 23 25
Troom,3 (3rd floor) 20 22
Troom,4 (4th floor) 20 22
Troom,5 (5th floor) 20 22
Troom,6 (6th floor) 20 22

Ts,o 40 80
Tr,o 30 80
Ts,b1 50 80
Ts,b2 50 80
αb1 0 2
αb2 0 2

φ0 (Ground floor) 0 1
φ1 (1st floor) 0 1
φ2 (2nd floor) 0 1
φ3 (3rd floor) 0 1
φ4 (4th floor) 0 1
φ5 (5th floor) 0 1
φ6 (6th floor) 0 1

The costs or weighting parameters of the optimization variables depend on the individ-
ual system. The operational costs of the boiler with a heating power of 175 kW were
calculated to 10.6 Euro per hour. These costs include the electrical power and heating oil
consumption of the boiler. This value is adapted to the heating power of the particular
boiler. Each boiler start provokes additional costs of 0.33 cents due to heating power
losses to the environment. Changes of the valve position lead to minimal electricity costs
of 6.25 · 10−5 cent. Details about the economic cost estimation are given in [16]. These
calculated costs are included directly in the cost function (4.8) of the EMPC optimization
problem (4.9).

The application of the EMPC was performed while the offices were used as usual. For
this reason, the installation of an automatic fallback mechanism to the standard control
algorithm was necessary, to ensure that the offices were warm and the employees were
able to work as usual in case of failures. One part was a keep-alive signal, which was
sent from the EMPC algorithm and verified by the DDC. Another part of the security
arrangements was the monitoring of the room and the return temperatures, with the goal
to of preventing the building from cooling down. The fallback mechanism was located
directly on the DDC and the programming was not part of this thesis. For further
information see [16].

The implementation hardware and setup as introduced in Section 6.1 was used. The
EMPC algorithm runs on a laptop because the MATLAB optimizer is not supported for
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code generation and the algorithm can not be easily transferred to the NI cRIO system
and the LabVIEW environment. To ensure that the intlinprog function of MATLAB
returns the result of the mixed-integer optimization in one sample time step, the maximal
computation time for the optimization is set to two minutes. Beside from that, the
default options of the intlinprog function are used. The prediction horizon was set
to Hp = 2 hours and the sample time to ts = 2 minutes. Figures 6.12 and 6.13 show
the measured results of two days when the EMPC controlled the heating system. The
supply temperatures Ts,b1 and Ts,b2 are shown in Figure 6.13 and the measured room
temperatures Troom,i and the outside temperature Tout in Figure 6.12.
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Figure 6.12: Measured room temperature of the EMPC real-time implementation start-
ing from the 19th and ends on the 21st of December.

Drawing a general conclusion of the control behavior of the EMPC for this heating
system is difficult with only two days of measured data. Nevertheless, these measured

89



results show that the room temperatures remain in the defined comfort zones at daytime
(black solid lines) and the room temperatures decrease during the night but staying
inside the nighttime limits (black dashed line), as Figure 6.12 shows. Specifically the
room temperatures of the ground and third floor show a significant reduction of the
temperature during the night.
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Figure 6.13: Measured supply temperature of the EMPC real-time implementation

The reduced room temperatures lead to a decreased supply temperature at nighttime,
which is provided by the two boilers, see Figure 6.13. During the night, the supply
temperatures of the two boilers are fixed to the lower limit of 50 ◦C (black solid line).
Figure 6.14 shows the supply temperatures of the boilers when the standard algorithm
controls the heating system in a similar situation two weeks earlier. The comparison of
the supply temperatures of the two control strategies shows a significant supply tem-
perature reduction during the night when the EMPC controls the heating system. The
similarity criterion (5.2), which was introduced for the data-driven ILC for the com-
parison of the outside temperature forecast with the historic data sets of the outside
temperature, is used to find two days when the standard control algorithm controls the
heating system by comparing the outside temperature profile with the profile of the two
days when the EMPC controls the system. That results in the choice of the two days
which are presented in Figure 6.14.

These days are also used for the evaluation of the switching frequency by comparing the
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mean values of the boiler starts per day. Also, the boiler starts per day of one month
are calculated to reduce the influence of daily effects. The results are summarized in
Table 6.3.
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Figure 6.14: Measured supply temperature of the standard controller

The first boiler starts 49 (two days) and 30.07 (one month) times per day with the
standard control strategy and 14.9 times per day with the EMPC, which corresponds to
a reduction of ≈ 70 % and ≈ 50 % for the evaluated time periods. The second boiler
starts 49 (two days) and 24.20 (one month) with the standard control strategy and 16.36
times per day with the EMPC, which corresponds to a reduction of ≈ 67 % and ≈ 33 %
when the EMPC controls the heating system. These results show that the switching
frequency can be reduced significantly when the EMPC controls the heating system.
Especially for the two days with similar ambient conditions. But also if the mean values
of an entire month with different ambient conditions are used for comparison.

Table 6.3: Mean values per day of the switching frequencies of the boilers
EMPC Standard Two Days Standard Month

Boiler 1 14.90 49 30.07
Boiler 2 16.36 49 24.20

The investigation of the energy consumption with only two days of measurement data is
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difficult because of the fact that the effects, like the use of the building, the solar radiation
and other ambient conditions are not considered for the energy consumption evaluation.
Only the different outside temperatures are used in the form of the degree day number
for the comparison of annually energy consumption. For a meaningful evaluation of the
energy consumption a longer test period of measurement data is necessary, so that the
effects on a daily basis are less weighted. Nevertheless, if the two days are compared
to each other, a small amount of energy saving was found. But all of these values are
inside the scattering pattern if the daily energy consumption is plotted against the daily
mean values of the outside temperature, which means that a final conclusion of an energy
consumption reduction is not possible with only two days of measurement data.

The test with the EMPC has shown that the room temperature can be kept in the
defined corridors and the switching frequencies are reduced significantly. But also, that
the choice of the reference rooms and suitable limits are important for the EMPC control
strategy. On the one hand, if the corridor is chosen too high, the boiler will provide a
high supply temperature in order to increase the room temperature in the given corridor,
which results in an overheating of the building and a waste of energy. On the other
hand, if the corridor for the room temperature is chosen too low, the boiler will provide
a low supply temperature and the offices stay cold, which results in a higher number of
user complaints. These experiences show the significance of choosing the right limits as
constraints for the EMPC optimization problem. Furthermore, a long run of the EMPC
control algorithm would be important for the evaluation of the energy consumption and
the investigation of the control results under different ambient conditions.
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Chapter 7

Conclusion and Outlook

A conclusion and an outlook for further investigations is given next.

7.1 Conclusion

The starting point of this thesis was the application of a PI controller and an MPC for
a heating system, which are well known concepts. The comparison has shown, that a
model predictive controller reduces the heating power in the range of 4 % but the room
temperatures were nearly the same for both controllers. The application of a linear MPC
was used as reference for further investigations.

The question if a model predictive control approach can be used without using a ref-
erence was stated in Section 4.1. An EMPC for continuous control signals was applied
to a heating system with the advantage that no reference signal, like a heating curve,
was needed. The desired room temperature was defined by the constraints of the op-
timization problem. Due to the added time dependent constraints a reduction of the
room temperature during nighttime was realized. The simulation results have shown,
that the room temperature can be kept in the defined constraints and stays at the lower
limit of the comfort zone. The evaluation of the energy consumption compared to the
results when a linear MPC was used shows heating power savings of approx. 15 %.
Nevertheless, this approach still depends on the accuracy of the linear model. The ex-
tension of this approach to discrete and continuous control signals shows similar results
in simulation. But, the comparison of the computation times of the optimization prob-
lem also clarifies that the solving of a mixed integer optimization problem is much more
complex and needs more computation time. The complexity and the computation time
increases with the number of discrete or integer variables. The real-time implementation
results of the EMPC with discrete and continuous control signals for a heating system
of an office building of two days have shown that the room temperature remains in the
desired comfort zone and the switching of the boiler can be reduced significantly, which
helps preserving the boilers. For the evaluation of the heating power for the two days

93



no obvious results were shown and the heating power remains in the same area as when
the conventional controller was used.

The question how the structure of the MPC optimization problem is, if a multilinear
model is used was investigated in Section 4.2. This investigations of a multilinear MPC
optimization problem points out that the optimization problem was convex for the class
of input linear MTI systems and a prediction horizon of one. For a prediction horizon of
two, the convexity could be proven for a special subclass of the input linear MTI systems.
By using an example, it could be shown how the advantage of the convex optimization
problem for an prediction horizon of two could be used for larger prediction horizons.

Besides the use of data for the modeling process, Section 5.1 introduces a data-driven
ILC, which uses the stored historic data of the system. A data-driven ILC was applied to
an MPC to improve the performance by using all stored historic iterations of the system.
For the selection of one historic iteration an element selector was introduced, where a
similarity and a performance criterion was stated, which leads to an optimization problem
for the selection process. The simulation results have shown how a predictive controller
could interact with a learning controller to improve the performance of the system by
reducing the room temperature but staying inside the defined comfort zone and saves ≈
11 % of heating power compared to the linear MPC. The real-time implementation of a
data-driven learning MPC to a heating system test facility for an office has shown that the
controller works as expected and reduces the supply temperature if the room temperature
is above the defined reference. Storing the data of all historic iterations leads to an
increasing storage demand. The CP tensor decomposition method is applied to the data-
driven ILC, which results in a data-driven tensor ILC. The calculation of the similarity
criterion was performed by only using the factor matrices of the CP decomposed tensor
of the outside temperature without recomputing the full tensor representation. The
investigations have shown that the storage demand reduction decreases with the CP
decomposition rank and the accordance of the element selection compared to the tensor
free element selection increases with the decomposition rank.

The presented investigations point out the advantages of advanced control methods for
heating systems. With the results of this thesis the research question “How can control
methods for heating systems be improved by using stored measurement data?” can be
answered as follows. On the one hand, the data can be used for the modeling process.
This developed models were used for different model predictive control approaches. On
the other hand the data can be used for a data-driven controller to improve the per-
formance of a linear MPC from iteration to iteration. The combined concept predicts
the future behavior of the plant by using a model and learns from the past by using the
stored historic data.

7.2 Outlook

The conclusion has summarized the advantage of model based and data-driven con-
trollers applied to heating systems. Nevertheless, a few interesting research questions
still remain.
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A long run for the real-time implementation for the applied control methods would be
beneficial to evaluate the controller behavior under different ambient conditions and large
time periods.

The question how a data-driven ILC can be combined with an EMPC and does a com-
bined controller improve the control results would be quite interesting.

Due to the fact that heating system models are inherited in the class of multilinear
models further investigations about the convexity properties of the multilinear MPC
optimization problem can be very useful. For example, finding other convex sets for
larger prediction horizons. Also an extended investigation from single-input MTI systems
to multi-input MTI systems would extend the field of applications.

For the data-driven tensor ILC the question how a data storage of the entire data set in
a CP decomposed tensor structure effects the control results would be very interesting.
Also the application of other decomposition methods to the data tensor could lead to
new fascinating findings.
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Appendix A

Models

This appendix chapter corresponds to the models, which are used in this thesis.

A.1 Model parameter

Table A.1: Estimated parameters of the model in Section 2.2.5
Parameter Symbol Value
Boiler volume Vboiler 0.2275 m3

Transfer coefficient boiler - environment kb,loss 23.83 kW
m2K

Maximal boiler power boiler Q̇P 249.984 kW

Boiler environment temperature Tb,env 292 K

Radiator volume Vr 6.6386 m3

Transfer coefficient building - environment kroom,o 9264.56 kW
m2K

Transfer coefficient radiator - building kr,room 6739.15 kW
m2K

Thermal capacity of the building Croom 1546510000 J
K

Reference room temperature Troom,r 293.5 K

Mean volume flow V̇mean 0.0009542 m3

s

Slope bvol 0.000839 m3K
s
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Table A.2: Estimated parameters of the test facility model in Section 3.4.1
Parameter Symbol Value
Boiler volume Vboiler 0.01 m3

Transfer coefficient boiler - environment kb,loss 1.10815 kW
m2k

Maximal boiler power boiler Q̇P 2 kW

Boiler environment temperature Tb,env 296 K

Radiator volume Vr 0.005 m3

Transfer coefficient building - environment kroom,o 37.6797 kW
m2K

Transfer coefficient radiator - building kr,room 33.7018 kW
m2K

Thermal capacity of the building Croom 405436 J
K
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Table A.3: Estimated parameters of the office building model in Section 6.4
Parameter Symbol Value

Boiler volume 1 Vboiler,1 0.75 m3

Transfer coefficient boiler - environment 1 kb,loss,1 50 kW
m2K

Maximal boiler power boiler 1 Q̇P,1 125 kW

Boiler environment temperature 1 Tb,env,1 294 K

Boiler volume 2 Vboiler,2 0.8 m3

Transfer coefficient boiler - environment 2 kb,loss,2 70 kW
m2K

Maximal boiler power boiler 2 Q̇P,2 200 kW

Boiler environment temperature 2 Tb,env,2 294 K

Radiator volume 0 Vr,0 633 m3

Transfer coefficient building - environment 0 kroom,o,0 2381 kW
m2K

Transfer coefficient radiator - building 0 kr,room,0 1375 kW
m2K

Thermal capacity of the building 0 Croom,0 1057129084 J
K

Radiator volume 1 Vr,1 13 m3

Transfer coefficient building - environment 1 kroom,o,1 1086 kW
m2K

Transfer coefficient radiator - building 1 kr,room,1 583 kW
m2K

Thermal capacity of the building 1 Croom,1 642228201 J
K

Radiator volume 2 Vr,2 2.6 m3

Transfer coefficient building - environment 2 kroom,o,2 774 kW
m2K

Transfer coefficient radiator - building 2 kr,room,2 447 kW
m2K

Thermal capacity of the building 2 Croom,2 520043646 J
K

Radiator volume 3 Vr,3 0.6 m3

Transfer coefficient building - environment 3 kroom,o,3 493 kW
m2K

Transfer coefficient radiator - building 3 kr,room,3 215 kW
m2K

Thermal capacity of the building 3 Croom,3 316256884 J
K

Radiator volume 4 Vr,4 4.5 m3

Transfer coefficient building - environment 4 kroom,o,4 923 kW
m2K

Transfer coefficient radiator - building 4 kr,room,4 490 kW
m2K

Thermal capacity of the building 4 Croom,4 162549112 J
K

Radiator volume 5 Vr,5 3.3 m3

Transfer coefficient building - environment 5 kroom,o,5 2788 kW
m2K

Transfer coefficient radiator - building 5 kr,room,5 469 kW
m2K

Thermal capacity of the building 5 Croom,5 943639500 J
K

Radiator volume AHU Vr,AHU 13 m3

Transfer coefficient radiator - building AHU kr,room,AHU 638 kW
m2K

Radiator volume 6 Vr,6 1.6 m3

Transfer coefficient building - environment 6 kroom,o,6 913 kW
m2K

Transfer coefficient radiator - building 6 kr,room,6 1122 kW
m2K

Thermal capacity of the building 6 Croom,6 584735473 J
K
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Appendix B

Math

This appendix shows mathematical operations, which are used in this thesis.

B.1 Kronecker product

The Kronecker product of two matricesA ∈ RI×J andB ∈ RK×L is defined as follows [21]

C = A⊗B =


a11B · · · a1JB
a21B · · · a2JB
...

...
...

aI1B · · · aIJB

 ∈ RIK×JL.

The result is a matrix C with the new dimension IK × JL. Similarly, the Kronecker
product of two vectors a ∈ RI and b ∈ RJ is given by

c = a⊗ b =


a1b
a2b
...
aIb

 ∈ RIJ .
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Appendix C

Economic model predictive control
inequality constraints

This appendix shows the matrices of the EMPC inequality constraints.

C.1 Economic model predictive control inequality con-
straints for continuous control signals

The linearized state space model of the system

∆x(k + 1) = A∆x(k) +B∆u(k) +Bd∆ud(k)

with ∆x(k + 1) = x(k + 1)− x̄, ∆u(k) = u(k)− ū and ∆ud(k) = ud(k)− ūd, where x̄,
ū and ūd are the corresponding operating points and d denotes the disturbances.

The constraints (4.5) of the optimization problem (4.4) will be rewritten as inequality
constraints in the general form Aineqx(k)opt ≤ bineq for the optimization problem (4.1).
An example is given next with a prediction horizon of Hp = 3 and the assumption that
the states are equal to the outputs.

xopt =


u(k)

u(k + 1)
u(k + 2)
s(k + 1)
s(k + 2)
s(k + 3)
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Aineq =



B 0 0 −e 0 0
AB B 0 0 −e 0
A2B AB B 0 0 −e
−B 0 0 −e 0 0
−AB −B 0 0 −e 0
−A2B −AB −B 0 0 −e

I 0 0 0 0 0
−I 0 0 0 0 0
−I I 0 0 0 0
I −I 0 0 0 0
0 −I I 0 0 0
0 I −I 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
−I 0 0 0 0 0
0 −I 0 0 0 0
0 0 −I 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


The vector e is a vector of the length n, (n = number of states) and all entries are one

e =

 1
1
1

 .
The matrix I is the identity matrix of the dimension Rm×m, (m = number of inputs)

I =

[
1 0
0 1

]
.
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bineq =



z1

z2

z3

z4

z5

z6

∆umax + u(k − 1)
−∆umin − u(k − 1)

∆umax
−∆umin
∆umax
−∆umin
umax
umax
umax
−umin
−umin
−umin

0
0
0



z1 = −Ax(k)+Ax̄−Bdud(k)+Bdūd+Bū+xmax(k+1)

z2 = −A2x(k)+A2x̄−ABdud(k)−Bdud(k + 1)+ABdūd+Bdūd+ABū+Bū+xmax(k+2)

z3 = −A3x(k)+A3x̄−A2Bdud(k)−ABdud(k+1)−Bdud(k+2)+A2Bdūd+ABdūd+Bdūd

+A2Bū+ABū+Bū+xmax(k+3)

z4 = +Ax(k)−Ax̄+Bdud(k)−Bdūd−Bū−xmin(k+1)

z5 = +A2x(k)−A2x̄+ABdud(k)+Bdud(k + 1)−ABdūd−Bdūd−ABū−Bū−xmin(k+2)

z6 = +A3x(k)−A3x̄+A2Bdud(k)+ABdud(k+1)+Bdud(k+2)−A2Bdūd−ABdūd−Bdūd

−A2Bū−ABū−Bū−xmin(k+3)
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