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2  Introduction

Previous hypoplastic constitutive models [3, 12, 16, 17, 
24] offer users little opportunity to intervene in the mate-
rial equations used to specifically influence the depicted 
stress–strain behaviour. Mašin [14] developed a modular 
hypoplastic constitutive model that allows relatively easy 
modification of the elastic term L as well as the shape of the 
limit state surface. In this article, a new modular hypoplastic 
constitutive model is presented, which is intended to allow 
such interventions. The modular structure of the constitutive 
model aims to enable its application even with limited infor-
mation of the geotechnical properties of a granular material. 
Only five material parameters are necessary to fundamen-
tally work with the model. The more precisely the material 
behaviour is examined, the more parameters can be deter-
mined, and the modular extensions of the constitutive model 
can be used. This results in a more realistic representation of 
the material behaviour. The goal of the model formulation is 
to assign a clear phenomenon of granular soils to each mate-
rial parameter. This way, the material parameters can be eas-
ily determined from the results of standard laboratory tests.

The modular structure is also intended to enable simple 
further development of the constitutive model. The modu-
larly modelled phenomena can be considered, examined, 
and improved separately from the model, without the need 
to completely revise the constitutive model. Additionally, 
new modules can be added to the model to better represent 
the phenomena already included or to add new phenomena.

1  Notation

The Voigt notation is used. The strain tensor ε is defined as:

ε = (εxx, εyy, εzz, 2εxy, 2εxz, 2εyz)� (1)

The Cauchy stress tensor σ is defined as:

σ = (σxx, σyy, σzz, σxy, σxz, σyz)� (2)

Calculations exclusively involve effective stresses; thus, 
a separate designation is omitted. The strain rate tensor is 
denoted by ε̇. Since the material time derivative of σ is not 
objective, the Jaumann stress rate is used, where ω is the 
rotation rate of a co-moving observer measured by the tem-
poral change of σ. Hence Eq. (3) eliminates the influence 
of rigid body rotation on the stress rate. Fundamentally, a 
quasi-static state is assumed.

◦
σ = σ̇ − ωσ + σω� (3)
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The constitutive model can be classified within the group 
of hypoplastic constitutive models, as the material equa-
tion is of the rate type and corresponds to the generalized 
hypoplasticity according to Niemunis [17]. The structural 
development of the model is intended to be easily under-
standable for the user. Therefore, the material parameters 
and the parameters and designations used in the model are 
based on common geotechnical terms.

It is shown that the constitutive model can realistically 
reproduce the behaviour of granular soils under both drained 
and undrained conditions. For this purpose, laboratory tests 
are simulated to demonstrate the performance of the consti-
tutive model.

2.1  Response envelopes

Gudehus [9] and Gudehus and Kolymbas [7] introduced the 
unit strain rate and the resulting unit response to evaluate 
the performance of constitutive models and to compare con-
stitutive models with each other. According to Gudehus [9], 
the following assumptions are made: 

1.	 Only non-rotating deformations with cylindrical sym-
metry are examined. Due to the cylindrical symmetry, 
the stress state corresponds to triaxial conditions, and 
the stress σ22 is equal to the stress σ33. Thus, the rep-
resentation of the unit response in the Rendulic plane is 
possible. The stress directions are accordingly defined 
in Fig. 1.

2.	 The material behaviour is characterized by the stress 
rate response to a unit strain rate.

The unit strain rate is defined by Eq. (4).
√

ε̇2
11 + 2ε̇2

22 = 1� (4)

The direction of the strain rate in the ε̇11 −
√

2ε̇22 plane can 
be uniquely defined by the angle Θ, see Fig. 1 top.
The corresponding stress rate responses are determined for 
the different directions of the unit strain rates and are repre-
sented in the Rendulic plane, see Fig. 1 bottom. When many 
directions of the unit strain rate are evaluated, a circle forms 
in the ε̇11 −

√
2ε̇22 plane. The stress rate responses form an 

ellipse-like shape in the Rendulic plane, which is why the 
stress rate response is often referred to as a stress ellipse 
or stress rate response ellipse. Special directions of the unit 
strain rate are listed in Table 1.

The representation in Fig. 1 allows the interpretation of 
the direction-dependent stiffness and the qualitative depic-
tion of the material behaviour. An elliptical shape indicates 
that the stiffnesses of compression and shear differ. If the 
centre of the ellipse is shifted from the initial stress state, 
the stiffness in the direction of this shift is greater than in the 
opposite direction. From the stress rate response in Fig. 1, 
it can be concluded, that the unloading stiffness, with the 
exception of the deviatoric stress change, is always greater 
than the loading stiffness. By evaluating multiple stress rate 
response ellipses at different initial stress states, a consti-
tutive model can also be examined for compliance with 
boundary conditions and its behaviour when approaching 
the boundary condition. This evaluation is presented in the 

Table 1  Direction designations of unit strain and stress rate response
Angle Θ Direction designation Direction designation

Unit strain Stress rate response
0.0◦ Radial compression Radial stress increase
35.3◦ Isotropic compression Isotropic stress increase
90.0◦ Axial compression Axial stress increase
124.3◦ Positive shear Deviatoric stress increase
180.0◦ Radial extension Radial stress decrease
215.3◦ Isotropic extension Isotropic stress decrease
270.0◦ Axial extension Axial stress decrease
305.3◦ Negative shear Deviatoric stress decrease

Fig. 1  Principle representation of the unit strain rate and the corre-
sponding stress rate response; above: special directions of the unit 
strain rate; below: special directions of the stress rate response (modi-
fied after Gudehus [9])
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Rendulic plane of stresses and not of stress rates. Figure 2 
shows the presentation principle. The advantage of this rep-
resentation is that multiple initial stress states can be exam-
ined, and the behaviour of the constitutive model at different 
stress states can be assessed at a glance.

Scharinger and Schweiger [22] use stress rate response 
ellipses to assess the quality of constitutive models or to 
compare different models. If the strain rate is not specified 
but the stress rate is, strain rate response ellipses can be 
generated. Experimentally, strain and stress rates cannot be 
determined as they are infinitesimally small. Instead, strain 
response ellipses can be determined, which are generated 
by defined finite stress changes. Strain response ellipses 
are experimentally determined by Doanh [5] and compared 
with response ellipses calculated using the hypoplastic con-
stitutive model by von Wolffersdorff [24]. Danne [4] experi-
mentally determine strain response ellipses under low-cycle 
loading of non-cohesive soils. The numerical determination 
of strain response ellipses using the discrete element method 
(DEM) is shown by Froiio and Roux [6].

3  Formulation of the constitutive model

3.1  Basic assumptions

1.	 It is assumed that a constitutive model can accurately 
describe the stress–strain-behaviour of soils if the stress 
response ellipses in the stress space can be realistically 
represented along with the corresponding stress paths.

2.	 The direction of the stress rate response is rotated by 
the angle ω with respect to the direction of the strain 
rate. The angle ω can be expressed by a function ω(α)
, where α represents the angle between the direction of 
the strain rate ε̇ and the direction of the stress tensor σ, 
see Fig. 3. The sum of the angles ω and α is referred to 
as β.

3.	 Furthermore, it is simplistically assumed that the stress 
rate response is velocity-independent.

4.	 Isotropic material behaviour is assumed.

3.2  Rotation of the stress rate response to the 
strain rate

The functional relationship between the rotation of the 
strain rate tensor to the stress tensor and the rotation of the 
stress rate response tensor to the strain rate tensor is derived 
based on some rotations from simple laboratory tests and 
theoretical considerations, see Pucker [20]. The strain rate 
in an oedometer test, for example, is uniaxial, so the angle 
α is predetermined (see Fig. 4). The corresponding stress 

rate response, however, is multiaxial, and the angle β is 
therefore constrained between the angle of isotropic com-
pression and triaxial compression. The angle β thus lies 
within a theoretical range from 0◦ (isotropic compression) 
to a maximum of 54.74◦ (triaxial compression). The angle 
β = 54.74◦ for the direction of the stress rate response in 
drained triaxial compression results from the fact that the 
lateral pressures σ22 and σ33 do not change during drained 
triaxial compression. Therefore, the angle of the stress rate 
response is always 54.74◦, and only the magnitude of the 
stress rate response changes.

cos α = ε̇ · σ

∥ε̇∥∥σ∥ � (5)

cos β =
◦
σ · σ

∥ ◦
σ∥∥σ∥

� (6)

Fig. 3  Representation of the rotation of the stress rate response relative 
to the strain rate as a function of α

 

Fig. 2  Principal representation of multiple stress response ellipses in 
the Rendulic plane with failure surface and lines of mean pressure
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at which the stress rate response tensor is perpendicular to 
the stress tensor. In the present example, c = 90 was cho-
sen for 0 ≤ α ≤ 180 and c = 110 for 0 < α − 180 < 180 
to best match the theoretical ranges and the experimental 
results. Since the functions with α or α1 = α − 180 can 
always be defined for a range 0 ≤ α1 ≤ 180, only the range 
0 ≤ α ≤ 180 is considered in the following. The function 
h(α) ensures that the conditions f(0) = 0 and f(180) = 180 
are met. By varying the parameters b and c, the function can 
be better adjusted if more experimental results are available. 
The influence on the stress strain behaviour for longer stress 
or strain paths is considered minor if all theoretical ranges 
are still intersected.
Furthermore, the condition must be met that an at-rest earth 
pressure coefficient K0 is established during oedometer 
compression. To ensure this, the term ∆ is added to Eq. 7. 
The term ∆ can be determined by appropriate rearrange-
ment of the material equation or approximated by Eq. 10 as 
a function of the effective friction angle φ′.

∆ = 113.87φ′−0.1354 − 67.46 [φ′ in ◦]� (10)

To determine the angle β, the result is given by Eq. 11.

β = f(α) = g(α) + h(α) + ∆ [α in ◦]� (11)

The angle ω, by which the strain rate tensor is rotated, can 
now be expressed by Eq. 12. The relationship is shown in 
Fig. 5 at the bottom.

ω(α) = f(α) − α� (12)

This approach is based on the theory of Goldscheider [8] 
applying his first and second rule on proportional stress 
paths. Nevertheless, experimental evidence for the math-
ematical expression is only shown for the hydrostatic stress 
state, see Fig. 5.

In Fig.  5, the results from conducted CD and CU triaxial 
tests, the theoretically possible ranges, and a possible 
approximation as a solid line in the diagram of the angle β 
over the angle α are presented. It is shown that the approxi-
mation intersects all theoretical ranges and some experi-
mentally determined test results.

The mathematical approximation can be done, for exam-
ple, using a sigmoid function, see Eq.  (7). Equation  (8) 
is the classic equation of a sigmoid function. By adding 
Equation (9)to Equation (7), Equation (8) is stretched such 
that β is always zero degrees at α = 0◦ and always 180◦ 
at α = 180◦. In this way, the theory of Goldscheider [8], 
which states that all stress paths tend towards a proportional 
stress path under isotropic stress states, is considered. In the 
present case, two sigmoid functions are used, each defined 
for 0 ≤ α ≤ 180 and 0 < α − 180 < 180. The proposed 
equation type allows for an accurate representation of the 
laboratory tests studied (see Fig. 5), but does not claim to be 
universally valid.

f(α) = g(α) + h(α) [α in ◦]� (7)

with:

g(α) = a

1 + eb(−α+c) � (8)

h(α) =180 − g(180) + g(0)
180

· α − g(0) � (9)

The parameter a in Eq. (8) determines the maximum value 
of the sigmoid function and can generally be chosen as 
a = 180. The slope of the sigmoid function is controlled 
by the parameter b, and for the approximation shown, 
b = 0.05 was chosen. The parameter c determines the loca-
tion of the inflection point of the sigmoid function, i.e., the 
angle between the strain rate tensor and the stress tensor 

Fig. 4  Representation of the angles α in the Rendulic plane of the strain space and the angle β in the Rendulic plane of the stress space for an initial 
stress state on the axis of the mean pressure p
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The rotation angle is determined from Eq. (12), and the rota-
tion axis is perpendicular to the direction of the strain incre-
ment and the direction of the stress tensor.

The stretching is determined by the stiffness of the mate-
rial and depends on the mean pressure p and the void ratio e. 
Therefore, the void ratio e is introduced as a state variable, 
and the compression modulus K under isotropic loading is 
re-determined in each strain increment ε̇ using Eq. (14).

K = 1 + e

CiK
p� (14)

The isotropic compression coefficient CiK  is comparable to 
the compression coefficient CC  under oedometer loading. 
Assuming that a stress rate response ellipse in the Rendu-
lic plane results from multiple unit strain increments, the 
compression modulus is varied depending on the angle β. 

3.3  Basic structure

The basic structure of the constitutive model corresponds 
to the constitutive equation of generalized hypoplas-
ticity according to Niemunis [17] and is expressed by 
Equation (13).

◦
σ = C : (ε̇ − Y m∥ε̇∥)� (13)

The mapping tensor C of the 4th order mathematically rep-
resents the product of a rotation tensor R and a stretching 
factor K∗. The flow direction m is added to the strain incre-
ment ε̇. The length of the flow direction is determined by 
the degree of nonlinearity Y and the norm of the strain incre-
ment ε̇. The term (ε̇ − Y m∥ε̇∥) undergoes a rotation and a 
stretching by the mapping tensor C, resulting in a stress rate 
response tensor ◦

σ.

Fig. 5  Top: Representation of the relationship between the angle 
α between the stress tensor and the strain rate tensor and the angle 
β between the stress tensor and the stress rate response tensor with 
theoretically possible ranges, experimental data, and an approxima-
tion function at an initial stress point on the axis of the mean pres-

sure p; Bottom: Representation of the relationship between the angle 
α between the stress tensor and the strain rate tensor and the angle ω 
between the strain rate tensor and the stress rate response tensor with 
theoretically possible ranges, experimental data, and an approximation 
function at an initial stress point on the axis of the mean pressure p
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to Matsuoka and Nakai [15] based on the principal invari-
ants of the stress tensor I1, I2, and I3:

y =
(

−I1I2

I3
− 9

)
/

(
9 − sin2 φ′

1 − sin2 φ′ − 9
)

� (18)

The principal invariants are given by:

I1 =trace (σ) � (19)

I2 =1
2

(
σ : σ − I2

1
)

� (20)

I3 =det (σ) � (21)

The flow direction is determined for the critical state, based 
on Niemunis [17]:

m =





σ̂∗

∥σ̂∗∥
for σ ≤ −1

1√
3

1 for σ > −1
� (22)

with:

σ̂∗ =σ̂ − 1
3

1 � (23)

σ̂ = σ

trace(σ) � (24)

The entries of the unit tensor 1 are 1ii =  1 and all other 
entries are zero.

3.3.1  Critical state

The volumetric behaviour of the soil is significantly deter-
mined by the void ratio e and its distance from the pres-
sure-dependent critical void ratio ec. Loose soils behave 
contractively under shear, while dense soils behave dila-
tively. This behaviour is represented in the constitutive 
model by introducing the mobilized dilatancy angle ψ′. The 
mobilized dilatancy angle ψ′ causes a rotation of the flow 
direction, similar to non-associated flow rules in classical 
hyperplastic constitutive models. The dilatancy angle is 
determined by Eq. (25).

tan ψ′ = tan φ′ − tan φc� (25)

The flow direction for the critical state (Eq. (22)) is rotated 
by the dilatancy angle ψ. The rotation axis is perpendicular 

In the three-dimensional principal stress space, a stress rate 
response ellipsoid results from rotation around the direc-
tion of the stress tensor. The compression modulus K∗ of 
the respective stress rate response tensor is thus determined 
depending on the direction of the stress rate response tensor 
(see Fig. 6) with an ellipse equation:

K⊥ =K · ηK � (15)

K∗ = K√
1 − K2

⊥ − K2

K2
⊥

sin2 β
� (16)

The factor ηK  corresponds to the ratio of the major axis 
lengths of the ellipse.

The rotation tensor R is multiplied by the compression 
modulus K∗, resulting in the material tensor C:

C = K∗ · R� (17)

To ensure a change in stiffness when approaching the yield 
surface and compliance with this boundary condition, the 
term Y m∥ε̇∥ is subtracted from the strain increment ε̇. The 
variable Y was introduced by Niemunis [17] to reformu-
late the hypoplastic basic equation, distinguishing between 
incremental linear elasticity at Y = 0 and unrestricted flow 
at Y = 1. Y is referred to as the degree of nonlinearity and 
describes the position of the stress relatively to the failure 
surface. Since the determination of the variable Y in this 
work does not follow exactly the formulation of Niemunis 
[17], the variable will be referred to as y in the further course 
of this work. In addition to the variable y, the flow direction 
m is introduced, in the direction of which the material flows 
unrestrictedly when the yield limit (y = 1) is reached. The 
tensor m is normalized as a unit tensor and multiplied by 
the norm of the strain increment tensor ε̇ to match the norm 
of the flow direction to the norm of the strain increment ten-
sor. The flow direction in unrestricted flow (y = 1) is per-
pendicular to the yield surface in the critical state, and the 
trace of the flow direction is equal to one. The value of the 
variable y is determined using the yield condition according 

Fig. 6  Representation for determining the compression modulus K∗
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CiK = CiK,0 ·
(

p

p0

)aC,iK

� (27)

The reference pressure p0 is a material parameter of the 
model and indicates the pressure at which some of the 
following material parameters were determined. This for-
mulation corresponds to approach of Ohde [18], that the 
relationship between stiffness and stress can be expressed 
by a power law (ES ∼ σa). The parameters CiK,0 is deter-
mined based on the void ratio to account for the pyknotropic 
nature of the stiffness:

CiK,0 = CiK,00 ·
(

e

ec

)bC,iK

� (28)

From Eqs.  (27) and  (28), the additional required material 
parameters for this module are derived: ec,0 (critical void 
ratio at reference stress p0), CiK,00 (isotropic compres-
sion coefficient at reference pressure p0), aC,iK  and bC,iK

. Equations (27) and (28) were developed based on several 
laboratory investigations on various sands, see Pucker [19].

3.4  Module 2: Directional dependence of stiffness

To describe the directional dependence of stiffness, the 
term “directional dependence” must first be defined more 
precisely. In soil mechanics, this term generally refers to 
the distinction between loading, unloading, and reloading. 
Generally, the loading direction already differs between 
axial and isotropic compression, although both represent 
a loading condition. In the basic formulation, the constitu-
tive model is formulated as strain-direction dependent and 
the stiffness already depends on the loading direction. This 
module specifically addresses the effect of different stiff-
nesses observed in laboratory tests during loading, unload-
ing, and reloading.

A higher unloading stiffness is already implemented into 
the constitutive model due to its hypoplastic formulation. 
The ellipse is enlarged in the unloading direction by a factor 
ηmax, see Fig. 7:

ηmax = Cunloading

Cloading
= 1 − y

1 + y
� (29)

While the hypoplastic formulation does not implicitly 
account of an increased reloading stiffness, Equation (16) is 
redefined in sections, see Equation (30), and the factor ηmax 
is implemented for the reloading case. However, the func-
tion of the stress ellipse remains continuously differentiable, 
as the stiffness K⊥ does not change during deviatoric stress 
increase and decrease.

to the flow direction m and the stress tensor σ. For the flow 
direction, the resulting rotation tensor Rψ gives Eq. (26).

m =





Rψ
σ̂∗

∥σ̂∗∥
for σ ≤ −1

1√
3

1 fo σ > −1
� (26)

3.3.2  Module 1: Pyknotropy and barotropy of the stiffness

The assumption of a constant compression coefficient CC  
is only valid for some soft soils or is approximately valid 
within limited stress ranges, see for example Burland [2, 
Wood 25] and Kolymbas [13]. Granular soils typically 
exhibit a variable compression coefficient, which in turn 
depends on the stress state and the void ratio. Therefore, 
the isotropic compression coefficient CiK  is formulated as a 
function of the mean pressure p:

Fig. 7  Representation of the shape change of the stress ellipse to 
account for different loading and unloading stiffnesses
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The ratio ηiK  corresponds to the ratio of the major axis 
lengths for isotropic initial stress states. The minimum ratio 
ηK  is limited to ηK = 0.2 according to Eq. (32) to ensure 
a unique stress rate response is determined. At ηK = 0, the 
stress rate response ellipse would become a line, and the 
stress rate response is no longer uniquely associated with a 
strain rate. Thus, the shape of the stress response ellipse can 
be adjusted according to the real material behaviour. Herle 
and Kolymbas [10] use this method to adapt a hypoplastic 
model for representing soils with small friction angles.

3.6  Module 4: Pyknotropy of shear strength

The effective friction angle in granular soils mainly depends 
on the density and the stress state. Only a constant effective 
friction angle φ′ is considered according to Eq. (18). In this 
module, the constitutive model is therefore extended by a 
state-dependent friction angle. It is assumed that the pres-
sure dependence of the friction angle can be approximately 
expressed by the ratio of the critical void ratio ec to the void 
ratio e, as the critical void ratio itself is pressure-dependent, 
see e.g. Wood [25]. The friction angle is therefore expressed 
as a function of ec/e, see Eqs. (33) and (34).

φ(er) = 0, 035eaφ
r + φc − 0, 035 with φc in rad� (33)

with:

er = ec

e
� (34)

The pressure dependence of the critical void ratios is deter-
mined according to the approach from Module 1:

ec = ec,0 − CiK ln
(

p

p0

)
� (35)

The angle φc is a material parameter and corresponds to the 
critical friction angle at the critical void ratio ec,0. The expo-
nent aφ is a material parameter that determines the course 
of the friction angle depending on the relative void ratio er

. The limit value of the friction angle function is assumed to 
be 0, 035, respectively 2◦, below the critical friction angle 
to model contractive behaviour during increasing shear of a 
sample of overcritically loose soil with a void ratio e > ec.
The formulation in Eq. (33) for considering the pyknotropy 
of shear strength can be used in Eq.  (25) to calculate the 
mobilized dilatancy angle ψ. This makes it possible to dis-
tinguish between contractive and dilative material behaviour 
depending on the void ratio. Since the critical friction angle 
is a material parameter with Module 4, the effective friction 
angle is determined for each void ratio using Eq. (33).

K∗ =




K√
1 − K2

⊥ − K2

K2
⊥

sin2 β

ηmaxK√
1 − K2

⊥ − (ηmaxK)2

K2
⊥

sin2 β

if cos β > 0 and e ≥ ev

� (30)

Equation  (30) implies the introduction of the preloading 
void ratio ev to indicate up to which void ratio e the soil 
was preloaded. The preloading void ratio ev corresponds to 
the void ratio e during loading and remains constant dur-
ing unloading. During reloading, the preloading void ratio 
remains constant until the void ratio e matches the preload-
ing void ratio ev and then decreases accordingly with the 
void ratio e. Thus, the preloading void ratio ev can only 
decrease or remain constant during a calculation. This 
behaviour is observed only during axial or isotropic loading, 
unloading, and reloading. On the other hand soils can “for-
get” their preloading history through shearing. Therefore, 
the preloading void ratio ev in the model can also increase 
through shearing and in turn “forget” parts of the preload-
ing history. If the stress state reaches the yield surface and 
the soil behaves dilatively, the preloading void ratio ev 
increases according to the void ratio change ∆e caused by 
dilatancy. Similar principles are used e.g. in the Modified 
Cam Clay model, see Wood [25]. The preloading void ratio 
ev in step i + 1 is thus:

ei+1
v =




e if ei+1 < ei
v (loading)

ei
v if ei+1 ≥ ei

v and y < 1 (unloading/reloading)
ei

v + ∆e if ei+1 ≥ ei
v and y ≥ 1 (dilatant shearing)

�
(31)

3.5  Module 3: Deviatoric stiffness

The stiffness of soils under triaxial loading or shearing 
depends on the distance of the stress state from the yield 
surface. The closer the stress state is to the yield surface, 
the softer the soil behaves in this loading direction. The 
formulation of the constitutive model according to Eq. (13) 
already represents this behaviour. However, this behaviour 
cannot yet be controlled by a material parameter depending 
on the respective soil material.

It is assumed that the size of the ellipse decreases as it 
approaches the boundary condition. This behaviour is also 
represented by other hypoplastic models, see Chambonet al. 
[3, Tamagnini et al. 23] and Niemunis [17]. This effect is 
implemented to the presented constitutive model by reduc-
ing the ratio of the major axis length of the ellipse ηK  (see 
Eq. (15)) as it approaches the boundary condition:

ηK = ηiK − y (ηiK − 0.2)� (32)
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magnitude in the loading direction of ε̇t−1. If the loading 
direction changes compared to the previous strain incre-
ment, the state parameter γhist is changed to account for an 
increased stiffness due to the change of the loading direc-
tion. At reversed loading, the state parameter γhist is set to 
zero resulting in a full recovering of the small strain stiff-
ness. As stated in Niemunis [17] the small strain stiffness is 
only partially recovered if the loading direction is changing 
less than reverse. This effect is taken into account by set-
ting γhist to a value that corresponds to the desired increase 
in stiffness. The relationship between change in direction 
and stiffness recovery is described by the co-sinus function 
given in Eq. (40). γhist is updated according to Eq. (41).

fG0 = max
([

1
FK0K

; 0.5 + ε̇ε̇t−1

∥ε̇∥∥ε̇t−1∥
· 0.5

])
� (40)

γhist = min
([

γhist;
1 − fG0

0.385fG0
γ0.7

])
� (41)

4  Material parameters

The material model can be used in its basic formulation 
with five material parameters. In the complete formulation 
with all presented modules, the determination of a total of 
eleven material parameters is necessary, which can mainly 
be obtained from standard laboratory tests. Table 2 provides 
an overview of the material parameters and alternative val-
ues of the module parameters for deactivating the respective 
modules.

5  Inspection of the constitutive model

The presented modular hypoplastic constitutive model is 
examined for its properties to identify potential weaknesses 
of the model. Figures 8 and 9 show the results of simulated 
element tests considering all the presented modules. This 
representation is referred to as the fingerprint of a constitu-
tive model, as it provides a quick impression of the capabili-
ties of a constitutive model.

Figure  8 (top) shows the results of an oedometer test 
with a loosely packed sample and an oedometer test with 
a densely packed sample. Figure  8 (top left) displays the 
determined stress–strain curves, and Fig. 8 (top right) shows 
the corresponding stress paths. It is shown that the constitu-
tive model reproduces different stiffnesses depending on the 
packing density and the direction of loading.

Fig. 8 (middle) presents the results of four CD triaxial 
tests at initial stress states of 50 and 100 kPa with both 

3.7  Module 5: Cohesion

Since the constitutive model is not intended to be used 
exclusively for representing granular and therefore largely 
cohesionless soils, another module is introduced to account 
for cohesive behaviour. The yield surface according to Mat-
suoka and Nakai [15] is shifted along the axis of the mean 
pressure by the value ∆p to represent the cohesive behav-
iour of soils. Cohesion c′ is introduced as a material parame-
ter, and the value of ∆p is determined according to Eq. (36).

∆p = 2c′ (3 − sin φ′)
(6 sin φ′) � (36)

3.8  Module 6: Small strain stiffness

Small strain stiffness is introduced to the model using 
approach presented in Santosand Correira [21] that is 
also implemented in the hardening soil small strain model 
[1]. The approach describes the relationship between the 
maximum shear modulus G0 at small strains, the shear 
modulus G, the shear strain γ and the shear strain γ0.7 at 
G/G0 = 0.70 (Eq. (37)).

G

G0
= 1

1 + 0.385
(

γ

γ0.7

)
� (37)

It is assumed that the small strain stiffness is proportional to 
the compression modulus  K and the same formulation can 
be used to considered the barotropy and the pyknotropy of 
the small strain stiffness. Hence, the compression modulus 
K in Eq. (14) is multiplied with a factor FK0K  to obtain the 
small strain compression modulus (Eq. (38)). Replacing G 
with K and G0 with K0 in Eq. (37) and limiting the mini-
mum stiffness to K, the stiffness of the constitutive model is 
increased at small strain ranges.

fK0K =G0

G
= K0

K
� (38)

K = max







1

1 + 0.385
(

γ

γ0.7

)fK0K ; 1





 · 1 + e0

CiK
p � (39)

Two material parameters, fK0K  and γ0.7 as well as two 
additional state parameters ε̇t−1 and γhist are needed for 
consideration of the small strain stiffness.
The state parameter ε̇t−1 matches the previous strain incre-
ment and is used to calculate a change in loading direction. 
The state parameter γhist represents the accumulated strain 
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contraction, and shear strength depends on the stress state 
and packing density.

A drained cyclic simple shear test considering ten cycles 
is presented in Fig. 9 (middle). While the stress strain paths 
are shown in Fig. 9 (middle left) the change of the void ratios 
are presented in Fig.  9 (middle right). The initially dense 
samples is loosened due to cyclic shearing while the initially 
loose sample is densified. The degree of loosening or den-
sification depends on the amplitude of the shear strain. This 
theoretical mechanical behaviour is typical for hypoplastic 
constitutive models while it has not been observed in lab 
tests (see e.g.Youd   [26]). The change in shear strength with 
changing void ratio can is shown in Fig. 9 (middle left). For 
the initially dense sample, the maximum shear stress σ12 
per cycle has the highest value at the first loading path and 
decreases with each cycle.

The stress ellipses in Fig. 9 (bottom left) demonstrate that 
the yield surface is not exceeded. The elliptical shape of the 
stress rate responses and their reduction as they approach 
the yield surface are evident.

The stress vectors in Fig.  9 (bottom right) show char-
acteristic stress responses of the soil. None of the depicted 
stress paths exceeds the yield surface.

Stress paths from simulated cyclic undrained triaxial tests 
are shown in Fig. 10. The tests are simulated for an initially 
loose sample (Fig.  10 left) and an initially dense sample 
(Fig. 10 right). The initial isotropic stress is p′ = 200 kPa 
and the cyclic loading amplitude is ∆q = ±25  kPa. The 
cyclic loading of the loose sample causes a reduction of 
the mean stress p′. After a few cycles the effective stresses 
become zero, hence the soil liquefies. The mean stress p′ is 
also reduced due to the cyclic loading of the dense sample, 
but the mean stress remains larger than zero. Soil liquefac-
tion does not occur. Instead a so called butterfly pattern is 
simulated by the constitutive model.

6  Comparison to real soil behaviour

To demonstrate the performance of the material model on 
a real soil, the material parameters for the so-called Wun-
dersand [19] were calibrated. The material parameters are 
listed in Table 3.

6.1  Oedometric compression test

Two oedometer tests are conducted at different densities. 
The very loosely packed sample has an initial void ratio 
of e0 =  0.77 and the densely packed sample has an ini-
tial void ratio of e0 = 0.53. The vertical stress before the 
actual test begins is σ11 = 15,5 kPa caused by the loading 
platen contacting the sample. Both samples are loaded up 

loosely and medium-densely packed samples. The stress–
strain curves are shown in Fig.  8 (middle left), and the 
volumetric strain-strain curves are shown in Fig. 8 (middle 
right). The model distinguishes between contraction and 
dilation depending on the packing density. Furthermore, 
the dependence of shear strength on the relative density and 
stress state is demonstrated.

The results of simulated CU triaxial tests in Fig. 8 (bot-
tom) at initial stress states of 50 and 100 kPa with both 
loosely and medium-densely packed samples show realis-
tic stress–strain paths (Fig. 8 bottom left) and characteris-
tic stress paths in the deviatoric plane for densely packed 
soils (Fig. 8 bottom right). The mean stress decreases with 
increasing shear in loosely packed samples and increases in 
densely packed samples. However, in real soils with loosely 
packed samples, the decrease in mean stress begins at 
smaller deviatoric stresses, as seen in Ishihara [11]. There-
fore, the undrained shear strength in very loosely packed 
soils is overestimated. This can lead to unsafe results in sta-
bility analyses and must be considered when evaluating the 
outcomes.

In Fig. 9 (top), the results of drained simple shear tests 
at constant confining pressure are presented. The stress–
strain curves are shown in Fig. 9 (top left), and the volu-
metric strain-strain curves are shown in Fig. 9 (top right). 
The results exhibit the same properties as the CD triaxial 
test results. The model distinguishes between dilation and 

Table 2  Material parameters with their description and alternative val-
ues for deactivating individual modules
No Symbol Module Description Alt. 

Value
1 p0 – Reference pressure [kPa] –
2 ec,0 – Critical void ratio at p0 [-] –
3 ηiK – Stress ratio between deviatoric 

stress change and isotropic 
compression at q = 0 [-]

–

4 CiK,00 – Isotropic compression coef-
ficient at p0 [-]

–

5 φc – Critical friction angle at ec,0 
/ Effective friction angle if 
module 4  is not used [◦]

–

6 aC,iK 1 Exponent for barotropic stiff-
ness [-]

0

7 bC,iK 1 Exponent for pyknotropic stiff-
ness [-]

0

8 aφ 4 Exponent for pyknotropic shear 
strength [-]

0

9 c 5 Cohesion [kPa] 0
10 fK0K 6 Fraction of maximum small 

strain stiffness G0 to stiffness 
G

1

11 γ0.7 6 shear strain γ0.7 at 
G/G0 = 0.70

0
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Fig. 8  Fingerprint of the constitutive model; top: oedometer tests on 
densely and loosely packed samples with loading, unloading, and 
reloading; middle: loosely and densely packed samples in drained tri-

axial tests at 50 kPa and 100 kPa cell pressure; bottom: loosely and 
densely packed samples in undrained triaxial tests at 50 kPa and 100 
kPa cell pressure
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Fig. 9  Fingerprint of the constitutive model; top: loose and dense 
samples in drained simple shear tests at 50 and 100 kPa cell pressure; 
middle: loose and dense samples in cyclic drained simple shear tests at 

100 kPa cell pressure; bottom left: stress ellipses in the Rendulic plane; 
bottom right: stress paths in the Rendulic plane
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packing. The results of the experiments and the simulated 
CD triaxial tests are shown in Fig. 12 for loosely packed 
samples, Fig. 13 for medium-dense samples, and Fig. 14 for 
densely packed samples.

The shear strength, stiffness of the soil, and volume 
change of the samples are well represented in the simulation 
of drained triaxial tests for samples ranging from loosely 
to densely packed (see Figs.  12, 13 and 14). The volume 
change of the sample in the contraction range is underesti-
mated for loosely packed samples. For medium-dense and 
densely packed samples, the volume change is better repre-
sented than for loosely packed samples; however, the dilat-
ancy at higher strains is underestimated in densely packed 
samples. The peak shear strength is realistically represented 
for tests with densely packed samples, although the soften-
ing of the material is underestimated (see Fig. 14 left). The 
behaviour of granular soils in CD triaxial tests, including 
the effects of contraction, dilatancy, and barotropic and pyk-
notropic shear strength, can be represented by the material 
model.

to σ11 =  1000 kPa and then unloaded to σ11 =  15,5 kPa 
unloaded. Subsequently, a reloading up tos σ11 = 1000 kPa.
follows. The results of the oedometer tests and a numerical 
analysis are shown in Fig. 11.

It is evident that the stress–strain paths during loading are 
well represented at both densities. The different stiffnesses 
in each direction are accurately reproduced. The unloading 
stiffness is slightly overestimated for the densely packed 
sample. The stress–strain paths during reloading are well 
represented, taking into account the unloading phase.

6.2  Drained triaxial compression test

A total of nine drained triaxial tests were simulated using 
the material model. The samples were installed in the test 
apparatus at loose, medium-dense, and dense packing and 
consolidated at an effective cell pressure of 100, 200, and 
400 kPa, respectively. Subsequently, the cell pressure was 
kept constant, and the sample was sheared to failure through 
vertical strain. The initial void ratio e0 s 0.63 for loose pack-
ing, 0.54 for medium-dense packing, and 0.46 for dense 

Table 3  Material parameters for Wundersand
Material- parameter p0 [kPa] ec,0 [-] ηiK  [-] CiK,00 [-] φc [◦] aC,ik [-] bC,iK  [-] aφ [-] c [kPa] fK0K  [-] γ0.7 [-]
Value 100 0.70 0.50 0.005 32 0.08 1.35 3.85 0 6 3e−4

Fig. 12  Simulation of drained triax-
ial tests on loosely packed samples 
at three different cell pressures

 

Fig. 11  Stress–strain diagram of two oedometer tests with numerical 
analysis; left: loosely packed sample; right: densely packed sample

 

Fig. 10  Fingerprint of the constitutive model; top: loose and dense 
samples in drained simple shear tests at 50 and 100 kPa cell pressure; 
middle: loose and dense samples in cyclic drained simple shear tests at 
100 kPa cell pressure; bottom left: stress ellipses in the Rendulic plane; 
bottom right: stress paths in the Rendulic plane
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increase in mean pressure upon reaching the boundary con-
dition. It is shown that the stress paths are realistically repre-
sented, and a critical state is reached where the mean stress 
and deviatoric stress remain constant. The results from the 
densely packed tests shown on the right side of Fig. 15 indi-
cate that the stress paths are also realistically represented in 
terms of stiffness and behaviour upon reaching the boundary 
condition for densely packed samples. It is assumed that a 

6.3  Undrained triaxial compression

The behaviour of the material model under undrained tri-
axial conditions is demonstrated with the results from six 
undrained triaxial tests (CU). In Fig. 15, the left side shows 
the stress paths from three CU triaxial tests with loose pack-
ing under three different initial stress states. The packing 
is slightly denser than the critical state, which explains the 

Fig. 15  Simulation of undrained 
triaxial tests on loose and dense 
samples at intermediate initial 
stress states of 100, 200, and 400 
kPa

 

Fig. 14  Simulation of drained 
triaxial tests on dense samples at 
three different cell pressures

 

Fig. 13  Simulation of drained triax-
ial tests on medium-dense samples 
at three different cell pressures

 

1 3

32  Page 14 of 16



A modular hypoplastic constitutive model for granular soils

3.	 Chambon, R., Desrues, J., Charlier, R., Hammad, W.: Cloe, a new 
rate type constitutive model for geomaterials: theoretical basis 
and implementation. Int. J. Numer. Anal. Meth. Geomech. 18(4), 
253–278 (1994)

4.	 Danne, S., Hettler, A.: Verhalten von nichtbindigen Böden bei 
niederzyklischer Belastung. Geotechnik 36, 19–28 (2013)

5.	 Doanh, T.: Strain response envelope: a complementary tool for 
evaluating hypoplastic constitutive equations. In: Kolymbas, D. 
(ed.) Constitutive Modelling of Granular Materials, pp. 375–396. 
Springer, Berlin, Heidelberg (2000)

6.	 Froiio, F., Roux, J.-N.: Incremental response of a model granular 
material by stress probing with DEM simulations. In: IUTAM-
SIMM Symposium on Mathematical Modelling and Physical 
Instances of Granular Flow (2009). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​6​3​​/​1​.​​3​4​
3​5​3​8​8

7.	 Gudehus, G., Kolymbas, D.: A constitutive law of the rate type 
for soils. In: Wittke, W. (ed.) Proc. Third International Confer-
ence on Numerical Methods in Geomechanics, vol. 1. Aachen, 
pp. 319–329 (1979)

8.	 Goldscheider, M.: Grenzbedingung und Fliessregel von Sand. 
Mech. Res. Commun. 3, 463–468 (1976)

9.	 Gudehus, G.: A comparison of some constitutive laws for soils 
under radially symmetric loading and unloading. In: Wittke, W. 
(ed.) Proc. Third International Conference on Numerical Methods 
in Geomechanics, vol. 4, pp. 1309–1323. Aachen (1979)

10.	 Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction 
angles. Comput. Geotech. 31, 365–373 (2004)

11.	 Ishihara, K.: Liquefaction and flow failure during earthquakes. 
Géotechnique 43(3), 351–451 (1993). ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​6​​​8​0​/​​g​​e​
o​t​.​1​​9​9​​3​.​​4​3​.​3​.​3​5​1

12.	 Kolymbas, D.: A rate-dependent constitutive equation for soils. 
Mech. Res. Commun. 4, 367–372 (1997)

13.	 Kolymbas, D.: Geotechnik, 3rd edn. Springer, Berlin (2011)
14.	 Mašin, D.: Clay hypoplasticity with explicitly defined asymptotic 

states. Acta Geotech. 8, 481–496 (2013)
15.	 Matsuoka, H., Nakai, T.: A new failure for soils in three-dimen-

sional stresses. In: Proceedings IUTAM - Symposium on Defor-
mation and Failure of Granular Materials, pp. 253–263 (1982)

16.	 Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils 
with elastic strain range. Mech. Frict. Cohes. Mater. 2, 279–299 
(1997)

17.	 Niemunis, A.: Extended hypoplastic models for soils. Habili-
tation, Veröffentlichungsreihe des Instituts für Grundbau und 
Bodenmechanik der Ruhr-Universität Bochum, Heft 34 (2003)

18.	 Ohde, J.: Zur Theorie der Druckverteilung im Baugrund. Der 
Bauingenieur, 451–459 (1939)

19.	 Pucker, T.: Stoffmodell zur Modellierung von stetigen Mate-
rialübergängen im Rahmen der Optimierung geotechnischer 
Strukturen,. PhD thesis, Veröffentlichungen des Instituts für 
Geotechnik und Baubetrieb der TU Hamburg-Harburg, Heft 28 
(2013)

20.	 Pucker, T.: A response envelope based approach to hypo plastic 
constitutive models. In: Proc. of the 8th European Conference 
on Numerical Methods in Geotechnical Engineering, Delft, pp. 
91–96 (2014)

21.	 Santos, J.A., Correira, A.G.: Reference threshold shear strain of 
soil. its application to obtain a unique train-dependent shear mod-
ulus curve for soil. In: Proc. 15th Int. Conf. SMGE, vol. 1. A.A. 
Balkema, pp. 267–270 (2001)

22.	 Scharinger, F., Schweiger, H.: Response envelopes of a multi-
laminate model for soils. Numerical Models in Geomechanics - 
NUMOG IX, 151–156 (2004)

23.	 Tamagnini, C., Viggiani, G., Chambon, R.: A review of two dif-
ferent approaches to hypoplasticity. In: Kolymbas, D. (ed.) Con-
stitutive Modelling of Granular Materials, pp. 109–145. Springer, 
Berlin (2000)

critical state will also be reached in densely packed samples; 
however, this is not shown in Fig. 15, as the critical state is 
expected to occur only at a very high mean pressure.

7  Conclusion

The modular hypoplastic constitutive model presented in 
this paper offers the possibility to use the model already 
with only limited information about the soil properties. 
Once the information about the soil properties increases, 
additional modules of the constitutive model can be acti-
vated, resulting in a much more realistic representation of 
the mechanical behaviour of granular soils. The model can 
reproduce the effects of barotropy and pyknotropy of the 
material stiffness and shear strength. Additionally the load-
ing history is reflected by introducing increased stiffnesses 
in unloading and reloading cases. Besides this effect, the 
constitutive model is able to forget parts of the loading his-
tory due to dilative shearing. The phenomena of small strain 
stiffness is implemented to the model as well.

The model allows for simulation of the mechanical 
behaviour of granular soils under monotonic and also under 
cyclic loading. The capabilities of the model are shown by 
simulating standard laboratory tests.
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