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Abstract

A new hypoplastic constitutive model with a modular structure is presented for granular soils. The modular structure
allows the application of the constitutive model with very little material information under restriction of the soil effects to
be reproduced. The more material information available, the better the stress—strain behaviour of the material can be rep-
resented. The basic model and six modules are presented that allow to model soil phenomena like barotropy, pyknotropy,
load history, and small strain stiffness. Laboratory tests are simulated to show the performance of the constitutive model.

Keywords Hypoplasticity - Soil model - Constitutive model - Material model - Small strain stiffness - Barotropy -
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1 Notation

The Voigt notation is used. The strain tensor € is defined as:

€= (Ezz7€yy75zzy25:ry725xZ725yz) (1)

The Cauchy stress tensor o is defined as:

o = (Ugczv Oyyy 0225 0xy, Oxz, Uyz) )

Calculations exclusively involve effective stresses; thus,
a separate designation is omitted. The strain rate tensor is
denoted by €. Since the material time derivative of o is not
objective, the Jaumann stress rate is used, where w is the
rotation rate of a co-moving observer measured by the tem-
poral change of o. Hence Eq. (3) eliminates the influence
of rigid body rotation on the stress rate. Fundamentally, a
quasi-static state is assumed.
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2 Introduction

Previous hypoplastic constitutive models [3, 12, 16, 17,
24] offer users little opportunity to intervene in the mate-
rial equations used to specifically influence the depicted
stress—strain behaviour. Masin [14] developed a modular
hypoplastic constitutive model that allows relatively easy
modification of the elastic term L as well as the shape of the
limit state surface. In this article, a new modular hypoplastic
constitutive model is presented, which is intended to allow
such interventions. The modular structure of the constitutive
model aims to enable its application even with limited infor-
mation of the geotechnical properties of a granular material.
Only five material parameters are necessary to fundamen-
tally work with the model. The more precisely the material
behaviour is examined, the more parameters can be deter-
mined, and the modular extensions of the constitutive model
can be used. This results in a more realistic representation of
the material behaviour. The goal of the model formulation is
to assign a clear phenomenon of granular soils to each mate-
rial parameter. This way, the material parameters can be eas-
ily determined from the results of standard laboratory tests.

The modular structure is also intended to enable simple
further development of the constitutive model. The modu-
larly modelled phenomena can be considered, examined,
and improved separately from the model, without the need
to completely revise the constitutive model. Additionally,
new modules can be added to the model to better represent
the phenomena already included or to add new phenomena.
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Fig. 1 Principle representation of the unit strain rate and the corre-
sponding stress rate response; above: special directions of the unit
strain rate; below: special directions of the stress rate response (modi-
fied after Gudehus [9])

The constitutive model can be classified within the group
of hypoplastic constitutive models, as the material equa-
tion is of the rate type and corresponds to the generalized
hypoplasticity according to Niemunis [17]. The structural
development of the model is intended to be easily under-
standable for the user. Therefore, the material parameters
and the parameters and designations used in the model are
based on common geotechnical terms.

It is shown that the constitutive model can realistically
reproduce the behaviour of granular soils under both drained
and undrained conditions. For this purpose, laboratory tests
are simulated to demonstrate the performance of the consti-
tutive model.

2.1 Response envelopes

Gudehus [9] and Gudehus and Kolymbas [7] introduced the
unit strain rate and the resulting unit response to evaluate
the performance of constitutive models and to compare con-
stitutive models with each other. According to Gudehus [9],
the following assumptions are made:
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Table 1 Direction designations of unit strain and stress rate response

Angle © Direction designation Direction designation
Unit strain Stress rate response
0.0° Radial compression Radial stress increase
35.3° Isotropic compression Isotropic stress increase
90.0° Axial compression Axial stress increase
124.3° Positive shear Deviatoric stress increase
180.0° Radial extension Radial stress decrease
215.3° Isotropic extension Isotropic stress decrease
270.0° Axial extension Axial stress decrease
305.3° Negative shear Deviatoric stress decrease

1. Only non-rotating deformations with cylindrical sym-
metry are examined. Due to the cylindrical symmetry,
the stress state corresponds to triaxial conditions, and
the stress 092 is equal to the stress o33. Thus, the rep-
resentation of the unit response in the Rendulic plane is
possible. The stress directions are accordingly defined
in Fig. 1.

2. The material behaviour is characterized by the stress
rate response to a unit strain rate.

The unit strain rate is defined by Eq. (4).
\ €3 282, =1 “4)

The direction of the strain rate in the é17 — v/2¢99 plane can
be uniquely defined by the angle O, see Fig. 1 top.

The corresponding stress rate responses are determined for
the different directions of the unit strain rates and are repre-
sented in the Rendulic plane, see Fig. 1 bottom. When many
directions of the unit strain rate are evaluated, a circle forms
in the €11 — V2699 plane. The stress rate responses form an
ellipse-like shape in the Rendulic plane, which is why the
stress rate response is often referred to as a stress ellipse
or stress rate response ellipse. Special directions of the unit
strain rate are listed in Table 1.

The representation in Fig. 1 allows the interpretation of
the direction-dependent stiffness and the qualitative depic-
tion of the material behaviour. An elliptical shape indicates
that the stiffnesses of compression and shear differ. If the
centre of the ellipse is shifted from the initial stress state,
the stiffness in the direction of this shift is greater than in the
opposite direction. From the stress rate response in Fig. 1,
it can be concluded, that the unloading stiffness, with the
exception of the deviatoric stress change, is always greater
than the loading stiffness. By evaluating multiple stress rate
response ellipses at different initial stress states, a consti-
tutive model can also be examined for compliance with
boundary conditions and its behaviour when approaching
the boundary condition. This evaluation is presented in the
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Rendulic plane of stresses and not of stress rates. Figure 2
shows the presentation principle. The advantage of this rep-
resentation is that multiple initial stress states can be exam-
ined, and the behaviour of the constitutive model at different
stress states can be assessed at a glance.

Scharinger and Schweiger [22] use stress rate response
ellipses to assess the quality of constitutive models or to
compare different models. If the strain rate is not specified
but the stress rate is, strain rate response ellipses can be
generated. Experimentally, strain and stress rates cannot be
determined as they are infinitesimally small. Instead, strain
response ellipses can be determined, which are generated
by defined finite stress changes. Strain response ellipses
are experimentally determined by Doanh [5] and compared
with response ellipses calculated using the hypoplastic con-
stitutive model by von Wolffersdorft [24]. Danne [4] experi-
mentally determine strain response ellipses under low-cycle
loading of non-cohesive soils. The numerical determination
of strain response ellipses using the discrete element method
(DEM) is shown by Froiio and Roux [6].

3 Formulation of the constitutive model

3.1 Basic assumptions

1. It is assumed that a constitutive model can accurately
describe the stress—strain-behaviour of soils if the stress
response ellipses in the stress space can be realistically
represented along with the corresponding stress paths.

2. The direction of the stress rate response is rotated by
the angle w with respect to the direction of the strain
rate. The angle w can be expressed by a function w(«)
, where « represents the angle between the direction of
the strain rate € and the direction of the stress tensor o,
see Fig. 3. The sum of the angles w and « is referred to
as 3.

3. Furthermore, it is simplistically assumed that the stress
rate response is velocity-independent.

4. Isotropic material behaviour is assumed.

3.2 Rotation of the stress rate response to the
strain rate

The functional relationship between the rotation of the
strain rate tensor to the stress tensor and the rotation of the
stress rate response tensor to the strain rate tensor is derived
based on some rotations from simple laboratory tests and
theoretical considerations, see Pucker [20]. The strain rate
in an oedometer test, for example, is uniaxial, so the angle
« is predetermined (see Fig. 4). The corresponding stress
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Fig. 2 Principal representation of multiple stress response ellipses in
the Rendulic plane with failure surface and lines of mean pressure
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Fig. 3 Representation of the rotation of the stress rate response relative
to the strain rate as a function of «

rate response, however, is multiaxial, and the angle 5 is
therefore constrained between the angle of isotropic com-
pression and triaxial compression. The angle S thus lies
within a theoretical range from 0° (isotropic compression)
to a maximum of 54.74° (triaxial compression). The angle
B = 54.74° for the direction of the stress rate response in
drained triaxial compression results from the fact that the
lateral pressures o022 and o33 do not change during drained
triaxial compression. Therefore, the angle of the stress rate
response is always 54.74°, and only the magnitude of the
stress rate response changes.
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Fig.4 Representation of the angles « in the Rendulic plane of the strain space and the angle 3 in the Rendulic plane of the stress space for an initial

stress state on the axis of the mean pressure p

In Fig. 5, the results from conducted CD and CU triaxial
tests, the theoretically possible ranges, and a possible
approximation as a solid line in the diagram of the angle 3
over the angle « are presented. It is shown that the approxi-
mation intersects all theoretical ranges and some experi-
mentally determined test results.

The mathematical approximation can be done, for exam-
ple, using a sigmoid function, see Eq. (7). Equation (8)
is the classic equation of a sigmoid function. By adding
Equation (9)to Equation (7), Equation (8) is stretched such
that 5 is always zero degrees at & = 0° and always 180°
at o = 180°. In this way, the theory of Goldscheider [8],
which states that all stress paths tend towards a proportional
stress path under isotropic stress states, is considered. In the
present case, two sigmoid functions are used, each defined
for 0 < a <180 and 0 < o — 180 < 180. The proposed
equation type allows for an accurate representation of the
laboratory tests studied (see Fig. 5), but does not claim to be
universally valid.

fla) =g(a) +h(a) [ain ] (7)
with:

g(a) Zﬁiam 3
h(a) :180 — ¢g(180) + ¢(0) ca— g(0) ©)

180

The parameter a in Eq. (8) determines the maximum value
of the sigmoid function and can generally be chosen as
a = 180. The slope of the sigmoid function is controlled
by the parameter b, and for the approximation shown,
b = 0.05 was chosen. The parameter ¢ determines the loca-
tion of the inflection point of the sigmoid function, i.e., the
angle between the strain rate tensor and the stress tensor
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at which the stress rate response tensor is perpendicular to
the stress tensor. In the present example, ¢ = 90 was cho-
sen for 0 < a <180 and ¢ = 110 for 0 < o — 180 < 180
to best match the theoretical ranges and the experimental
results. Since the functions with « or vy = o — 180 can
always be defined for a range 0 < «; < 180, only the range
0 < o <180 is considered in the following. The function
h(«) ensures that the conditions f(0) = 0 and f(180) = 180
are met. By varying the parameters b and c, the function can
be better adjusted if more experimental results are available.
The influence on the stress strain behaviour for longer stress
or strain paths is considered minor if all theoretical ranges
are still intersected.

Furthermore, the condition must be met that an at-rest earth
pressure coefficient K is established during oedometer
compression. To ensure this, the term A is added to Eq. 7.
The term A can be determined by appropriate rearrange-
ment of the material equation or approximated by Eq. 10 as
a function of the effective friction angle ¢'.

A =113.87¢ 7013 _67.46 [¢ in °] (10)
To determine the angle 3, the result is given by Eq. 11.
f=fla)=gla)+h(e)+A [ain®] (11)

The angle w, by which the strain rate tensor is rotated, can
now be expressed by Eq. 12. The relationship is shown in
Fig. 5 at the bottom.
w(a) = f(a) —a (12)
This approach is based on the theory of Goldscheider [8§]
applying his first and second rule on proportional stress
paths. Nevertheless, experimental evidence for the math-

ematical expression is only shown for the hydrostatic stress
state, see Fig. 5.
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Fig. 5 Top: Representation of the relationship between the angle
a between the stress tensor and the strain rate tensor and the angle
B between the stress tensor and the stress rate response tensor with
theoretically possible ranges, experimental data, and an approxima-
tion function at an initial stress point on the axis of the mean pres-

3.3 Basic structure

The basic structure of the constitutive model corresponds
to the constitutive equation of generalized hypoplas-
ticity according to Niemunis [17] and is expressed by
Equation (13).
o=C:(¢—Ym|é|) (13)
The mapping tensor C of the 4th order mathematically rep-
resents the product of a rotation tensor R and a stretching
factor K*. The flow direction m is added to the strain incre-
ment €. The length of the flow direction is determined by
the degree of nonlinearity ¥ and the norm of the strain incre-
ment €. The term (¢ — Y'm||é||) undergoes a rotation and a
stretching by the mapping tensor C, resulting in a stress rate
response tensor o.

sure p; Bottom: Representation of the relationship between the angle
a between the stress tensor and the strain rate tensor and the angle w
between the strain rate tensor and the stress rate response tensor with
theoretically possible ranges, experimental data, and an approximation
function at an initial stress point on the axis of the mean pressure p

The rotation angle is determined from Eq. (12), and the rota-
tion axis is perpendicular to the direction of the strain incre-
ment and the direction of the stress tensor.

The stretching is determined by the stiffness of the mate-
rial and depends on the mean pressure p and the void ratio e.
Therefore, the void ratio e is introduced as a state variable,
and the compression modulus K under isotropic loading is
re-determined in each strain increment € using Eq. (14).

_1+e

K
Cik P

(14)

The isotropic compression coefficient C; k is comparable to
the compression coefficient C'c under oedometer loading.
Assuming that a stress rate response ellipse in the Rendu-
lic plane results from multiple unit strain increments, the
compression modulus is varied depending on the angle 5.

@ Springer
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In the three-dimensional principal stress space, a stress rate
response ellipsoid results from rotation around the direc-
tion of the stress tensor. The compression modulus K* of
the respective stress rate response tensor is thus determined
depending on the direction of the stress rate response tensor
(see Fig. 6) with an ellipse equation:

K, =K -ng (15)

R w0

The factor nx corresponds to the ratio of the major axis
lengths of the ellipse.

The rotation tensor R is multiplied by the compression
modulus K*, resulting in the material tensor C:

C=K"R (17)

To ensure a change in stiffness when approaching the yield
surface and compliance with this boundary condition, the
term Y'm||€|| is subtracted from the strain increment €. The
variable ¥ was introduced by Niemunis [17] to reformu-
late the hypoplastic basic equation, distinguishing between
incremental linear elasticity at Y = 0 and unrestricted flow
at Y = 1. Y is referred to as the degree of nonlinearity and
describes the position of the stress relatively to the failure
surface. Since the determination of the variable Y in this
work does not follow exactly the formulation of Niemunis
[17], the variable will be referred to as y in the further course
of this work. In addition to the variable y, the flow direction
m is introduced, in the direction of which the material flows
unrestrictedly when the yield limit (y = 1) is reached. The
tensor m is normalized as a unit tensor and multiplied by
the norm of the strain increment tensor € to match the norm
of the flow direction to the norm of the strain increment ten-
sor. The flow direction in unrestricted flow (y = 1) is per-
pendicular to the yield surface in the critical state, and the
trace of the flow direction is equal to one. The value of the
variable y is determined using the yield condition according

\\\\\\‘— K /. 6

Fig. 6 Representation for determining the compression modulus K™
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to Matsuoka and Nakai [15] based on the principal invari-
ants of the stress tensor I, I, and I3:

—11[2 9— sin2 (p/
= -9 — -9 18
Y < I3 >/(1—sin2<p’ (18)

The principal invariants are given by:

I, =trace (o) (19)
Iy :% (0:0—112) (20)
I3 =det (o) (21)

The flow direction is determined for the critical state, based
on Niemunis [17]:

Ak

(o)

||A*H foro < -1
" f 1 f > —1 22
— or o > —
V3
with:
6" =6 — }1 (23)
3
R o
G=———
trace(o) (24)

The entries of the unit tensor 1 are 1;,; = 1 and all other
entries are zero.

3.3.1 Critical state

The volumetric behaviour of the soil is significantly deter-
mined by the void ratio e and its distance from the pres-
sure-dependent critical void ratio e.. Loose soils behave
contractively under shear, while dense soils behave dila-
tively. This behaviour is represented in the constitutive
model by introducing the mobilized dilatancy angle ¢’. The
mobilized dilatancy angle 1)’ causes a rotation of the flow
direction, similar to non-associated flow rules in classical
hyperplastic constitutive models. The dilatancy angle is
determined by Eq. (25).

tant)’ = tan ¢’ — tan @, (25)

The flow direction for the critical state (Eq. (22)) is rotated
by the dilatancy angle ). The rotation axis is perpendicular
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to the flow direction 1 and the stress tensor o. For the flow
direction, the resulting rotation tensor R, gives Eq. (26).

foro < -1
el (26)
foo>-1

3.3.2 Module 1: Pyknotropy and barotropy of the stiffness

The assumption of a constant compression coefficient C'
is only valid for some soft soils or is approximately valid
within limited stress ranges, see for example Burland [2,
Wood 25] and Kolymbas [13]. Granular soils typically
exhibit a variable compression coefficient, which in turn
depends on the stress state and the void ratio. Therefore,
the isotropic compression coefficient C; x is formulated as a
function of the mean pressure p:

stress rate response without increased unloading stiffness:

Gl]

o

isotropic stress increase

axial stress
increase
deviatoric
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B
radial stress radial stress increase
decrease -
26,
isotropi deviatoric
isotropic
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stress rate response with increased unloading stiffness:
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Fig. 7 Representation of the shape change of the stress ellipse to
account for different loading and unloading stiffnesses

p ac,iK
Cik = Cik,0- () 27)
Po

The reference pressure pg is a material parameter of the
model and indicates the pressure at which some of the
following material parameters were determined. This for-
mulation corresponds to approach of Ohde [18], that the
relationship between stiffness and stress can be expressed
by a power law (Eg ~ c%). The parameters C;x o is deter-
mined based on the void ratio to account for the pyknotropic
nature of the stiffness:

e beik
Cik,o = Cik,00 - (e> (28)

C

From Egs. (27) and (28), the additional required material
parameters for this module are derived: e. ¢ (critical void
ratio at reference stress pg), Cix,00 (isotropic compres-
sion coefficient at reference pressure py), ac,ix and bc ik
. Equations (27) and (28) were developed based on several
laboratory investigations on various sands, see Pucker [19].

3.4 Module 2: Directional dependence of stiffness

To describe the directional dependence of stiffness, the
term “directional dependence” must first be defined more
precisely. In soil mechanics, this term generally refers to
the distinction between loading, unloading, and reloading.
Generally, the loading direction already differs between
axial and isotropic compression, although both represent
a loading condition. In the basic formulation, the constitu-
tive model is formulated as strain-direction dependent and
the stiffness already depends on the loading direction. This
module specifically addresses the effect of different stiff-
nesses observed in laboratory tests during loading, unload-
ing, and reloading.

A higher unloading stiffness is already implemented into
the constitutive model due to its hypoplastic formulation.
The ellipse is enlarged in the unloading direction by a factor
Nmax» See Fig. 7:

Cunloa,ding 11—y
max — = 29
Mna Cloading 1+ Yy ( )

While the hypoplastic formulation does not implicitly
account of an increased reloading stiffness, Equation (16) is
redefined in sections, see Equation (30), and the factor 7,,x
is implemented for the reloading case. However, the func-
tion of the stress ellipse remains continuously differentiable,
as the stiffness K| does not change during deviatoric stress
increase and decrease.

@ Springer
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(30)

if cosf >0ande > e,

Equation (30) implies the introduction of the preloading
void ratio e, to indicate up to which void ratio e the soil
was preloaded. The preloading void ratio e, corresponds to
the void ratio e during loading and remains constant dur-
ing unloading. During reloading, the preloading void ratio
remains constant until the void ratio e matches the preload-
ing void ratio e, and then decreases accordingly with the
void ratio e. Thus, the preloading void ratio e, can only
decrease or remain constant during a calculation. This
behaviour is observed only during axial or isotropic loading,
unloading, and reloading. On the other hand soils can “for-
get” their preloading history through shearing. Therefore,
the preloading void ratio e, in the model can also increase
through shearing and in turn “forget” parts of the preload-
ing history. If the stress state reaches the yield surface and
the soil behaves dilatively, the preloading void ratio e,
increases according to the void ratio change Ae caused by
dilatancy. Similar principles are used e.g. in the Modified
Cam Clay model, see Wood [25]. The preloading void ratio
ey in step ¢ + 1 is thus:

) e if e <el (loading)
et = a if e*!>el and y <1 (unloading/reloading)
el +Ae if el >e! and y>1 (dilatant shearing)

€2))

3.5 Module 3: Deviatoric stiffness

The stiffness of soils under triaxial loading or shearing
depends on the distance of the stress state from the yield
surface. The closer the stress state is to the yield surface,
the softer the soil behaves in this loading direction. The
formulation of the constitutive model according to Eq. (13)
already represents this behaviour. However, this behaviour
cannot yet be controlled by a material parameter depending
on the respective soil material.

It is assumed that the size of the ellipse decreases as it
approaches the boundary condition. This behaviour is also
represented by other hypoplastic models, see Chambonet al.
[3, Tamagnini et al. 23] and Niemunis [17]. This effect is
implemented to the presented constitutive model by reduc-
ing the ratio of the major axis length of the ellipse 7x (see
Eq. (15)) as it approaches the boundary condition:

Nk =ik — Y (Mix —0.2) (32)

@ Springer

The ratio n;x corresponds to the ratio of the major axis
lengths for isotropic initial stress states. The minimum ratio
ng is limited to nx = 0.2 according to Eq. (32) to ensure
a unique stress rate response is determined. At i = 0, the
stress rate response ellipse would become a line, and the
stress rate response is no longer uniquely associated with a
strain rate. Thus, the shape of the stress response ellipse can
be adjusted according to the real material behaviour. Herle
and Kolymbas [10] use this method to adapt a hypoplastic
model for representing soils with small friction angles.

3.6 Module 4: Pyknotropy of shear strength

The effective friction angle in granular soils mainly depends
on the density and the stress state. Only a constant effective
friction angle ' is considered according to Eq. (18). In this
module, the constitutive model is therefore extended by a
state-dependent friction angle. It is assumed that the pres-
sure dependence of the friction angle can be approximately
expressed by the ratio of the critical void ratio e, to the void
ratio e, as the critical void ratio itself is pressure-dependent,
see e.g. Wood [25]. The friction angle is therefore expressed
as a function of e. /e, see Egs. (33) and (34).

p(er) =0,035er* + ¢, — 0,035  with ¢, in rad (33)

with:

€c
er = — (34)

e

The pressure dependence of the critical void ratios is deter-
mined according to the approach from Module 1:

¢ = eeo— Cixln (p) (35)
Po

The angle ¢, is a material parameter and corresponds to the
critical friction angle at the critical void ratio e, . The expo-
nent a,, is a material parameter that determines the course
of the friction angle depending on the relative void ratio e,
. The limit value of the friction angle function is assumed to
be 0, 035, respectively 2°, below the critical friction angle
to model contractive behaviour during increasing shear of a
sample of overcritically loose soil with a void ratio e > e..

The formulation in Eq. (33) for considering the pyknotropy
of shear strength can be used in Eq. (25) to calculate the
mobilized dilatancy angle 1. This makes it possible to dis-
tinguish between contractive and dilative material behaviour
depending on the void ratio. Since the critical friction angle
is a material parameter with Module 4, the effective friction
angle is determined for each void ratio using Eq. (33).
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3.7 Module 5: Cohesion

Since the constitutive model is not intended to be used
exclusively for representing granular and therefore largely
cohesionless soils, another module is introduced to account
for cohesive behaviour. The yield surface according to Mat-
suoka and Nakai [15] is shifted along the axis of the mean
pressure by the value Ap to represent the cohesive behav-
iour of soils. Cohesion ¢’ is introduced as a material parame-
ter, and the value of Ap is determined according to Eq. (36).

(3 —sing’)

Ap =2c
p==c (6sin ¢’)

(36)

3.8 Module 6: Small strain stiffness

Small strain stiffness is introduced to the model using
approach presented in Santosand Correira [21] that is
also implemented in the hardening soil small strain model
[1]. The approach describes the relationship between the
maximum shear modulus G at small strains, the shear
modulus G, the shear strain + and the shear strain g ;7 at
G/Gy = 0.70 (Eq. (37)).

G 1

Go 44 0385 <7>
Yo.7

G37)

It is assumed that the small strain stiffness is proportional to
the compression modulus K and the same formulation can
be used to considered the barotropy and the pyknotropy of
the small strain stiffness. Hence, the compression modulus
K in Eq. (14) is multiplied with a factor F'xox to obtain the
small strain compression modulus (Eq. (38)). Replacing G
with K and G with K in Eq. (37) and limiting the mini-
mum stiffness to K, the stiffness of the constitutive model is
increased at small strain ranges.

Gy Ky
e 38
Frore =0 = 2 (39)
1 1 °
K =max frox; 1] |- %P 39
1+40.385 <i> i
Yo.7

Two material parameters, fxox and o7 as well as two
additional state parameters €,_; and ;s are needed for
consideration of the small strain stiffness.

The state parameter €,_; matches the previous strain incre-
ment and is used to calculate a change in loading direction.
The state parameter vy;5; represents the accumulated strain

magnitude in the loading direction of €;_;. If the loading
direction changes compared to the previous strain incre-
ment, the state parameter y,;5; is changed to account for an
increased stiffness due to the change of the loading direc-
tion. At reversed loading, the state parameter 7,;5; is set to
zero resulting in a full recovering of the small strain stiff-
ness. As stated in Niemunis [17] the small strain stiffness is
only partially recovered if the loading direction is changing
less than reverse. This effect is taken into account by set-
ting ~yp;s¢ to a value that corresponds to the desired increase
in stiffness. The relationship between change in direction
and stiffness recovery is described by the co-sinus function
given in Eq. (40). vx;s¢ is updated according to Eq. (41).

1 éés1
=ma —; 054 —7+— 0.5 40
Jeo =max QFKOK EIE=] D (40)
. 1 feo
Vhist =min (|:’Yhzst; 0.385 feo 70.7]) 41)

4 Material parameters

The material model can be used in its basic formulation
with five material parameters. In the complete formulation
with all presented modules, the determination of a total of
eleven material parameters is necessary, which can mainly
be obtained from standard laboratory tests. Table 2 provides
an overview of the material parameters and alternative val-
ues of the module parameters for deactivating the respective
modules.

5 Inspection of the constitutive model

The presented modular hypoplastic constitutive model is
examined for its properties to identify potential weaknesses
of the model. Figures 8 and 9 show the results of simulated
element tests considering all the presented modules. This
representation is referred to as the fingerprint of a constitu-
tive model, as it provides a quick impression of the capabili-
ties of a constitutive model.

Figure 8 (top) shows the results of an oedometer test
with a loosely packed sample and an oedometer test with
a densely packed sample. Figure 8 (top left) displays the
determined stress—strain curves, and Fig. 8 (top right) shows
the corresponding stress paths. It is shown that the constitu-
tive model reproduces different stiffnesses depending on the
packing density and the direction of loading.

Fig. 8 (middle) presents the results of four CD triaxial
tests at initial stress states of 50 and 100 kPa with both
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Table 2 Material parameters with their description and alternative val-
ues for deactivating individual modules

No Symbol Module  Description Alt.
Value

1 po - Reference pressure [kPa] -

€c,0 — Critical void ratio at po [-] —

3 NiK — Stress ratio between deviatoric —
stress change and isotropic
compression at ¢ = 0 [-]

4 Cik,00 - Isotropic compression coef- -
ficient at po [-]

5 e - Critical friction angle at e o -
/ Effective friction angle if
module 4 is not used [°]

6 ac,ik 1 Exponent for barotropic stiff- 0
ness [-]

7 beik 1 Exponent for pyknotropic stiff- 0
ness [-]

8 ap 4 Exponent for pyknotropic shear 0
strength [-]

9 ¢ 5 Cohesion [kPa] 0

10 frox 6 Fraction of maximum small 1
strain stiffness G to stiffness
G

11 ~o.7 6 shear strain ~o.7 at 0
G/Go =0.70

loosely and medium-densely packed samples. The stress—
strain curves are shown in Fig. 8 (middle left), and the
volumetric strain-strain curves are shown in Fig. 8 (middle
right). The model distinguishes between contraction and
dilation depending on the packing density. Furthermore,
the dependence of shear strength on the relative density and
stress state is demonstrated.

The results of simulated CU triaxial tests in Fig. 8 (bot-
tom) at initial stress states of 50 and 100 kPa with both
loosely and medium-densely packed samples show realis-
tic stress—strain paths (Fig. 8 bottom left) and characteris-
tic stress paths in the deviatoric plane for densely packed
soils (Fig. 8 bottom right). The mean stress decreases with
increasing shear in loosely packed samples and increases in
densely packed samples. However, in real soils with loosely
packed samples, the decrease in mean stress begins at
smaller deviatoric stresses, as seen in Ishihara [11]. There-
fore, the undrained shear strength in very loosely packed
soils is overestimated. This can lead to unsafe results in sta-
bility analyses and must be considered when evaluating the
outcomes.

In Fig. 9 (top), the results of drained simple shear tests
at constant confining pressure are presented. The stress—
strain curves are shown in Fig. 9 (top left), and the volu-
metric strain-strain curves are shown in Fig. 9 (top right).
The results exhibit the same properties as the CD triaxial
test results. The model distinguishes between dilation and

@ Springer

contraction, and shear strength depends on the stress state
and packing density.

A drained cyclic simple shear test considering ten cycles
is presented in Fig. 9 (middle). While the stress strain paths
are shown in Fig. 9 (middle left) the change of the void ratios
are presented in Fig. 9 (middle right). The initially dense
samples is loosened due to cyclic shearing while the initially
loose sample is densified. The degree of loosening or den-
sification depends on the amplitude of the shear strain. This
theoretical mechanical behaviour is typical for hypoplastic
constitutive models while it has not been observed in lab
tests (see e.g.Youd [26]). The change in shear strength with
changing void ratio can is shown in Fig. 9 (middle left). For
the initially dense sample, the maximum shear stress o2
per cycle has the highest value at the first loading path and
decreases with each cycle.

The stress ellipses in Fig. 9 (bottom left) demonstrate that
the yield surface is not exceeded. The elliptical shape of the
stress rate responses and their reduction as they approach
the yield surface are evident.

The stress vectors in Fig. 9 (bottom right) show char-
acteristic stress responses of the soil. None of the depicted
stress paths exceeds the yield surface.

Stress paths from simulated cyclic undrained triaxial tests
are shown in Fig. 10. The tests are simulated for an initially
loose sample (Fig. 10 left) and an initially dense sample
(Fig. 10 right). The initial isotropic stress is p’ = 200 kPa
and the cyclic loading amplitude is Ag = £25 kPa. The
cyclic loading of the loose sample causes a reduction of
the mean stress p’. After a few cycles the effective stresses
become zero, hence the soil liquefies. The mean stress p’ is
also reduced due to the cyclic loading of the dense sample,
but the mean stress remains larger than zero. Soil liquefac-
tion does not occur. Instead a so called butterfly pattern is
simulated by the constitutive model.

6 Comparison to real soil behaviour

To demonstrate the performance of the material model on
a real soil, the material parameters for the so-called Wun-
dersand [19] were calibrated. The material parameters are
listed in Table 3.

6.1 Oedometric compression test

Two oedometer tests are conducted at different densities.
The very loosely packed sample has an initial void ratio
of eg = 0.77 and the densely packed sample has an ini-
tial void ratio of eg = 0.53. The vertical stress before the
actual test begins is 0117 = 15,5 kPa caused by the loading
platen contacting the sample. Both samples are loaded up
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Fig. 8 Fingerprint of the constitutive model; top: oedometer tests on
densely and loosely packed samples with loading, unloading, and
reloading; middle: loosely and densely packed samples in drained tri-
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axial tests at 50 kPa and 100 kPa cell pressure; bottom: loosely and
densely packed samples in undrained triaxial tests at 50 kPa and 100
kPa cell pressure
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Fig. 9 Fingerprint of the constitutive model; top: loose and dense
samples in drained simple shear tests at 50 and 100 kPa cell pressure;
middle: loose and dense samples in cyclic drained simple shear tests at
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Fig. 10 Fingerprint of the constitutive model; top: loose and dense
samples in drained simple shear tests at 50 and 100 kPa cell pressure;
middle: loose and dense samples in cyclic drained simple shear tests at
100 kPa cell pressure; bottom left: stress ellipses in the Rendulic plane;
bottom right: stress paths in the Rendulic plane

to 011 = 1000 kPa and then unloaded to 011 = 15,5 kPa
unloaded. Subsequently, a reloading up tos o1; = 1000 kPa.
follows. The results of the oedometer tests and a numerical
analysis are shown in Fig. 11.

It is evident that the stress—strain paths during loading are
well represented at both densities. The different stiffnesses
in each direction are accurately reproduced. The unloading
stiffness is slightly overestimated for the densely packed
sample. The stress—strain paths during reloading are well
represented, taking into account the unloading phase.

6.2 Drained triaxial compression test

A total of nine drained triaxial tests were simulated using
the material model. The samples were installed in the test
apparatus at loose, medium-dense, and dense packing and
consolidated at an effective cell pressure of 100, 200, and
400 kPa, respectively. Subsequently, the cell pressure was
kept constant, and the sample was sheared to failure through
vertical strain. The initial void ratio eg s 0.63 for loose pack-
ing, 0.54 for medium-dense packing, and 0.46 for dense

Table 3 Material parameters for Wundersand

en [-]

— O— - experiment
modular hypoplasticity

10?
on [kPa]

10

o11 [kPa)

Fig. 11 Stress—strain diagram of two oedometer tests with numerical
analysis; left: loosely packed sample; right: densely packed sample

packing. The results of the experiments and the simulated
CD triaxial tests are shown in Fig. 12 for loosely packed
samples, Fig. 13 for medium-dense samples, and Fig. 14 for
densely packed samples.

The shear strength, stiffness of the soil, and volume
change of the samples are well represented in the simulation
of drained triaxial tests for samples ranging from loosely
to densely packed (see Figs. 12, 13 and 14). The volume
change of the sample in the contraction range is underesti-
mated for loosely packed samples. For medium-dense and
densely packed samples, the volume change is better repre-
sented than for loosely packed samples; however, the dilat-
ancy at higher strains is underestimated in densely packed
samples. The peak shear strength is realistically represented
for tests with densely packed samples, although the soften-
ing of the material is underestimated (see Fig. 14 left). The
behaviour of granular soils in CD triaxial tests, including
the effects of contraction, dilatancy, and barotropic and pyk-
notropic shear strength, can be represented by the material
model.

Material- parameter  po [kPa] eco[-]  mix [[]  Cixo0[-]1  @c[°] acik[[] boix [[] ap -] clkPa]  fxorx [-]  7o0.7 [-]
Value 100 0.70 0.50 0.005 32 0.08 1.35 3.85 0 6 3¢~ 4
Fig. 12 Simulation of drained triax- 1500 -0.08
ial tests on loosely packed samples e = 0.63 — -o— - experiment
at three different cell pressures 1900 | 006 | modular hypoplasticity
o}y = 400 kPa
— 9001 __ -0.04}
A, N
=3 S
= 600 Y002}
300 0.00 ¢g,
oy = 100 kPa
0 . . . g 0.02 . . .
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
en [-] e [-]
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Fig. 13 Simulation of drained triax- 1500 -0.08
ial tests on medium-dense samples eo = 0.55 — -o— - experiment
at three different cell pressures modular hypoplasticity
1200 by = 400 kPa -0.06
— 900 ¢ __-0.04}
% el
= >
600 0’%2 =200 kPa ¥ 20.02 |
300 §f — 0.00
T =
0& . 0.02 . . .
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Fig. 14 Simulation of drained 1500 -0.08
triaxial tests on dense samples at
three different cell pressures
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6.3 Undrained triaxial compression

The behaviour of the material model under undrained tri-
axial conditions is demonstrated with the results from six
undrained triaxial tests (CU). In Fig. 15, the left side shows
the stress paths from three CU triaxial tests with loose pack-
ing under three different initial stress states. The packing
is slightly denser than the critical state, which explains the

@ Springer

increase in mean pressure upon reaching the boundary con-
dition. It is shown that the stress paths are realistically repre-
sented, and a critical state is reached where the mean stress
and deviatoric stress remain constant. The results from the
densely packed tests shown on the right side of Fig. 15 indi-
cate that the stress paths are also realistically represented in
terms of stiffness and behaviour upon reaching the boundary
condition for densely packed samples. It is assumed that a
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critical state will also be reached in densely packed samples;
however, this is not shown in Fig. 15, as the critical state is
expected to occur only at a very high mean pressure.

7 Conclusion

The modular hypoplastic constitutive model presented in
this paper offers the possibility to use the model already
with only limited information about the soil properties.
Once the information about the soil properties increases,
additional modules of the constitutive model can be acti-
vated, resulting in a much more realistic representation of
the mechanical behaviour of granular soils. The model can
reproduce the effects of barotropy and pyknotropy of the
material stiffness and shear strength. Additionally the load-
ing history is reflected by introducing increased stiffnesses
in unloading and reloading cases. Besides this effect, the
constitutive model is able to forget parts of the loading his-
tory due to dilative shearing. The phenomena of small strain
stiffness is implemented to the model as well.

The model allows for simulation of the mechanical
behaviour of granular soils under monotonic and also under
cyclic loading. The capabilities of the model are shown by
simulating standard laboratory tests.
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