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Abstract

Cities have become valuable alternative habitats for many organisms, particularly arthropods, as they often offer more favourable
environmental conditions, and greater resource availability compared to neighbouring intensive agroecosystems. However, urban
biodiversity is threatened by habitat loss and fragmentation, driven mainly by urban development and densification. Green roofs are
novel urban green spaces that may represent valuable stepping stones, supporting various taxa. However, so far, only few studies
have evaluated the potential of green roofs to support the conservation of biodiversity in cities. Here, we assessed species richness
and diversity of vascular plants and arthropods on eight extensive green roofs in the city of Hamburg in northern Germany to under-
stand which local green roof parameters and landscape scale factors may support high arthropod richness on green roofs. Plant di-
versity varied between roofs, but none of the parameters explained the variance in plant diversity, with only age having a slightly
negative effect. Arthropod richness was positively influenced by green roof size and arthropod composition by diversity of vascular
plants on the green roofs. In addition, the amount of green land use types surrounding the location of the green roof had a positive
effect on arthropod richness. Our results indicate that green roofs can harbor various arthropod species and could function as urban
stepping stones for many species to enhance the connectivity of existing green spaces and, thereby, enhance urban biodiversity.
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(Aronson et al. 2014, Ives et al. 2016, Theodorou et al. 2020b). As
such, recent studies argue that managing urban ecosystems
through the development of green infrastructure - “strategically
planned networks of natural and semi-natural areas” designed to
deliver ecosystems services and enhance biodiversity (European
Commission 2019, p. 1) - could be beneficial. By establishing
interconnected green spaces with diverse habitat conditions, cit-
ies may act as refugia for plants and animals threatened by agri-

Introduction

With a constantly growing global human population, agricultural
practices in rural areas intensified to meet the growing global
food demands (Tilman et al. 2011, Rosenzweig 2016). At the same
time, animal and plant diversity continues to decline as a result
of landscape alteration driven primarily by agricultural expan-
sion and intensification (Diaz et al. 2019, Seibold et al. 2019,
Eichenberg et al. 2020, Outhwaite et al. 2022). The unprecedented

current rate of urban development poses an additional threat to
biodiversity by fragmenting habitats, reducing green spaces and
intensifying the impacts of pollution (Piano et al. 2020, Liang et al.
2023). Among the many groups affected, insects, the largest
groups of animals, are experiencing rapid declines due to urban
expansion. Their vulnerability is largely attributed to factors
such as the body size, limited mobility and specific nesting
requirements (Fenoglio et al. 2021, Vaz et al. 2023). Yet, paradoxi-
cally, cities can support a high number of plant and animal spe-
cies and may harbor greater species diversity than rural areas

cultural intensification (Madre et al. 2014, Baldock 2020,
Theodorou et al. 2020b, Wenzel et al. 2020, Gentili et al. 2024).

A current and widely discussed approach to mitigate climate
change and the negative effects of landscape alteration along
with promoting biodiversity, particularly in urban areas, is the
construction of green roofs (Knapp et al. 2019, Joshi et al. 2020).
With an estimate of 20-25% of urban surfaces in the US
being rooftops (Akbari and Rose 2008) and 14% of roofs being
potentially suitable for greening (exemplified for the state of
Brandenburg, Germany; Grunwald et al. 2017), there is great
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potential to establish green habitats within cities (Besir and Cuce
2018). Green roofs, characterized as roofs with vegetated surface
and substrate (Oberndorfer et al. 2007), may provide multiple
benefits in dense urban areas, such as storm and rainwater run-
off management, mitigating the urban heat island (UHI) effect,
providing insulation and therefore, decreasing energy consump-
tion as well as air and water pollution (Oberndorfer et al. 2007,
Berardi et al. 2014, Sutton 2015, Clar and Steurer 2021). They con-
tribute to the sustainability, resilience and quality of life of cities
and are relevant to the Nature-based Solution concept (NbS), which
describes actions to preserve and enhance nature to mitigate and
overcome societal challenges (Seddon et al. 2020). Furthermore,
they have potential to improve urban biodiversity and represent
important stepping stones for insects and other invertebrates by
connecting (ground-level) habitats (Braaker et al. 2014).

As green roofs are very variable in design and structure, rang-
ing from simple extensive green roofs, which have a shallow sub-
strate supporting simple sedum vegetation and low maintenance
requirements, to complex intensive green roofs, having a deeper
substrate (>20 cm) with complex vegetation and high mainte-
nance costs (Oberndorfer et al. 2007), there are many different
parameters that can determine their efficacy in supporting high
species diversity. Substrate depth has an impact on plant diver-
sity, since a deeper substrate can store more water and allows
deeper root growth (Oberndorfer et al. 2007, Madre et al. 2013,
2014, Lonnqvist et al. 2021, Gonsalves et al. 2022). This allows a
wider variety of species to persist, which may enhance the struc-
tural complexity of vegetation (Madre et al. 2013, Kdhler and
Kaiser 2021), thereby providing a feeding habitat for ground-
dwelling species and pollinators (Haddad et al. 2011, Cook-Patton
2015, Bevk 2021). A comparison between simple green roofs (little
structural diversity) and green roofs with more complexity,
which have varying substrate depths, vegetation layers and
woody debris, also showed that the higher habitat complexity of
the latter supported a higher degree of insect diversity
(Gonsalves et al. 2022). Another important factor is the size of the
green roof. When investigating urban green spaces, Matthies
et al. (2017) found that patch size positively influences plant and
bird diversity. Similarly, Beninde et al. (2015) found patch size to
be an important predictor for plant and insect diversity in an ur-
ban setting and Madre et al. (2013) found that patch size of green
roofs has a positive influence on species richness. The results of
these studies both align with the theory of island biogeography
(MacArthur and Wilson 1967) and the species-area relationship
concept, where larger green roofs host greater species diversity,
similar to larger islands tending to support more species by offer-
ing more resources and diverse microhabitats (Lepczyk et al
2017, Lonngvist et al. 2021, Calheiros et al. 2022). Another factor
that could influence the diversity on green roofs is the age of the
roof (Madre et al. 2014, Beninde et al. 2015, Lonngvist et al. 2021,
Gonsalves et al. 2022). However, some studies found that older
roofs have lower diversity, while others found no correlation be-
tween the age of the roof and species diversity. Additionally, the
height of the roof can influence the abundance and species rich-
ness, since higher roofs may be harder to access and colonize or
are more exposed to wind (Berardi et al. 2014, Madre et al. 2014,
Williams et al. 2014, Lepczyk et al. 2017). In addition to the roof
characteristics, the surroundings of green roofs influence their
species diversity; urban areas with green land use types, such as
parks, grassy areas, open unused spaces and small groves, in
close proximity promote higher diversity on green roofs (Madre
et al. 2014, Kyro et al. 2018).

Here, we studied eight green roofs in the city of Hamburg,
assessing vascular plant diversity, arthropod richness together
with other local and landscape factors to identify key parameters
influencing biodiversity on the selected green roofs in Hamburg
and to answer the question: What are the primary determinants
influencing arthropod richness on selected green roofs in
Hamburg, and how do local roof parameters and surrounding
landscape factors shape biodiversity patterns? The following hy-
potheses were tested: (1) A more diverse vegetation layer supports
a higher richness of arthropods. (2) In addition to plant diversity
and richness, the green roof size is an important predictor of ar-
thropod species richness (we exclude age and height as factors as
our setup shows too little variability between roofs) and (3) roofs
embedded in a matrix of urban green land use types support a
higher diversity of plant and arthropod species richness.

Materials and methods
Study area and selection of green roofs

This study was carried out on green roofs in the city of Hamburg
in northern Germany (53° 33’ N, 10° 0' E, 6m a.s.1,, Fig. 1).

Hamburg is located within the temperate climate zone and is,
due to its proximity to the Baltic and North Sea, also characterized
by an oceanic climate, with mild winters and temperate summers
(Schmidt et al. 2014). Approximately 8% of Hamburg's surface
area are bodies of water, vegetation cover accounts for 33% and
settlement area accounts for 47% (Statistisches Amt fiir Hamburg
und Schleswig-Holstein 2021). Being the second largest city in
Germany with ~1.8 million inhabitants, Hamburg faces several
environmental and climatic challenges (Schliinzen et al. 2010,
Four pillars to Hamburg's Green Roof Strategy 2016, Clar and
Steurer 2021). However, Hamburg is often referred to as the main
example of green roof implementation and was one of the first
German cities to develop and implement a “green roof strategy” in
2015 (Four pillars to Hamburg's Green Roof Strategy 2016).

In total, we selected eight green roofs, evenly distributed across
the area of the city of Hamburg (Fig. 1). The minimum distance
between two roofs was 3.2km (Exception “HPA BG1” and “HPA
BG2” which were only 320m apart), sufficient distance for the
roofs to be considered independent. All green roofs are character-
ized as extensive green roofs, and one of them (“Lutterothstrafse”)
has integrated rainwater retention mechanisms (Fig. 2). To de-
scribe the design characteristics of each roof, further parameters
(roof type, age, height, total area, green roof size and mainte-
nance) were recorded before sampling (Table 1). Additionally, we
measured the substrate depth of the roofs, the cover of moss and
lichens, cover and diversity of plants and surrounding land
use types.

Since the architectural drawings were not accessible for all
roofs, the total roof area and the green roof size (planted area on
the roof excluding gravel areas and ventilation systems) were es-
timated using QGIS (Version 3.34.3-Prizren). Roof height data was
mainly obtained from architectural drawings and in three cases,
by personal communication with the person managing the roof.

All the eight roofs had parapet walls (low walls surrounding
the rooftops), with three of them being higher than 70 cm, to pro-
tect the roofs from weather conditions and for human safety
measures. Therefore, to minimize the effects of differential sun
exposure, wind, and other weather parameters on the analyzed
areas on the roofs, for the analyses, the green roof size was re-
duced by 1m on each side using the “buffer” function in QGIS. For
further analysis, random points were placed within the buffered
roof area using the “random points in layer bounds” function
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Figure 1. Overview map of the locations of the eight studied green roofs in Hamburg. The municipal boundary of Hamburg is shown with the grey line.
The map was created using the current satellite imagery from Google Maps (Map data: ©2015 Google) and QGIS (Version 3.34.3-Prizren).

with a spacing of at least 1.5m. These points were used as loca-
tions for arthropod traps, as well as the center of the 1m? plots
for the floristic analysis. Due to nesting seagulls, a limited part of
the roof BUKEA was safely accessible. Traps and floristic analysis
were placed randomly within this area. None of the roofs are ac-
cessible to the public.

Vegetation surveys and landscape variables

Each green roof was sampled with five plots of 1 m? size resulting
in a total of 40 vegetation plots. To obtain standardized data, the
plot size and number per roof were consistent across all roofs.
This plot size has been shown to effectively capture typical vege-
tation characteristics on green roofs (Madre et al. 2014, Nash et al.
2016), and its size is small enough to allow for multiple repeti-
tions across the roof, enabling the collection of data from various
areas, ensuring a more comprehensive representation of the veg-
etation across the entire roof. Within the plot, plant species, their
cover, growth height, substrate depth, stone coverage and per-
centage of litter were documented, and the Shannon diversity
and Evenness calculated (Table 4 and Table S1). Moss and lichen
cover was also estimated, and the presence of sandy areas or
dead wood was noted for the entire green roof (Table S1).

Plant abundance was estimated using the semi-quantitative
method of Braun-Blanquet (Reichelt and Wilmanns 1973,
Tiemeyer et al. 2017, Tables S2 and S3). Most plants were identi-
fied on-site to minimize damage to the roof’s vegetation. The spe-
cies were identified using the following literature: Jager et al.
(2008), Parolly et al. (2016), Raabe, (1975) and Schauer et al. (2016).
Information about originally planted species was obtained from
roof manufacturing details. Unfortunately, the provided lists
solely contain estimates of species and no detailed information.
For two roofs the information was not available.

To estimate the composition of the surrounding landscape of
a green roof, land use data provided by the Behorde fir Umwelt,
Klima, Energie und Agrarwirtschaft (BUKEA) was analyzed within
a radius of 1km of each site (BUKEA 2022). Using QGIS, land use
types and their surface area were determined. Categories for de-
scribing land use types were chosen according to the land use
classes predefined by the BUKEA and are as follows: “gray” for
residential, commercial, industrial areas and roads and “green”
for green spaces, parks, small groves, grassy areas and open un-
used vegetated spaces (Table 2).

Arthropod sampling and DNA metabarcoding

Arthropods were sampled from May to June 2022. The traps were
installed on the 16" and 17 of May and controlled and emptied
on a weekly basis. As the green roofs were spread throughout the
city, they could not be visited all in one day, but in two consecu-
tive days.

Each green roof was sampled with five pitfall traps and three
pan-traps (Fig. S1). At the first visit to the green roof, pitfall traps
(plastic cups with an opening of 8.5cm and a height of 10cm)
were placed according to the random points with at least 1.5m
distance. Holes were carefully dug into the substrate to fit
the plastic cup and the edges were evened with the soil surface.
To prevent the destruction of the pitfall and pan traps, wire
enclosures were placed around them and fixed with stones.
Unfortunately, on one green roof (“Lutterothstrafie”), three of the
five traps were emptied, presumably by birds, after the initial in-
stallation. Hence, the wire enclosures for the traps were hereaf-
ter fixed with tent pegs. This wire may influence capture of
larger species (e.g. butterflies and bumblebees), yet, as all traps
were treated similarly, comparability is not affected. As trapping
solution, we used 200ml of 99.5% propylene glycol, which is non-
toxic, not flammable, evaporates slower than ethanol and has
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Figure 2. Photographs of the vegetated areas of the eight analyzed green roofs (1 = MVR, 2 =HPA BG1, 3=HPA BG2, 4 =BUKEA, 5 =Lutterothstrafie,

6 =Am Weifdenberge, 7 =Eulenkamp, 8 = Burgstrafie).

Table 1. Green roof design characteristics (roof type, age, height, total area, green roof size and maintenance).

Roof Roof type Age [years] Height [m] Total Green roof Maintenance
area [m?] size [m? [1=once a year]
MVR Extensive 23 25.43 1496.89 1306.26 1
HPA BG1 Extensive 4 24.18 52.13 37.03 1
HPA BG2 Extensive 4 4.13 155.55 113.34 1
BUKEA Extensive 9 20.10 1590.14 1364.81 1
Lutterothstrafie Extensive (retention) 6 17.85 440.36 339.03 1
Am Weifdenberge Extensive 7 12.20 107.11 72.18 1
Eulenkamp Extensive 7 12.50 1015.16 620.16 1
Burgstrafse Extensive 7 18.91 1131.46 967.58 1

been proven to be effective in preserving insect DNA (Nakamura
et al. 2020, Martoni et al. 2021). Traps were emptied and refilled
with fresh medium every week, four times each.

Pan-traps were placed in the third week of the sampling pe-
riod and emptied once a week for a period of two weeks. The
traps themselves consisted of plastic bowls with an opening of
14.5 cm and a height of 5 cm and were filled with 200ml of 99.5%
propylene glycol. They were spray painted with UV-bright colors
white, yellow and blue (Sparvar Leuchtfarbe, Spray-Color GmbH,
Merzenich, Germany; Westphal et al. 2008). Colored UV-bright

pan-traps have been shown to be more efficient, as they mimic
the natural ability of flowers to reflect UV light (Westphal et al.
2008, Abrahamczyk et al. 2010, Nuttman et al. 2011, Saunders and
Luck 2013). Each roof had a yellow, blue, and white trap placed in
its center.

The sampled individuals were kept in fresh propylene glycol.
As the trapping solution could also contain DNA fragments,
50ml of each week’s sample was kept and added to the final
sample. The samples were pooled per green roof, resulting in
eight samples for metabarcoding. DNA metabarcoding was
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chosen as a taxonomic classification method due to its high effi-
cacy with mixed bulk samples from insect trapping (Piper et al.
2019, Svenningsen et al. 2021). DNA extraction, amplification and
sequencing on an Illumina HiSeq 2000 were performed by
Advanced Identification Methods (AIM, Leipzig, Germany). For
bulk amplification of the CO1 mini barcode region, the primers
(mlCOIintF/jgHC02198) provided by Leray et al. (2013) were used.

The obtained sequences were quality filtered, cleaned,
trimmed and clustered using Swarm 3.1.0 and the parameters -d
13—usearch-abundance. A cluster, also called a molecular oper-
ational taxonomic unit (mOTU), combines sequences that do not
differ by more than 2%. The mOTUs can then be used to find hits
in a reference database. To identify species, two databases (BOLD
and NCBI) and one classifier (RDP Classifier =Ribosomal
Database Project Classifier) were used. Some individuals could
not be identified at the species level, as they may not be docu-
mented yet, or the databases and the classifier do not coincide
with their species suggestion. Therefore, some mOTUs were only
classified at the genus, family, or order levels. Subsequently, we
only used arthropod species, that were unequivocally identified
by the databases and those determined at the genus level after
further manual checking. If at least two suggestions from the
databases and the classifier were in concordance, the species
were included in the final analysis and named as follows:
Psychoda cf satchelli. Total arthropod richness was calculated
from the metabarcoding data and used in our downstream statis-
tical analysis.

Statistical analysis

The diversity of plant communities on the green roofs was esti-
mated using the Shannon-Wiener index. The Shannon-Wiener
index, denoted as H/, considers the number of species in the
given habitat and their relative abundance. The higher the value
of H’, the higher the diversity of species in the habitat. An H' of O
indicates that there is only a single or no species present.

To determine the most important predictors for plant diver-
sity and richness on green roofs, we used a generalized linear
model (GLM). The age of the roof, the green roof size, the amount
of the surrounding green land use types at a radius of 1km, the
mean cover of vascular plants, the mean cover of moss and
lichens and the substrate depth were used as predictors
(Table 3). To determine the most important predictors of arthro-
pod mOTU richness, we used generalized linear models (GLMs)
with a negative binomial error structure. The Shannon diversity
of plants, the green roof size, the amount of the surrounding
green and gray land use types within a radius of 1km and the
height of the roof were used as predictors (Table 3). For all mod-
els, we used the “dredge”-function within the MuMIn R package
(Kamil Barton 2020) to find the best model(s) with up to two pre-
dictors to avoid overfitting. The models were ranked according to
their AIC values (Akaike information criterion). We used a cut-off
AAIC value of 2 (Burnham and Anderson 2004) and, if more than
one model was retained, we used model averaging (function
‘model.avg’; Barton 2020).

To analyze species community composition, we used a canon-
ical correspondence analysis (CCA) using the vegan package in R
(Oksanen et al. 2022). To determine the main environmental fac-
tors influencing the composition of the community of arthropod
and insect species, a full model including the amount of the
green and gray land use types within a radius of 1km, the
Shannon diversity of plants, the green roof size and the roof
height were used in CCA. Next, we carried out a forward and
backward selection to identify the most important predictors.

Table 2. Percentage of green and grey land use types per green
roof categorized according to their land use class as defined by
the BUKEA (green = green spaces, parks, small groves, grassy
areas and open unused spaces and gray =residential,
commercial and industrial areas, including highways and track
installations). Land use types were described in a 1km circular
radius measured from the center of the roof.

Roof Sum green biotopes [%]  Sum grey biotopes [%]
MVR 2.32 50.64
HPA BG1 29.94 22.91
HPA BG2 24.53 34.82
BUKEA 15.37 53.44
Lutterothstrafie 10.90 69.46
Am Weifdenberge 3.09 69.45
Eulenkamp 8.09 76.92
Burgstrafie 4.32 83.04

Table 3. Predictors influencing the species richness of vascular
plants and arthropods using generalized linear models (GLMs).
Significance levels are given for selected variables (P <0.05%,
P<0.01** P<0.001*** ns=not significant, not relevant=no
explanatory predictor in model according to AIC).

Response variable Predictor P-value

Vascular Age Not relevant
plant richness

Not relevant
0.225ns

Not relevant

Green roof size [m?]
Green land use types
Mean cover of vascular
plants

Mean cover of moss
and lichens

Substrate depth

Green roof size [m?]

0.967 ns

Not relevant
Arthropod 3.19e-07***
richness

< 2e-16%**
Not relevant
Not relevant

Not relevant

Green land use types

Gray land use types
Shannon diversity of plants
Height of the roof

Analyses were performed using the R Statistical Software and
RStudio (v4.1.2, R Core Team 2021, RStudio Team 2022) including
the following packages: MASS (Venables et al. 2002), effects and car
(Fox and Weisberg 2018). All predictors were standardized to a
mean of 0 and a standard deviation of 1 prior to analysis. We
used variance inflation factors with a cut-off value of 3 to check
for multicollinearity (Zuur et al. 2009). No major effects of collin-
earity were found (VIF was lower than 3 for all predictors). All
model (GLM and LM) assumptions were checked visually and
were found to conform to expectations (e.g. normality of the dis-
tribution of residuals, homoscedasticity, linearity, no outliers).
The residuals of all regression models were tested for spatial au-
tocorrelation using Moran’s I implemented in the R package ‘ape’
(Paradis and Schliep 2019). The residuals were not found to be
autocorrelated (P> 0.05 for all models).

Results

Environmental characteristics of the green roofs
Substrate depth varied between green roofs with a maximum of
17 cm and a minimum of 7.4cm (Table S1). The mean cover of
mosses and lichens varied between 84% and 6% and the maxi-
mum of the mean vascular plant cover was 57% with a minimum
of 38% (Table S1).
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In total, 61 vascular plant species (min. 8 on Burgstrafse and
max. 28 on Lutterothstrafse) were found across all green roofs
(Table S4). These species belonged to 16 families (Fig. 3). With
14 species, Asteraceae was the plant family with most species,
followed by Crassulaceae with 11 and Caryophyllaceae with
seven species. Three species, all belonging to the family of
Crassulaceae, occurred on each green roof: Phedimus kamtschati-
cus, Sedum sexangulare and Phedimus spurius. All roofs were
designed as sedum-roofs, however the number of species found
on the roofs differed (Table 4). Model selection identified the null
model to be the best model and none of our predictors influenced
plant richness (Table 3). Green roofs originally contained be-
tween 50-55 species and at the time of this study supported
an average of 11.33+6.13 species of the originally sown ones
(Table S5). Am Weiffenberge only contained 10% (5 out of 50 spe-
cies) of the original ones, while Lutterothstrafle still supported
41% (23 out of 55 species).

Arthropod richness and community composition

Illumina sequencing of arthropods captured in traps on the eight
green roofs resulted in 633 mOTUs. After removing all mOTUs
not attributed to Arthropoda, our total metabarcoding dataset
contained 621 mOTUs. The majority of mOTUs (354 out of 621,
57.0%) were successfully assigned at species level (Table S6) and
can be divided into the following classes: 306 species (86.44%)
belonged to Insecta, followed by Arachnida with 26 species
(7.34%), Collembola (8 species, 2.26%), Chilopoda (6 species,
1.69%) and Malacostraca and Diplopoda both with 4 species
(1.13%). The Arthropoda included 18 orders which are displayed
in Fig. 3.

On average, each green roof harbored 75.5+32.35 SD arthro-
pod species (Table 5). No species occurred on all roofs, but the do-
mestic honeybee, Apis mellifera, was the only one present on most
roofs, except for the green roof “HPA BG1”.

The automated model selection approach to explore the po-
tential of multiple factors influencing arthropod and insect rich-
ness, revealed strong effects of the green roof size as well as the
surface area of the surrounding green land use types on richness.
We found a positive relationship between the green roof size and
arthropod richness (GLM; z=5.11, P <0.001; Fig. 4). In addition,
the amount of green land use types in the surroundings of the
roof had a positive effect on arthropod richness (GLM; z=9.33,
P <0.001; Fig. 4), especially on the orders Diptera, Coleoptera and

Violaceae [1] 2% ~ Amaryllidaceae [1] 2%
Boraginaceae [1] 2%

Lamiaceae [3] 5%

Geraniaceae [2] 3%

Symphypleona [1] 0%
Entomobryomorpha [6]2% —

Poduromorpha [1] 0%--
Lithobiomorpha [6] 2% ..

A
Sapindaceae [1] 2%
Rosaceae [2] 3% Sarcoptiformes [2] 1%
Opiliones [3] 1% ”
L
Plantaginaceae [2] Araneae [21] 6% .~
3% 4
Onagraceae [1] 2% Thysanoptera [2] 1%

Dermaptera [1] 0%
Neuroptera [1] 0%

Betulaceae [1] 2%

Campanulaceae [1]
2%

Lepidoptera (GLM; z=6.49, P<0.001; z=4.12, P<0.001; z=2.44,
P <0.01, respectively).

A canonical correspondence analysis was carried out for
arthropods to examine the most important predictors of their
community composition. Important predictors for each response
variable are shown in Table 6. The composition of arthropods
was significantly influenced by the amount of green land use
types (P<0.01) and the amount of gray land use types (i.e. resi-
dential, commercial, industrial areas and roads) (P<0.05), the
green roof size (m?) (P <0.01) and the Shannon diversity of plants
(P<0.05; Table 6 and Fig. S2).

Discussion

Our study shows the potential of green roofs as resources for
supporting and enhancing urban biodiversity. Interestingly, plant
species diversity on the roofs could not be explained by any of
the measured variables. In contrast, arthropod richness was
strongly positively related to the green roof size and the propor-
tion of green land use types in the surrounding area. A smaller
positive effect on the arthropod composition was detected for
plant diversity. In the following section, we discuss these findings
in relation to our research aims and explore their implications
for urban biodiversity conservation.

Effects of local roof characteristics on arthropod
communities

Firstly, we tested the effects of different green roof characteris-
tics on arthropod richness. Contrary to our expectations and
other studies, plant richness and diversity on green roofs did not
affect arthropod richness in our study, but only arthropod com-
munity composition (Ollerton 2017, Drukker et al. 2018,
Theodorou et al. 2020a).

While we do not see a relationship between arthropod rich-
ness and the plant species richness and diversity, we detected a
weak, positive relationship of plant species diversity on arthro-
pod composition. This indicates that vegetation contributes to
shaping the composition of arthropod communities, but not nec-
essarily determines their richness in this system, suggesting that
while certain arthropod groups (e.g. pollinators and surface-
dwelling species) respond to plant diversity, the full extent of the
interaction may depend on the inclusion of phytophagous spe-
cies, which were likely underrepresented and therefore probably

Julida [3] 1‘%Polydesm|da [1] 0%

\ ‘I Isopoda [4] 1%

Diptera [92] 26%

\ xLepidoptera [19] 5%

Figure 3. Pie chart showing the vascular plant composition found across all green roofs (A). The absolute number of species per plant family is
displayed in square brackets followed by the percentage. Pie chart showing the arthropod composition found across all green roofs (B). The absolute
number of species per arthropod order (mOTU reads) is displayed in square brackets followed by the percentage
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underestimated in the current sampling campaign. However, en-
vironmental factors (plant diversity, substrate depth, water avail-
ability, nesting and feeding grounds, etc) potentially influencing
arthropod richness vary over time, showing that green roofs are
dynamic ecological systems (Thuring and Dunnett 2014) and not
all relationships can be analysed in small scale experiments.
While the plant species diversity did not influence the arthro-
pod richness, our results show that the green roof size does
strongly, confirming our second hypothesis. The concept of the
species-area relationship describes, similar to the island biogeog-
raphy theory, how habitat size correlates with species richness
and diversity (Connor and McCoy 1979), mainly due to more

Table 4. Number of vascular plant species, Shannon diversity
and Evenness per GR. Mean values are displayed with the
standard deviation.

Roof Plant species Shannon Evenness
[total number] diversity

MVR 11 0.996+0.13 0.536+0.07
HPA BG1 22 1.502+0.30 0.645+0.13
HPA BG2 21 1.747 +0.13 0.705+0.05
BUKEA 19 1.588+0.19 0.691+0.07
Lutterothstrafde 28 1.492+0.48 0.639+0.22
Am Weifsenberge 13 1.096+0.23 0.544+0.11
Eulenkamp 13 1.169+0.38 0.633+0.13
Burgstrafie 8 0.869+0.44 0.493+0.24

Table 5. Species richness of arthropods per roof. * marks the roof
with the trap loss.

diverse microhabitats and greater resource availability, both of

which promote species richness and diversity (Fabidn et al. 2021).
Accordingly, green roof size appears to be a key predictor of ar-

thropod richness, as supported by findings from several other

studies (Berthon et al. 2015, Ksiazek-Mikenas et al. 2018, Sdnchez
Dominguez et al. 2020). Green roofs, appearing in fragmented ur-
ban environments with limited habitat availability, may act as
“green islands”, in line with the island biogeography theory; the
green land use types surrounding the roofs likely represent the

source populations.

Landscape scale effects on green roof arthropod

richness and plant diversity

Findings from our study suggest that the presence of green land
use types surrounding roofs significantly enhances arthropod

richness, but not plant diversity, only partly supporting our

third hypothesis.

The colonization of green roofs is likely to depend on patches
of green habitat in the matrix between the green roofs represent-
ing the source populations. The permeability of the gray matrix,
the presence of adjacent green spaces providing movement corri-
dors, and the species traits determine the dispersal capacity. As a
result, green roofs enhance the connectivity of existing green
spaces in urban areas (Braaker et al. 2014, Mayrand and Clergeau
2018), functioning as stepping stones, enhancing migration and
distribution. Consequently, a higher proportion of green land use
types in the surroundings of a green roof affected the richness
and composition of arthropods. As Braaker et al. (2014) and
Maclvor and Lundholm (2011) suggest, highly mobile insects are
generally more strongly affected by the connectivity to surround-
ing green land use types, whereas the composition of immobile

Roof Arthropod species > :
species tends to be more affected by local environmental
MVR 56 conditions.
HPA BG1 118 . . . .
HPA BG2 93 As stepping stones, green roofs can provide essential feeding
BUKEA 122 and, in some cases, nesting habitats, serving as alternative habi-
Lutterothstrafe* 56 tats and thereby counteract these negative effects and promote
E\Hll Vielﬁenberge 249} biodiversity conservation in cities (Blank et al. 2017, Ksiazek-
Bﬂregztrzrgg o1 Mikenas et al. 2018). However, these benefits vary depending on
the taxa. Epigaeic arthropods are more likely to complete their
A B
120 ) | L ) 200+ L : \ ' L y
100+ - 1501 r
]
2 g
] c
£ 80 51004 -
= =
= °
o o
8- 60 %
:
t < 50 -
<C
p<0.001 p<0.001
40+ . . ; . . - ; ‘ : : : :
200 400 600 800 1000 1200 5 10 15 20 25 30

vegetated area [m2]

Figure 4. Effects of the green roof size (m2) (A) and the percentage (%) of green land use types in the surrounding area (B) on arthropod richness across
all green roofs (n=8). Blue lines correspond to the predicted relationships and shaded areas correspond to 95% confidence intervals. Partial residuals

are shown.

green land use [%]
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Table 6. Predictors influencing the species composition of
arthropods using a canonical correspondence analysis (CCA).
Significance levels are given for selected variables (P <0.05%,
P <0.01** ns =not significant).

Response variable Predictor P-value
Arthropod community Green land use types 0.005**
composition
Gray land use types 0.005**
Green roof size [m?] 0.010%*
Shannon diversity of plants 0.025*
Height of the roof 0.600ns

life cycle on green roofs, whereas for many pollinating insects,
such as butterflies and ground-nesting or cavity-nesting bees
which have very specific requirements, green roofs may not offer
suitable conditions. Additionally, green roofs alone, without the
presence of adjacent green spaces and their connectivity, are un-
likely to play a significant role in sustaining arthropod diversity
within urban environments, as existing green habitats play a cru-
cial role in sustaining diverse and stable populations.

The diversity of plants on green roofs might not be affected by
surrounding green land use types in our study, because seed dis-
persal may be limited by height and plant survival could be lim-
ited by substrate composition and depth (Kiehl et al. 2021).
Instead, the plant diversity may be more closely related to the
originally planted species and their suitability to the challenging
conditions found on green roofs; ecological sorting likely plays an
important role (e.g. Braaker et al. 2014). Hence, the originally
planted community on the roofs may be a determining factor.
However, it has to be noted that the results of this study only
capture a single, short moment in time. With advancing age, the
plant species diversity and composition will develop gradually
from the originally seeded plants and presumably a more charac-
teristic plant species assemblage will establish. Angold et al.
(2006) and Madre et al. (2014) obtained similar results regarding
plant diversity and later posed the question to which extent
plants seeded on green roofs might also migrate to ground level
habitats. Seven documented plant species in our study were clas-
sified as neophytes for Germany (Poppendieck 2010, Metzing et al.
2018), but four of them were included in the originally seeded
plant list. If these species migrate to ground-level habitats, it
becomes crucial to prioritize the use of native plants on green
roofs to prevent the spread of alien species. Using non-native or
neophyte species on green roofs has been common practice as
these species tend to be more robust against harsh roof environ-
ments, but they can have negative implications for biodiversity,
potentially leading to the displacement of native plants and a
loss of ecosystem balance. Recent studies, however, also found a
suite of native species to persist on green roofs making them
more suitable and environmentally friendly alternatives (Kiehl
etal. 2021, Esfahani et al. 2022, Fenoglio et al. 2023).

While our findings provide valuable insights into the factors
influencing the value of green roofs for various arthropod spe-
cies, our analysis is based on a limited number of roofs in a single
city in Germany. Our analysis demonstrates that some local roof
parameters influence the arthropod composition, suggesting that
these effects may be further amplified when accounting for di-
verse geographic regions and varying local arthropod communi-
ties. Other parameters, such as age and height did not display
effects on plant or arthropod richness, likely because the green
roofs exhibited similar characteristics regarding these parame-
ters (e.g. all roofs had similar heights, so the effect of height

could not be explored with our data). Therefore, our results will
have to be validated at a larger geographic scale with wider
ranges for certain parameters. Moreover, we applied metabar-
coding to identify species. This method has the advantage of ob-
jectively allowing identification of large numbers of organisms,
but it still has some limitations (Forster et al. 2023). It strongly
depends on the primers used and may partially have biases as
some taxa amplify better than others. Furthermore, species iden-
tifications are closely tied to database completeness; therefore,
we focused solely on mOTU-level analyses to ensure comparabil-
ity of diversity across locations. When considering these limita-
tions, the advantage of getting more general insight into
arthropod communities compared to studies based on single
groups of insects with potentially higher resolution and confi-
dence outweighs the disadvantages.

Conclusion

This work shows the potential of green roofs to serve as stepping
stones or alternative habitats for supporting arthropod diversity
in urban environments. The success of a roof largely depends on
the diversity and abundance of the surrounding green infrastruc-
ture, which provides source populations and essential resources,
and on the green roof size. To optimize their benefits, it is crucial
to design green roofs that incorporate diverse microhabitats us-
ing native plant species, which are strategically placed to en-
hance connectivity with surrounding green land uses and
prioritize larger roof areas. Future research should investigate
various types of green roofs across different urban settings while
examining the impact of controlled variables on biodiversity out-
comes. By understanding and optimizing the multidimensional
benefits of green roofs—including stormwater management, bio-
diversity conservation, urban heat island mitigation and im-
proved human well-being—their role as essential components of
urban green infrastructure can be strengthened, enhancing both
environmental resilience and social impacts.
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