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ABSTRACT

While cities are facing increasing challenges of flood risk due to combined effects of climate
change and socioeconomic development, understanding of the complexity of urban flood
risk is still limited, hampering decision-making and urban adaptation planning. This study
presents a qualitative system dynamics modelling framework to investigate urban flood risk
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and adaptation under climate change in a coupled socio-ecological system, the city of
Hamburg. The developed integrated conceptual model provides a holistic understanding
of key physical and socio-economic processes and the role of feedback loops underlying the
urban system, and contributes to the understanding of vicious cycles of barriers that
perpetuate and hinder adaptation processes within cities. The qualitative approach can
help to break down silo-thinking in urban flood risk assessments. Decision-makers could
use the framework to understand the complexity of interactions among multiple drivers of

change adaptation; socio-
ecological system analysis;
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feedback loops; participatory
modelling; barriers to urban
adaptation

flood risk to overcome barriers and lock-in effects to adaptation in cities.

1. Introduction intensity of natural hazard events, but also because
of ongoing urban growth, densification processes and
the increasing complexity of society (Berndtsson et al.

2019). In particular, flooding poses a key risk for urban

Cities are at the forefront of climate change impacts
not only because of increasing frequency and
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areas. Heavy rainfall (98%) and flooding (86%) were
mentioned as main urban hazards by WMO members
answering an international survey on hazards (WMO
2021, p.10). Only storms cause more losses worldwide
than flood events (MunichRE 2022). However, ‘water
in itself, is not a threat’, rather it is the constantly
changing relationship between water and humankind
that determines the potential danger (Mauch 2012,
p. 63). Flood risks in urban areas arise from hydro-
meteorological events that interact with the urban
system (Dodman et al. 2022). It is the dynamic inter-
action of climate-related hazards with the exposure
and vulnerability of the affected system that decides
the magnitude of a water disaster (Ara Begum et al.
2022). Combinations of multiple climate drivers and/
or hazards, known as compound events (Zscheischler
et al. 2018) also play an important role. For example,
the compounding effects of inland precipitation, high
wind speeds, storm surge and increased river dis-
charge can exacerbate the climate (change) impacts.
Cities and settlements by the sea are among those
facing the highest climate-compounded risks
(Glavovic et al. 2022).

Risk can also arise from human responses to cli-
mate change through adaptation and mitigation
measures that fail to achieve the intended outcome
or create adverse outcomes (Reisinger et al. 2020).
Deciding how, when, and where to adapt is thus
a difficult even wicked problem (Rittel and Webber
1973) involving multiple actors, uncertainty and con-
tested goals (Siders and Pierce 2021). According to
Rittel and Webber (1973), wicked problems are com-
plex, multi-dimensional, difficult to define, intercon-
nected with other problems, persistent and have no
obvious solutions. Adaptation to climate change
‘embodies the classic wicked problem’ (Siders and
Pierce 2021, p. 1) and has even been described as
a ‘wicked problem par excellence’ (Termeer et al.
2013, p. 27). Accounting for the complexity of risk
(i.e. interactions across sectoral, temporal and spatial
boundaries and multiple response options) is crucial
for risk assessments that aim to inform decision-
makers and to understand and manage risks towards
sustainable cities (Simpson et al. 2021).

Sustainable adaptation, defined as ‘adaptation that
contributes to socially and environmentally sustain-
able development pathways, including both social
justice and environmental integrity’ (Eriksen et al.
2011, p. 8), requires considering the consequences
of actions in a broader social and environmental

context. This means that sustainable adaptation is all
about understanding human-environmental relation-
ships. A framework that has become increasingly
important for meeting the complexity of sustainability
challenges is systems thinking (Voulvoulis et al. 2022).
Systems thinking is a ‘discipline for seeing wholes’
focusing on interrelations and patterns of change
rather than things and static snapshots (Randle and
Stroink 2018, p. 1) and to ‘see the world as a collection
of feedback processes’ (Meadows 2008, p. 25). It is the
intentional process of understanding the underlying
drivers of problems, of how components and struc-
tures cause a system to behave in a certain direction.
In the urban context, this means considering cities as
complex socio-ecological systems (i.e. natural and
social systems as one integrated system with critical
feedbacks across temporal and spatial scales; Berkes
and Folke 1998; Frank et al. 2017; Zhou et al. 2024).
Humans interact with their surrounding physical
environment in numerous multifaceted ways; there-
fore, when approaching socio-ecological systems, it is
necessary to focus on relationships rather than speci-
fic objects (Stenseke 2018). This also applies to urban
areas which are focal points of human, social, eco-
nomic, institutional and ecological interests (Frank et
al. 2017). Cities can therefore be understood as small
microcosms of things that happen on a global scale,
‘making them informative test cases for understand-
ing socioecological system dynamics and responses
to change’ (Grimm et al. 2008, p. 756). Place-based
socio-ecological research could be a way forward in
finding solutions to global sustainability challenges
(Balvanera et al. 2017).

To successfully adapt to climate change, it is neces-
sary to understand the nature of the problem to
respond to (Knieling and Klindworth 2016). A focus
on the entanglement of the system’s dynamics can,
on the one hand, reveal how vicious cycles of barriers,
‘also known as reinforcing feedback loops’ (Meadows
2008, p. 187), prevent the planning and implementa-
tion of adaptation measures in cities, and on the other
hand, help to develop more appropriate strategies for
overcoming the barriers (Zea-Reyes et al. 2021; Dorst
et al. 2022).

Methodologically, research on complex societal
challenges requires a shift from traditional disciplinary
(reductionist) to integrated approaches (interdisci-
plinary and transdisciplinary) which are oriented
towards contexts of application (Mauser et al. 2013;
Bai et al. 2016; Abson et al. 2017). Involving all relevant
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actors in a collaborative process enables a constant
exchange of ideas, worldviews, needs, values and
interests. Such collaborative approaches often face
challenges related to different epistemologies, meth-
odologies, vocabularies, values, cultures and power
relations between different disciplines; however,
they have the potential to result in novel insights
(Allington et al. 2018). Participatory modelling is
a way of structuring the deliberative process around
formal models (Voinov 2017). This stakeholder-based
modelling has emerged as a powerful methodology
for developing a better understanding of a system
and its dynamics, as well as the impacts of solutions
to a given problem (Voinov and Bousquet 2010). By
using a model as a boundary object (i.e. a tangible,
visual representation of shared experience and knowl-
edge that creates a common identity among partici-
pants; Black 2013), participatory modelling creates
a framework for shared understanding and facilitates
collaborative learning. This makes it particularly rele-
vant in the context of wicked problems. The model
becomes an ‘object of mediation’ that can facilitate
the exchange of ideas and worldviews between parti-
cipants and promote conflict resolution and collective
decision-making (Voinov et al. 2018, p. 234).

One way to implement participatory modelling is
group model building (Vennix 1996). Group model
building is based on system dynamics (SD; Forrester
1958, 1961), an analytical approach that complements
systems thinking by quantifying the causality and
interrelations between systems variables and devel-
oping a time-dependent view of the behaviour of the
system (Systems Dynamics Society 2022). Qualitative
SD refers to the stages of problem identification and
system conceptualisation resulting in a visual repre-
sentation of the problem in the form of causal loop
diagrams (CLDs) or flow diagrams. Building
a conceptual model can contribute to an improved
understanding of the system when dealing with com-
plex problems, thus helping to generate ideas for
change (Vennix 1996, 1999; Wolstenholme 1999;
Coyle 2000). In the last decade, the application of
qualitative SD approaches in analysing human-
environment interactions has been increasingly
taken up; e.g. for water resources planning and man-
agement, energy and food security management, pol-
icy analysis and sustainable development (e.g. Mafez
et al. 2015; Kotir et al. 2017; Purwanto et al. 2019;
Daniel et al. 2021; Egerer et al. 2021; Valencia Cotera
et al. 2022). Qualitative participative SD modelling has

also shown promise for application in the urban con-
text (e.g. Williams et al. 2019; Pluchinotta et al. 2021;
Castro 2022; Quang Dao and Thi Thu Huong 2022;
Coletta et al. 2024; Pluchinotta et al. 2024).

With the aforementioned in mind, the objectives of
this study are twofold: (i) to holistically examine urban
flood risk under climate change through qualitative
SD modelling based on interdisciplinary expert knowl-
edge using the case study of the city of Hamburg,
Germany; and (ii) to identify and analyse the vicious
cycles of barriers (i.e. reinforcing feedback loops;
Meadows 2008) that perpetuate and hinder adapta-
tion processes and reinforce flood risk within the city.
Focusing on the dynamic intertwining of barriers can
provide insights into how reinforcing feedback loops
perpetuate the difficulties faced by cities in planning
for climate change adaptation (Zea-Reyes et al. 2021).
This study explicitly focuses on qualitative SD
approaches because they provide space for local and
scientific knowledge in the analysis of wicked pro-
blems. Recognising the importance of relations
between humans and their physical environment in
the strive for sustainable solutions (Stenseke 2018),
we seek to develop a holistic picture of flood risk
and adaptation under climate change within the
urban system by explicitly incorporating the linkages
and complex feedback processes between social, eco-
nomic, policy, institutional and environmental factors.

Many of the most severe weather- and climate-
related impacts are caused by compound events
(Zscheischler et al. 2018, 2020) and with climate change,
compound events become even more likely, especially
in the context of unprecedented events and low-
likelihood, high-impact outcomes (Arias et al. 2021).
Compounding effects from multiple hazards increase
the complexity of risk and how to respond to it
(Zscheischler et al. 2018). This highlights the need for
more systemic assessments to analyse the interactions
of risks and responses across space and time to support
the development of adaptation plans (Simpson et al.
2023). Exploring the vicious cycles of barriers in flood
risk management and adaptation processes within cities
might be best achieved by examining special cases of
multi-hazard hotspots. The city of Hamburg provides
such a case. With its specific location facing water from
4 sides — i.e. vulnerable to flood hazards from local heavy
precipitation (pluvial floods), high flows in adjacent river
systems (fluvial floods), storm surges (coastal floods) and
uncontrolled rise in the groundwater level (groundwater
floods), the city of Hamburg is an ideal case study for
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analysing complex urban flood risk. Several studies have
previously addressed issues related to understanding
drivers of urban flood risk to improve urban flood risk
management and adaptation to climate change (e.g.
KLIMZUG-NORD Verbund 2014; Muis et al. 2015;
Hammond et al. 2018; Berndtsson et al. 2019;
O’Donnell and Thorne 2020). None of the previous stu-
dies have taken into account the multiple and dynamic
interactions and feedbacks between the physical
hazards and the human, socio-economic, ecological
and institutional dimensions of urban flood risk and
management in such an integrated, systemic way.
Furthermore, none of those urban studies have focused
on all four dimensions of water-related hazards (i.e.
water from 4 sides) and their interrelationships with the
other dimensions of climate risk (i.e. exposure, vulner-
ability and human responses). Using a system dynamics
approach, we manage to distil the complex interactions
into a model that captures both the dynamic and reci-
procal relationships. This study, therefore, advances the
knowledge of complex flood risk interactions within
cities holding immediate relevance for policymakers
working on urban flood risk management.

The paper starts (Section 2) with a presentation
of the qualitative SD modelling framework for
investigating risk under climate change in coupled
urban socio-ecological systems based on multiple
disciplinary perspectives. It then introduces the
case study Hamburg by briefly describing the phy-
sical water from 4 sides flood hazards affecting the
city and the municipal governance approach in
terms of adaptation to climate change (in
Section 3). The application of the framework and
the development of the qualitative SD model is
then presented in Section 4. Section 5 describes
the model structure and dynamics. This is followed
by a thorough discussion of the system’s feedback
loops, with a focus on reinforcing feedback loops
that constitute barriers in adaptation processes, as
well as a note on limitations and implications of
using qualitative SD modelling for understanding
climate risk in coupled urban socio-ecological sys-
tems in Section 6. The paper is brought to a close
(Section 7) by a brief summary of the results and
an outlook.

2. Method

The study draws on the group model building
approach of Vennix (1996), which focuses on

building SD models with teams. In addition, the
modelling process is also guided by numerous
examples of participatory SD modelling conducted
in various complex socio-economic and environ-
mental systems (e.g. Inam et al. 2015; Mafez et al.
2015; Kotir et al. 2017; Perrone et al. 2020; Valencia
Cotera et al. 2022). Here, CLDs were chosen for the
analysis because they allow for a flexible qualitative
modelling process and the inclusion of social, eco-
nomic and environmental variables, which supports
the investigation of dynamic linkages between vari-
ables from multiple sectors (Videira et al. 2009;
Perrone et al. 2020). CLDs represent causal relation-
ships between system variables by arrows and high-
light the polarity of these relationships by
distinguishing between positive and negative rela-
tionships. A positive causal relationship means that
both variables will change in the same direction,
while a negative relationship implies that both vari-
ables change in opposite directions, i.e. that there is
an inverse relationship between the variables
(Vennix 1996). ‘A combination of positive and nega-
tive causal relationships gives rise to the system'’s
feedback loops’ (Kotir et al. 2017, p. 107). From a SD
perspective, the dynamic behaviour of the system is
determined by the structure of interacting feedback
loops within the system boundary. A distinction is
made between positive and negative feedback
loops. A positive (reinforcing) loop creates action
that increases a system state, which in turn leads
to further action that further increases the system
state; i.e. a positive feedback loop is self-reinforcing.
A negative (balancing) loop, on the other hand,
leads to stabilising behaviour (Vennix 1996). CLDs
also mark time delays (arrows with double hash
marks), which are often responsible for difficulties
in controlling inherent dynamics (Inam et al. 2015).
Overall, the CLDs represent a hypothesis of the
feedback structure of the system (Pluchinotta et al.
2021). Even if not simulated, qualitative system
dynamics models (QSDMs) are useful to describe
a system in itself and to gain a better understanding
of the problem in question (Coyle 2000). Moreover,
when simplified, CLDs can easily be understood by
non-technical users, which makes them an ideal
modelling tool in a participatory setting (Kotir
et al. 2017; Perrone et al. 2020). They support defini-
tion and structuring of complex problems, aid visual
communication about choices and consequences of
actions, and facilitate shared understanding and
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testing of their long-term effects (BenDor and
Scheffran 2019). There are various levels of stake-
holder engagement, i.e. stakeholders can be
involved at different stages of the participatory pro-
cess, and there is no generalised participatory mod-
elling strategy (Voinov et al. 2016; Voinov 2017).
Voinov et al. (2018) emphasised the careful and
conscious selection of methods that best fit the pro-
ject purpose and context. To investigate urban flood
risk and adaptation under climate change in the con-
text of water from 4 sides hazards, an interdisciplinary
endeavour is required that aims to pool expert knowl-
edge on the urban socio-ecological system, taking into
account the diversity of knowledge and perspectives.
Often, CLDs are developed directly with the stake-
holders involved (e.g. Inam et al. 2015; Perrone et al.
2020; Valencia Cotera et al. 2022). We explicitly started
the modelling process based on scientific knowledge
of an interdisciplinary team. This choice was made
because there is already a wide range of different
perspectives within various scientific disciplines, leav-
ing room for potentially conflicting views on the same
problem. Here, the QSDM is used as a boundary object
for communicating and integrating different disciplin-
ary worldviews to create a common understanding of
a problem. Embedded within the methodological fra-
mework of Vennix (1996), the participatory modelling
process was structured around the following stages:
problem identification and model purpose, system
conceptualisation, model formulation, analysis of
model behaviour, model evaluation, policy analysis
and model use. The present study focuses on the
first four stages: (1) problem identification and
model purpose, (2) system conceptualisation, (3)
model formulation and (4) analysis of model beha-
viour (see Table 1). These stages took place as
a team learning process (Vennix 1996) based on

interdisciplinary scientific knowledge. The remaining
stages of model evaluation, policy analysis and model
use will involve stakeholders from various sectors.
These results will be presented in a follow-up paper.
Nevertheless, it should be emphasised that the whole
model building process is seen as an iterative one
(Voinov 2017), which means that the model can be
enriched by the stakeholders’ local knowledge in later
stages. Overall, this interactive process provides an
opportunity for all participants, both researchers and
stakeholders, to develop a more detailed understand-
ing of how flood risk evolves in the complex urban
socio-ecological system. The CLDs were developed
using the SD software package Vensim PLE (Ventana
Systems 2021).

3. Characterisation of the case study

The qualitative modelling framework outlined in
Section 2 was applied to Hamburg. Hamburg is
the second largest city in Germany with
a population of around 1.85 million and the core of
a metropolitan agglomeration in Northern Germany.
The city is located in the Elbe Estuary at the mouth of
several smaller rivers into the Elbe River, about 110 km
upstream from the North Sea (Génnert and Miiller
2014). The Elbe Estuary is the largest estuary on the
German coast of the North Sea and an important
waterway connecting Hamburg with the sea.
Hamburg serves as an ideal case study for a complex
urban flood risk study. Due to the existing physical
environment and its special location, Hamburg is sub-
ject to a variety of flood hazards that are characteristic
of coastal and inland cities (Bosserelle et al. 2022;
Glavovic et al. 2022): sea-level rise and associated
groundwater rise (groundwater flooding) as well as
storm surges (coastal flooding) in the area of the Tidal

Table 1. Methodological framework of the model building process as proposed by Vennix (1996) and characteristics of the different stages of

this study. The stages highlighted with * are the focus of this paper.

No. Stages Characteristics

1 *Problem identification and model Urban flood risks and sustainable climate change adaptation in the case study area
purpose

2 *System conceptualisation Group interviews, mental modelling exercise, partial mental models, group model

3 *Model formulation Qualitative system dynamics model (QSDM)

*Analysis of model behaviour
within the city

5 Model evaluation
Policy analysis

Analysis of systemic feedback loops and vicious cycles of barriers in adaptation processes

Model validity through stakeholder
Analysis of leverage points for climate change adaptation, policy measures and analysis

of the potential for their implementation

7 Model use
scenario testing

Use of the QSDM as a consultative tool in decision-making processes and for
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Elbe; hinterland/fluvial flooding in the area of inland
waters; and pluvial flooding in all areas. Hamburg’s
particular vulnerability to both inland and coastal
flooding may provide insights that could benefit
other cities facing similar challenges.

The Port of Hamburg, which is one of the top three
ports in Europe for trade (Schubert 2020), is the main
German maritime hub for the country’s exports and
a major engine in regional wealth creation (Acciaro
et al. 2020). What is special about it is that the port is
a ‘city harbour’, one of the few worldwide, which takes
up around 10% of Hamburg's area (Schubert 2020).
From a historical perspective, the port has been
a central part of the city’s identity as a city of trade.
The port-city relationship is characterised by shared
development paths with private and public actors work-
ing together and sharing common values around ship-
ping and trade, which has pointed the way for both the
expanding port and the growing city. While waterfront
development initiatives are intended to reconnect the
city and the older port areas in a sustainable way, new
port infrastructures have been created south and further
downstream of the Elbe River. In the future, however,
conflicts between the port and the city are likely to
intensify, especially as demand for housing increases
and port expansion is constrained by the state bound-
aries (Acciaro et al. 2020; Schubert 2020; Hein and
Schubert 2021). Likewise, environmental conflicts over
the deepening of the river for shipping and the disposal
of dredged material have intensified, and the demands
of structural change are leading to a rethinking of the
role of the port in urban development.

A special characteristic of the governance context
in the case study city is that Hamburg is a city-state,
i.e. Hamburg is a municipality and at the same time
one of the 16 federal states of Germany. On the city-
level, Hamburg is divided into seven districts that are
responsible for local issues. Also, some public tasks
have been put in the hands of public companies, such
as water supply and wastewater disposal, waste treat-
ment and port management. The resulting multilevel
governance system is characterised by overlapping
administrative functions and responsibilities as well
as numerous vertical and horizontal interdependen-
cies. At the European and transnational level,
Hamburg cooperates with its partners in city networks
such as Climate Alliance (since 1993), Covenant of
Mayors (since 2008), ICLEI (Local Governments for
Sustainability; since 2008), or METREX (Network of
European Metropolitan Regions and Areas).

Hamburg has been engaged in climate protection
policy since 1990 with parallel activities in the area of
adaptation to climate change (HmbBU-Drs. 21/2521
2015). When Hamburg joined the Aalborg-Agenda in
1996, responsibility for climate adaptation and mitiga-
tion was officially transferred to the Ministry for
Environment and Energy of Hamburg, which has
since been reorganised as the Ministry for
Environment, Climate, Energy and Agriculture
(BUKEA: Behorde fiir Umwelt, Klima, Energie und
Agrarwirtschaft). This ministry also has the official
duty to take care of flood protection in Hamburg,
which it has delegated to the local authority for
streets, bridges and water bodies (LSBG:
Landesbetrieb StraBen, Briicken und Gewadsser),
a service provider for the Hamburg administration
(Mees et al. 2013). Since 2007, the Coordination Unit
for Climate Issues of the city government (LSK:
Leitstelle Klima) has taken on a formal role in harmo-
nising approaches and developing planning docu-
ments to guide climate-related policy activities at
the city level (Kohler et al. 2021). The Senate
Commission for Climate Protection and Mobility
Transition (Senatskommision fiir Klimaschutz und
Mobilitatswende), established in 2020, is also relevant
in this context. This commission, led by the First
Mayor, is a cross-departmental coordination body to
support the implementation of the Hamburg Climate
Plan and the local mobility transition. In order to take
account of the increasing importance of adaptation in
Hamburg, a separated Coordination Unit for Climate
Adaptation/Rain InfraStructure Adaption (SKR:
Stabstelle Klimafolgenanpassung/RISA) was set up in
2020. It coordinates Hamburg's activities to adapt to
the impacts of climate change and leads the imple-
mentation of the adaptation of urban rainwater
infrastructure.

Looking at the historical development of water
adaptation in Hamburg, dyke improvements and
thus conventional flood management measures that
follow a ‘dominant defense paradigm’ (Mees et al.
2013, p. 3) were at the forefront. Technical coastal
flood protection in Hamburg comprises public flood
protection (more than 100 km of dykes and walls),
private flood protection (mainly as individual object
protection in the HafenCity) and flood protection in
the harbour area (Goénnert and Miller 2014; Miiller
and Gonnert 2014). To ensure long-term security
against floods, the level of protection of the public
flood protection facilities is constantly reviewed. In
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order to take climate change into account,
a construction program is currently being implemen-
ted to reinforce the dykes by a further 80-100 cm to
ensure the necessary flood safety until 2050 (Mees
et al. 2013; Mdller and Gonnert 2014). Improved infor-
mation and risk communication for the affected citi-
zens serve as a further flood protection instrument.

However, there are indications that perceptions of
risks and adaptation to water risks in Hamburg are
beginning to change (Hanf et al. 2024a). Innovative
‘adaptive flood risk governance’ approaches include,
for example, network arrangements with joint public—
private responsibilities. In contrast to traditional flood
management, they focus on managing water through
strategies such as ‘space for the rivers’ and ‘managed
retreat’ to reduce the impacts of floods (Mees et al.
2014). In Hamburg, HafenCity is one of the largest
urban regeneration projects in Europe, transforming
former port areas into residential areas. The so-called
‘Warftenkonzept’ of the HafenCity, where buildings are
constructed on elevated plots at heights of + 7,5 m NHN
and more (NHN: Normalhohennull is the standard eleva-
tion zero of the German reference height system and
corresponds approximately to the mean sea level), as
well as built-in flood resistance strategies (i.e. flood pro-
tection measures to individual buildings) and civic flood
protection communities are examples of ‘living with
water’ (Knieling and Fellmer 2013).

Another example reflects a development towards an
innovative approach in wastewater and especially in

stormwater adaptation and management in Hamburg.
The State Ministry for Environment and Energy together
with the municipal water supply and wastewater dispo-
sal authority Hamburg Wasser launched the project
‘Rain InfraStructure Adaption’ (RISA, 2009-2015) to
develop a strategy for sustainable rainwater manage-
ment that goes beyond conventional rainwater drai-
nage. In order to address the intensifying conflicts
related to urban development and stormwater manage-
ment, a concept for decentralised water management
was developed that aims to achieve a near-natural local
water balance (Bertram et al. 2017). The project became
the starting point for an improved integration of water
management issues into urban and regional planning
and a corresponding adaptation of the institutional fra-
mework. The resulting strategy, the ‘Structural Plan
Rainwater 2030, has become part of the climate protec-
tion concept and the climate change adaptation strat-
egy of the state of Hamburg (Hamburg Wasser 2023).

4. Application of the framework - Qualitative
modelling of the coupled urban socio-
ecological system of Hamburg

In the following, we present and discuss the first four
stages of the qualitative modelling framework out-
lined in Section 2, which was empirically applied
using the city of Hamburg, Germany, as a case study.
Figure 1 summarises the model building process and
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Figure 1. Schematic overview of the model building process for the case study of the city of Hamburg, Germany.
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the respective outputs. Although presented linearly,
some stages of the process were generally conducted
iteratively, with some loops between them.

4.1. Stages 1 and 2 - Problem identification,
model purpose and system conceptualisation

4.1.1. Group interviews and mental modelling
exercise

The participatory model building process was
initiated by a mental modelling exercise in the form
of group interviews. The aim of this mental modelling
exercise was not to produce fully developed CLDs, but
to capture disciplinary views of the complex problem
to be addressed in order to develop a shared under-
standing of it. The problem to be explored was
defined by the context of the research project (see
Hanf et al. 2024b) in which this study was embedded:
‘the complexity of flood risk and sustainable climate
change adaptation in cities’.

Thirteen group interviews were carried out with
researchers from different disciplines centred on the
topics of urban water risks, climate change and adap-
tation options for the city of Hamburg. Each group
was composed according to its overarching field of
expertise.! The size of the groups varied between one
and six persons. All interviews had to be conducted
online due to restrictions during the COVID-19 pan-
demic. The participants involved in the group inter-
views gave written informed consent prior to the data
collection. The first author acted as a facilitator and
opened each of the interviews with a 15-min intro-
duction to the purpose of the mental modelling exer-
cise and the basics of building a CLD based on Vennix
(1996). The group interviews lasted between 90 and
140 min, depending on the size of the group. The
qualitative interviews were structured according to
the interview guide approach Vennix (1996). In each
group interview, a disciplinary mental model (i.e.
a 'view of reality’; Vennix 1996) was created together
with the interviewees representing each group’s view
on the problem. The facilitator asked questions to
help each group to develop their own mental
model. A data manager assisted the facilitator in cap-
turing the information directly in the SD software
Vensim PLE (Ventana Systems 2021). The participants
were asked to identify current and future water risks
and conflicts related to climate change for the case
study area, their causes and consequences as well as

relevant actors, responsibilities, and already existing
intervention measures and future options for action.
These were then recorded in the form of a qualitative
model and colour-coded for clarity. The predeter-
mined topics and questions ensured that similar infor-
mation was collected from each group, but still
allowed a certain degree of freedom and adaptability.
Throughout the interview process, both the facilitator
and the data manager remained neutral to ensure the
development of unbiased mental models.

Typically, CLDs are already developed in such
a mental modelling process to capture the views and
ideas of the participants (e.g. Inam et al. 2015; Valencia
Cotera et al. 2022). However, we deviated from this
approach by not strictly adhering to the syntax of
CLDs when the disciplinary groups were first asked to
build a visual understanding of the problem. It was
difficult for the participants to engage with the specific
syntax in the short time available, and it was therefore
more important to capture the general perspective on
the problem. The development of a CLD took place at
a later stage in our approach. One advantage of the
online process was that every participant could follow
the creation of the model live on screen and initiate
corrections at any time. By the end of this mental
modelling exercise, a total of 13 disciplinary mental
models had been created.

4.1.2. Construction of an overall group model
Following the group interviews, an overall group
model was constructed by analysing, comparing and
merging all 13 partial mental models. The resulting
model aims at representing the divergent perspec-
tives of all disciplines of the research team regarding
the problem. The overall group model was developed
using the visual workspace MURAL (https://www.
mural.co/), which enabled a flexible feedback process
by all participants during the subsequent online
group sessions (an idea that arose due to the restric-
tions during the COVID-19 pandemic). It should be
noted that at this stage the model was still a mental
model and not a CLD.

Merging partial models of several experts’ views
can improve the details of the overall model so that
sub-processes on different aspects of the problem can
be identified (Perrone et al. 2020). However, the mer-
ging process is not just about putting the partial
models together, but rather about identifying simila-
rities as well as dissimilarities and missing information
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in the models that form a starting point for further
discussion (Vennix 1996). There are various methods
for building a preliminary QSDM based on individual
models (e.g. Inam et al. 2015; Valencia Cotera et al.
2022). This study used the approach of Inam et al.
(2015)% to generate a merged model. However,
instead of building the overall group model on one
of the partial models, this study started with a blank
sheet of paper. The 13 partial mental models were
compared and analysed to identify complementary
and controversial elements (i.e. variables and relation-
ships). All model elements from all partial models
were added to the blank sheet. In doing so, we carried
out an inclusive process. Controversial and conflicting
elements were included and highlighted (e.g. colour-
coded) in the merged model for subsequent discus-
sions with the whole research team. In case of vari-
ables with the same meaning (e.g. ‘vegetation’ and
‘urban green’), only one variable was added to the
merged model, but it was highlighted in colour and
the multiple labels were presented to the group for
joint decision-making. The merging was done by the
first author, who took on the role of a facilitator during
the disciplinary group interviews.

4.2. Stage 3 - Model formulation

4.2.1. Group sessions - Towards a QSDM

Once the overall group model had been created,
several online and two face-to-face workshops were
held to further develop the model, validate the vari-
ables and develop the actual causal relationships
between them (i.e. the polarity of the relationships).
This step was an iterative process. During these group
sessions, the key variables of the system were identi-
fied in order to condense the merged model and
develop the actual QSDM in the form of a CLD using
Vensim PLE (Ventana Systems 2021). Controversial
elements were discussed and clarified together. Only
the model elements that the research team consid-
ered relevant to understanding the problem were
kept. In addition, new variables from secondary
sources, such as the Hamburg Climate Futures
Outlook 2023 (Engels et al. 2023), were included in
the model after joint discussion and agreement within
the research team. The research team has also care-
fully reviewed the wording of the variable names and
revised them where necessary so that they are clear
and concise, and can take high or low values as
required in SD modelling (Vennix 1996). The whole

process allowed the exchange of ideas between the
disciplinary groups and a joint integration of these. In
the online sessions, the visual workspace MURAL was
used as an online forum to discuss the model. In the
face-to-face workshops, printouts of the model were
used and the ideas that arose during the discussions
were collected using flip-charts and post-it notes.

In addition to the QSDM (Figure 2), a jointly devel-
oped glossary of system variables was produced as an
output of the group sessions (see Supplementary
Material 2). Both the visual representation of the pro-
blem and the glossary served as boundary objects for
the interdisciplinary research team and contributed to
collective meaning-making (Black 2013).

4.3. Stage 4 - Analysis of model behaviour

In a next step, sub-processes of the QSDM were
brought into focus for detailed analysis. This is neces-
sary because the level of detail and sheer size of the
overall model (number of variables and relationships)
can be overwhelming and is not intuitive. Complexity
is a problem in SD modelling because ‘it restricts the
ability of stakeholder with limited modelling skills to
understand complex holistic systems’ (Perrone et al.
2020, p. 8). Behavioural and neural studies have
shown that there is an upper limit to the amount of
visual elements that can be processed simultaneously
by humans and actively maintained in working mem-
ory (e.g. Miller 1956; Fukuda et al. 2010).

Bearing these aspects in mind, causal chains of
interconnected thematic sub-processes (see
Supplementary Material 1) and feedback loops
(Figure 3) were visually isolated for emphasis
according to the approach for structured model
analysis of Egerer et al. (2021). However, it is impor-
tant to note that the thematic sub-processes should
not be regarded in isolation; they are linked by
common system variables and are thus part of the
overall system structure. The overall objective was
a process-oriented analysis of the structure and
dynamics of the coupled socio-ecological system
and not a disciplinary analysis. The method of sub-
dividing the QSDM into interconnected thematic
sub-models to handle system complexity is very
common in SD modelling (e.g. Purwanto et al.
2019; Perrone et al. 2020; Coletta et al. 2024). For
this study, the participants worked in small groups
(grouped according to their area of expertise and
the thematic sub-processes) to further elaborate the
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dynamics and feedback structures of the sub-
processes. This procedure helped to gain deeper
insights into the various interconnected thematic
sub-processes and to actually identify feedback
loops within the system. The results were brought
together again into an overall synthesis focusing on
the systemic feedback effects of the coupled urban
system.

5. Results

This section presents the final QSDM (Figure 2), its
system structure (Subsection 5.1) and dynamics
(Subsection 5.2). For the sake of brevity, only the feed-
back loops identified in the model (Figure 3) and their
implications for urban adaptation are presented and
discussed in Subsection 5.2. For a detailed analysis of
the individual thematic sub-processes, the reader is
referred to Supplementary Material 1.

5.1. The QSDM structure

The QSDM (Figure 2) shows the important system
elements and qualitative dynamics of the urban
system, focusing on the problem of urban flood
risks in the context of water from 4 sides and cli-
mate change adaptation in the city of Hamburg.
The model is built upon the IPCC risk framing
(IPCC 2022). According to this risk framing, risk
can arise from the potential impacts of (i) climate
change resulting from the dynamic interactions
between climate-related hazards, exposure and vul-
nerability of the affected human or ecological sys-
tem, as well as (ii) human responses to climate
change not achieving the intended objectives
(Reisinger et al. 2020; Ara Begum et al. 2022). In
this study, we build on this dynamic approach and
introduce Damage as a central variable in our
model. Damage refers here to ‘adverse observed
impacts and/or projected risks that can be eco-
nomic and/or non-economic’ IPCC (2022, p. 7) in
the context of urban flooding. Given this dynamic
risk approach, damage from flooding can be
reduced, even if the frequency of flooding
increases, if intervention measures are taken to
reduce the exposure or the vulnerability of the
affected systems, or both (Reisinger et al. 2020).
For Hamburg, we take into account that damage
from flooding can be caused by the interaction of
any of the flood hazards (i.e. pluvial floods, fluvial

floods, coastal floods or groundwater floods) with
the exposure of the affected system (i.e. exposed
elements such as people, buildings, infrastructure,
etc.) and the social vulnerability of the urban popu-
lation (i.e. the propensity or predisposition of the
urban society to be adversely affected). It should be
noted that vulnerability in the model is only con-
ceptualised in terms of the vulnerability of the
urban society (i.e. social vulnerability; von
Szombathely et al. 2023). This is related to the
expertise of the participants involved and repre-
sents a limitation of the study. With regard to
‘compound flooding’ in coastal settings (Santos
et al. 2021), flood damage for Hamburg can also
result from the interaction of multiple flood
hazards.

Overall, the model includes 97 variables related to
biophysical/environmental, human, socio-economic,
institutional and political dimensions. All model vari-
ables are described in Table S2 (Supplementary
Material 2). The variables in orange represent inter-
ventions measures identified by the research team
that modify the state of the system and its dynamics.
Variables in brown highlight the two different classi-
fication types of adaptation: Autonomous adaptation
action and Planned adaptation action. These variables
are meant to represent all other interventions in the
model (i.e. the variables marked in orange). In a 3D
representation of the model, these two would there-
fore appear as a third dimension. This is important in
terms of the links within the model, because it means
that these two model variables (i.e. Autonomous adap-
tation action and Planned adaptation action) are linked
to the rest of the model.

5.2. Model dynamics and feedback loops

A central concept of SD is that system behaviour
evolves through reinforcing and balancing feedback
loops that promote balance or imbalance in a system
(Muttalib et al. 2021). So unravelling and understand-
ing the system’s feedback loops (especially reinfor-
cing feedback loops) helps to understand why and
how system behaviour evolves in a certain direction.
For this study, this means whether urban flood risk is
reinforced or weakened and whether adaptation pro-
cesses within the city are inhibited or promoted by
the system’s own dynamics and feedback processes.
We identified a total of 11 reinforcing and 4 balan-
cing feedback loops in the model. These 15 feedback
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Feedback Loops

Description of the Feedback Stories

(a) Morphological equilibrium of the
estuary — Loops B1, B2, B3

Tidal range
mnglneerlng
Water depth Q measures

(of the fairway)

: /

Sediment
transport

Flood tide
progression

Given a political objective to maintain a certain water depth in
the Elbe fairway, River engineering measures are required as long
as Water depth is insufficient for safe navigation (B1). However,
physical processes act towards an equilibrium configuration of
the estuary (Bolla Pittaluga et al. 2015); i.e. to achieve a mor-
phological equilibrium of the estuary with a balance between
tide-induced up-estuary transport and down-estuary transport
(Dronkers 2017). Increased Water depth increases both the Tidal
range and the Flood tide progression, which in turn increase the
tide-induced up-estuary Sediment transport. Both are compen-
satory processes that reduce the previously increased Water
depth of the fairway (B2 and B3).

(b) River engineering measure and sediment
transport loops — R1 and R2

+

Tidal range

(u)
. River engineering
measures
+ /

Sediment
transport
+
k)
Flood tide
progression

+

The feedback loops R1 and R2 explain why river engineering
measures are an ongoing process. River engineering measures
increase the water depth in the navigation channel. However,
these measures also lead to an increase in Sediment transport by
increasing the Tidal range and the Flood tide progression. This in
turn makes further maintenance measures necessary, leading to
further River engineering measures.

(c) Path dependency loop — R3

T TImplementation of

the policy
\ +

Number of users

Predominance of a
particular policy
(privileged path)

Decisions to further J

promote this policy Incentive to ensure

this poli
\_/ is policy

Path dependency can be understood as ‘social processes that
exhibit positive feedback’ (Pierson 2004) and thus generate self-
reinforcing dynamics. Path dependency is conceptualised here in
terms of public policy and political processes. The choice of a
particular policy leads to the implementation of this policy and
the introduction of a certain practice. With each year that this
policy continues to be implemented, the number of users
increases and with it the incentive to maintain the system, which
in turn leads to the dominance of that policy. Overall, the path
dependency loop (R3) explains the reinforcing feedback effect
that creates continuity.

Figure 3. Balancing (B) and reinforcing (R) feedback loops identified in the QSDM. (a) Morphological equilibrium of the estuary — Loops B1, B2
and B3. (b) River engineering measures and sediment transport loops — R1 and R2. (c) Path dependency loop - R3. (d) Urban development
loops — R4 and R5. (e) Car dependency loop - Ré. (f) Risk awareness and “levee effect” loops — B4 and R7. (g) Poverty loop — R8. (h) Urban health
and health-related damage loop - R9. (i) Urban health and income loop — R10. (j) Silo-thinking loop - R11.
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Feedback Loops Description of the Feedback Stories

(d) Urban development loops — R4 and R5 Urbanisation is a complex socio-economic process (UN 2019).
Here, the reinforcing processes of economic growth, urban

development and migration are conceptualised in the feedback
Economic loops R4 and R5. Economic growth promotes the spread of
growth Q modern industries, an in-crease in urban population and Urban
development; in turn, Urban development, also promotes

Urban Economic growth to some extent through economies of scale in
development infrastructure and advantages in capital, labour and managerial
resources (Chen et al. 2014; Liddle and Messinis 2015; Martin and
Ottaviano 2001; Mahtta et al. 2022).

The process of industrialisation in urban areas attracts rural
labour forces to cities for employment prospects and is a key
reason for urban Migration. In addition, Urban development can
encourage people to move from rural to urban areas for oppor-
tunities such as access to culture, education and health care
(Liddle and Messinis 2015). Migration to the cities in turn leads to
further Urban development.

Migration

(e) Car dependency loop — R6 The car dependency loop (R6) summarises the reinforcing process

of car-friendly infrastructures and motorised transport. Modal
split behaviour is the result of a complex inter-play of man-made
factors such as infrastructure, traffic system organisation, costs,
convenience, lifestyle and housing preferences and advertising.

Car-friendly Motorised Human behaviour depends on “irritation from the environment”,
infrastructure transport with car oriented environment leading to car mobility (Knoflacher

. 1991, p.79). The existence and expansion of Car-friendly
infrastructure attracts more Motorised transport. Conversely,
\// more people using Motorised transport leads to more Car-friendly
infrastructure.

(f) Risk awareness and “levee effect” loops Environmental disasters and the associated Damage create a

— B4 and R7 “community memory” (de Guttry and Ratter 2022) which leads to
higher levels of Risk awareness. This in turn reduces the number
of Exposed elements assuming that increased risk awareness in-
creases self-protective action, leading to less Damage in case of
another flood event (B4).

Structural flood protection (e.g. dykes) favours the loss of “flood

Exposed elements

Rlsk awareness

memory” by consistently reducing the frequency of flood events

Damage (Climate-ADAPT 2023). The result is increasing exposure in flood-
prone areas (e.g. through increased development on floodplains;

@ Serra-Llobet et al. 2022). Against the background of this so-called

“levee effect”, increased Technical coastal protection can lead to
Technical coastal lower Risk awareness in the long term (delay), which in turn
protection increases the number of Exposed elements, resulting in higher
¥ Damage from flooding in case of an extreme event (R7)

Figure 3. (Continued).



82 (& F.S. HANFETAL.

Feedback Loops

Description of the Feedback Stories

(g) Poverty loop — R8

Damag:"'/_\

Social vulnerability

+
R8
Private assets
\_/_'povcny

While poverty is a multi-dimensional construct, it is contex-
tualised here around flood damage and loss of private assets.
Damage reduces Private assets, which can lead to Poverty or
worsen existing poverty. This increases Social vulnerability, which
in turn increases the likelihood of higher Damage in case of
another flood event. Overall, the poverty loop (R8) explains the
reinforcing effect of damage, poverty and social vulnerability.

(h) Urban health and health-related
damage loop — R9

Damag:(\

Social vulnerability
(o

/\
N

Urban health

The feedback loop (R9) summarises the reinforcing effects of
damage, urban health and social vulnerability. Among other
aspects, social vulnerability is directly linked to the health of
urban residents (e.g. Fatemi 2017; Foster et al. 2019), which
involves both objective (physical health) and subjective (mental
health) dimensions (Krefis et al. 2018). As urban flooding entails
not only economic burden but also health-related Damage (e.g.
through contact with contaminated water and mental stress
issues in case of pluvial flooding and sewer overflows; Mobini et
al. 2020), Social vulnerability may be reinforced by poorer Urban
health, which in turn increases the likelihood of higher Damage in
case of another flood event.

(i) Urban health and income loop — R10
Urban health

R10

£\
N

Per-capita
income

Another health-related reinforcing feedback loop (R10) is
associated with household income. Higher Per-capita income
enables better access to better nutrition, which can promote
health (e.g. by reducing the prevalence of obesity), and also
provides more access to health services. Better Urban health in
turn promotes higher Per-capita income through fewer sick days
and higher efficiency (Eker and lImola-Sheppard 2020).

(j) Silo thinking loop —R11

Silo-thinking
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Public administrations tend to operate in silos, i.e. sectoral
divisions of the management either by task or thematic area
(Oseland 2019). Resource allocation and Silo-budgeting practices
within silo-oriented administrative structures contribute to
inefficiency and limited progress. The existence of silo budgets
creates incentives that prioritise sectorial goals over collective
goals (i.e. Silo-thinking), which hinders cross-departmental col-
laboration and integrated solutions (Bohman et al. 2020; Dorst et
al. 2022). This is manifested in the reinforcing feedback loop R11,
where existing structures and behaviours become self-reinforcing
and resistant to change, leading to institutional lock-in.

Figure 3. (Continued).
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loops are highlighted in blue (balancing feedback
loops; B) and red (reinforcing feedback loops; R) in
the QSDM (see Figure 2). To make the processes
depicted in the feedback loops more understandable
and concrete, especially for non-technical users, they
are visually isolated and shown in Figure 3a-j together
with a description of the individual ‘feedback stories’
(i.e. descriptions of the real-world processes that the
feedback loops attempt to represent; Rajah and
Kopainsky 2024). In the following subsections, we
present the results of the detailed analysis of the
system’s feedback loops.

5.2.1. Morphological equilibrium of the estuary,
river engineering measures and sediment
transport — Loops B1, B2, B3, R1 and R2
Since approximately the thirteenth century, the tidal
Elbe has been considerably altered by river engineering
measures to ensure safe ship navigation to the port of
Hamburg and for coastal protection. Since 1834, effec-
tive devices were available to undertake major changes
to the navigation channel (Boehlich and Strotmann
2008). The increase in storm surge heights recorded
since 1962 is mainly associated with coastal protection
measures and other factors such as the loss of shallow
water through land reclaiming as well as modifications
of the navigation channel and in the harbour basins of
Hamburg (von Storch et al. 2008). Also, primarily asso-
ciated with conducted river engineering measures over
the last century, the tidal® Elbe River showed a critical
evolution of tidal wave transformation. Since 1880, the
tidal range doubled from 1.9 m to 3.8 m in the port of
Hamburg (Hein et al. 2021). The gradient of the mean
high tide has increased from Gliickstadt to Hamburg
(Boehlich and Strotmann 2008), which means that the
tidal wave progresses faster in Hamburg than down-
stream. During storm surges, this can cause the wind-
enhanced tidal waves to propagate faster and with
higher extreme water levels, thus increasing the hazard
of coastal flooding for Hamburg. The stronger flood
currents and relatively weaker ebb currents have led
to a net effect of an increased flood tide induced up-
estuary sediment transport towards the Hamburg
region (von Storch et al. 2008). To cope with these
difficulties in the Elbe, the annual costs for maintaining
the waterway run into the tens to hundreds of millions
(Hein et al. 2021).

Provided the political goal is to accommodate
ships with a certain draught by maintaining a certain
water depth in the Elbe fairway, river engineering

measures will be necessary as long as water depth is
insufficient for safe navigation. This balancing loop
(B1; Figure 3a) illustrates that water depth and river
engineering measures are linked to each other by
a feedback process. However, physical processes act
towards an equilibrium configuration of the estuary
(Bolla Pittaluga et al. 2015); i.e. to achieve
a morphological equilibrium of the estuary with
a balance between tide-induced up-estuary transport
and down-estuary transport (Dronkers 2017). The
increased water depth of the fairway due to river
engineering measures increases the tide-induced up-
estuary sediment transport, a compensatory process
which in turn reduces the previously increased water
depth of the fairway (see two balancing loops B2 and
B3; Figure 3a). This means that river engineering mea-
sures will be necessary again and again. The measures
lead to an increase in sediment transport, which in
turn requires further maintenance measures, as illu-
strated by the two reinforcing feedback loops R1 and
R2 (Figure 3b).

The cumulative impacts of human activity and cli-
mate change may cause threshold values to be
exceeded, which in turn would significantly alter the
morphology of the estuary (i.e. reaching ‘a tipping
point towards a regime shift’; Wang et al. (2015),
p. 8). This would jeopardise the environmental sus-
tainability of the entire tidal basin. In this case, the
return to a new state of equilibrium may be associated
with a different new morphological state of equili-
brium (e.g. a deeper estuary associated with irreversi-
ble changes in sediment transport), as discussed, for
example, in Wang et al. (2015) for the Western Scheldt
Estuary in the Netherlands.

5.2.2. Path dependency - Loop R3

Enduring trajectories of institutional development
where some pathways are privileged over others
and where ongoing decisions almost necessarily fol-
low these privileged paths, refer to path dependency
(Hein and Schubert 2021). Path dependency must be
seen against the background of the availability of
other alternatives from which to choose. The idea of
path dependence emphasises that ‘history matters’
(Sorensen 2015, p. 21). Path-dependent processes
can be understood as ‘social processes that exhibit
positive feedback’ (Pierson 2004) and thus generate
self-reinforcing dynamics. Looking at path depen-
dency in terms of public policy and political processes,
the choice of a particular policy leads to the adoption
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of that policy and the implementation of a particular
system/practice. With each year that the system
grows (i.e. further implementation of the policy), the
number of users increases and so does the incentive
to maintain the system, which in turn leads to the
dominance of that policy. Path dependency is thus
linked to a reinforcing feedback loop (R3; Figure 3c)
that creates continuity. Many decision-making pro-
cesses taken in seaport cities at the beginning of the
nineteenth century (e.g. the organisation of port
operations, the type of port development, the rede-
velopment of port areas) had a major impact and are
still effective in terms of infrastructures in city and
port development today (Schubert 2020; Hein and
Schubert 2021). Notteboom et al. (2013), in a study
on path dependence and lock-in for seaports, con-
clude that a process of institutional stretching takes
place (i.e. existing institutional arrangements are
stretched to accommodate new routines) when port
authorities see a need to develop new capabilities and
activities, gradually leading to formalised governance
reforms but without breaking out of the existing path
of development.

For Hamburg, an important decision to this day
was the development of the port as an open-tidal
seaport, not as a dock port like London (Schubert
2020). The Port of Hamburg can thus be seen as
embedded in a shared maritime development path
that determines the functioning of the port and the
city in the long term (Hein and Schubert 2021). The
trend towards ever larger vessels necessitates further
dredging of the navigation channel (i.e. ‘ships design
the port’; Schubert 2020, p. 115). A possible future
intervention measure to reduce the extent of dred-
ging of the fairway would be to limit the size and
associated draught of ships authorised to operate in
the port of Hamburg. A cooperation between the
ports of northern Germany, Hamburg, Bremen and
Wilhelmshaven, could counteract possible future
draught restrictions in Hamburg and strategically
exploit the strengths of the individual ports in
European competition. Another measure that was dis-
cussed in the 1960s and 1970s but not implemented is
the relocation of the port to the mouth of the Elbe
River as a deep-water port in the Wadden Sea region
of the Elbe Estuary near Neuwerk-Scharhérn (Hundt
et al. 1977; Schubert 2020). Today, these areas are
strictly protected as part of the German Wadden Sea

National Park, the largest tidal flat system in the world,
which has been recognised by UNESCO as World
Heritage (Wadden Sea World Heritage 2024).

5.2.3. Urban development - Loops R4 and R5
Exposure is the presence of people, livelihoods, spe-
cies or ecosystems, environmental functions, services
and resources, infrastructure and economic, social or
cultural values in places and environments that could
be adversely affected (IPCC 2021). Non-climatic fac-
tors can contribute to more elements being exposed
to climate hazards, potentially increasing the magni-
tude of damage. Urbanisation is a complex socio-
economic process that changes the environment by
transforming formerly rural into urban settlements
and at the same time shifting the spatial distribution
of a population from rural to urban areas (UN 2019).
Poorly planned and managed urban development
where urban areas grew simultaneously larger and
denser in hazardous areas, can translate into
increased exposure of cities (Davis et al. 2015;
Hemmati et al. 2020).

Urbanisation and economic growth are closely
linked (Henderson 2010). It is generally accepted
that economic growth promotes the spread of mod-
ern industries and an increase in urban population; in
turn, urbanisation also promotes economic growth to
some extent (Chen et al. 2014) via advantages in
economies of scale in infrastructure, capital, labour
and managerial resources (Liddle and Messinis 2015).
The process of industrialisation, which attracts the
rural labour forces to cities for employment prospects,
is a key reason for urban migration. In addition, urban
development can encourage people to move from
rural to urban areas for opportunities such as access
to culture, education and health care (Liddle and
Messinis 2015). In summary, economic growth, urban
development and migration are linked in two reinfor-
cing feedback loops (R4 and R5; Figure 3d), indicating
reinforcing processes (Martin and Ottaviano 2001;
Gross and Ouyang 2021; Mahtta et al. 2022).

Climate change-related urban flood damage poses
a threat to the city’s economy, with infrastructure
shutdowns having a negative impact. Critical infra-
structures that provide services such as energy,
water, sanitation, transport and communications are
essential for socio-economic activities and are highly
interdependent, so that failures in one system often
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affect other systems and the resulting losses are sub-
stantial (Chang 2016). In Hamburg, there is a network
of technical coastal protection measures that reduces
the exposure of the city and thus the risk from flood-
ing. However, an unexpected and sudden technology
failure of flood defences (such as dyke failure), could
lead to catastrophic consequences (Climate-ADAPT
2023) and high damage due to a sudden increase of
exposed elements in the flood-prone area. The possi-
ble intervention measure of building an Elbe barrier at
the mouth of the Elbe River, which was discussed in
1960s and 1970s (Hein and Schubert 2021), would be
a way to reduce the potential exposure of the city
resulting in a lower flood risk, while restricting naviga-
tion (e.g. Seiffert and Hesser 2014).

The process of urbanisation generally involves
new land take and soil sealing (Naumann et al.
2019). In context of urban development, increasing
surface sealing can in turn influence surface runoff
processes and the hazard of pluvial flooding. In
growing urban areas, especially the need for new
housing and expansion of residential infrastruc-
tures is driving land take (Pejchar et al. 2015;
Ehrhardt et al. 2022). The demand for housing, in
turn, depends in particular on the size of house-
holds, where a smaller household size is found to
increase land take (Colsaet et al. 2018). In
Hamburg, more than 50% of households are sin-
gle-person households, with up to two-thirds in
inner-city locations  (Statistisches Amt flr
Hamburg und Schleswig-Holstein 2022).
Additionally, the housing construction program
formulated by the Hamburg Senate to create the
conditions for 10,000 new flats per year (Freie und
Hansestadt Hamburg 2023) possibly exacerbates
the problem of land sealing through further expan-
sion of residential areas.

While greenfield development on outskirts (i.e.
conversion of areas not previously used for urban
purposes on the urban fringe; Kent et al. 2019) and
infill development (i.e. new development on vacant
land within the city previously overlooked for urba-
nisation; Mohammadi-Hamidi et al. 2022; Xu and
Ehlers 2022) generally increase the amount of land
sealing, vertical extension of buildings (i.e. construc-
tion of new floors above existing buildings; Gillott
et al. 2022) is identified as an opportunity to reduce
additional surface sealing. Vertical extension of

buildings, using the remaining buildable area of
older buildings, has the positive side effect of refurb-
ishing the housing block and improving standards
for energy efficiency, safety and accessibility (Artés
et al. 2017; Gillott et al. 2022). On the other hand,
both vertical extension of buildings and infill devel-
opment are associated with higher density urban
living, which is increasingly criticised for negative
effects on subjective wellbeing (Holden 2019).
Greenfield development on the outskirts of cities
can increase car-dependence (Kent et al. 2019) and
the amount of transport infrastructure areas leading
to more urban sealing. In addition, recent studies
showed that commuting and wellbeing are closely
related, with increased commute time leading to
decreased indices of subjective wellbeing (Kent
et al. 2019; Chatterjee et al. 2020). In Hamburg, the
focus is currently on the densification of existing
settlement areas (i.e. ‘Hamburger MaB’; BSW 2020).

5.2.4. Car dependency - Loop R6

Modal split behaviour is the result of a complex inter-
play of man-made factors such as infrastructure, traffic
system organisation, costs, convenience, lifestyle and
housing preferences and advertising. Human beha-
viour depends on ‘irritation from the environment’,
with car oriented environment leading to car mobility
(Knoflacher 1991, p. 79). More car-friendly infrastruc-
tures lead to more motorised transport; conversely,
more motorised transport leads to more car-friendly
infrastructures. In summary, car-friendly infrastruc-
tures and motorised transport are linked by
a reinforcing feedback loop (R6; Figure 3e). To reduce
the amount of car mobility, the positive stimuli for car
drivers have to be reduced (Knoflacher 1991), and
incentives for a modal-shift from individual motorised
mobility to substitutes such as biking, carpooling or
public transport could also be made more attractive
(Santos et al. 2013; Tyrinopoulos and Antoniou 2013;
Lee et al. 2022). The 15-min city is an urban planning
concept (Moreno 2019; Moreno et al. 2021) that aims
to reduce car dependency and at the same time
improves the general health and wellbeing of city
dwellers. This approach is based on a greater mix of
residential and commercial areas at neighbourhood
level, so that city dwellers can reach basic services
within 15 min of their homes, promoting walkability
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(Whittle 2021). Currently, this 15-min city concept is
also being discussed for the city of Hamburg
(Hamburger Abendblatt 2023).

5.2.5. Risk awareness and ‘levee effect’ - Loops B4
and R7

Recognising the complexity of risk and the fact that
risk is socially constructed’ is a prerequisite for suc-
cessful risk management (Slovic 1999, p. 690). Risk
perception and awareness as well as consideration
of historical framing are essential for developing risk
management strategies that match societal needs
and concerns (Gerkensmeier and Ratter 2018).
People perceive the severity of a risk differently
depending on where and when they live, their past
experiences and how much it affects their daily lives
(Zwickle and Wilson 2013). And without an awareness
of the risks, ‘self-protective action is not likely’
(Poortvliet et al. 2020, p. 3). For instance, environmen-
tal disasters, in this case damage from urban flooding,
firstly increases the community memory of a society
(de Guttry and Ratter 2022) and thus leads to higher
levels of awareness. This in turn can reduce the num-
ber of exposed elements if one hypothesises that
increased risk awareness increases self-protective
action leading to less damage in case of another
flood event. This manifests in the balancing feedback
loop B4 (Figure 3f).

Communicating risks can also create risk percep-
tions and risk awareness that eventually affect beha-
viours (Hemmati et al. 2021). Developing programmes
to get people to take preventive, risk-reducing action
requires a detailed understanding of their decision
making (van der Pligt 1996). As disaster risk manage-
ment is foremost a societal task (Gerkensmeier and
Ratter 2018), this is also where the responsibility lies.
In order to deconstruct the community’s memories of
catastrophic events, a continuous and dynamic learn-
ing process must develop within societies (Eiser et al.
2012). This means that disaster risk management
needs to be addressed at both policy and community
levels. Those who are most at risk have to be aware of
this and be willing to take further steps, such as pre-
ventive measurements.

While technical coastal protection can reduce
exposure to flood hazards, it can also promote the
‘loss of flood’ memory by consistently reducing the
frequency of flood events (Climate-ADAPT 2023). This

can lead to increasing exposure in flood-prone areas,
commonly referred to as the ‘levee effect’ (Serra-
Llobet et al. 2022; Climate-ADAPT 2023). The learning
process has been shown to be very sensitive to
changes in structural measures (e.g. dykes) to protect
against flooding, with the decay rate of memory
increasing significantly with the introduction of struc-
tural measures (Collenteur et al. 2015). With regard to
Hamburg, massive investments have been made in
technical coastal protection after the Great Flood of
1962 (von Storch et al. 2008). Against the background
of the ‘levee effect’, it should be taken into account
that increased technical coastal protection could lead
to reduced risk awareness in the long term (marked by
a delay in R7; Figure 3f), which could increase the
number of exposed elements, resulting in higher
damage from flooding in case of an extreme storm
surge event. This process, which may be relevant for
Hamburg manifests in the reinforcing feedback loop
R7 (Figure 3f).

5.2.6. Poverty, urban health and income - Loops
R8, R9 and R10
According to IPCC (2022) and von Szombathely et al.
(2023), we define social vulnerability as the propensity
or predisposition of the urban society to be adversely
affected. Higher social vulnerability may be associated
with higher risk and possibly with higher damage (in
this case harm to human health). Social vulnerability is
affected by factors as poverty, educational level and
age (Fekete 2009; Holand et al. 2011; Foster et al.
2019). Higher levels of education can increase the
likelihood of employment, which can increase per-
capita income and ultimately the amount of private
assets, which in turn result in less poverty and lower
social vulnerability. The feedback loop R8 (Figure 39g)
shows the reinforcing effect of damage, poverty and
social vulnerability: higher damage reduces private
assets resulting in more poverty and higher social
vulnerability, which in turn could increase the possi-
bility of higher damage in case of another flood event.
Additionally, social vulnerability is directly linked to
the health of urban residents (e.g. Fatemi et al. 2017;
Foster et al. 2019). Urban health involves both objec-
tive (physical health) as well as subjective (mental
health) dimensions (Krefis et al. 2018). Urban health,
social vulnerability and damage are interrelated by
the reinforcing feedback loop R9 (Figure 3h): as
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urban flooding entails not only economic burden but
also health-related damage (e.g. through contact with
contaminated water and mental stress issues in case
of pluvial flooding and sewer overflows; Mobini et al.
2020), social vulnerability may be reinforced by poorer
health, which in turn could lead to higher damage in
case of another flood event. Another health-related
reinforcing feedback loop (R10; Figure 3i) is associated
with household income. Higher per-capita income
provides more access to better nutrition, reducing
obesity prevalence, and more access to health ser-
vices, and better urban health in turn promotes higher
income through fewer sick days and higher efficiency
(Eker and lImola-Sheppard 2020).

5.2.7. Silo-thinking — Loop R11

Public administrations tend to operate in silos.
A silo is understood as the sectoral division of
management, whether by tasks or thematic divi-
sions; there are differences in institutional logics,
working practices and culture between silos
(Oseland 2019). Such division of responsibilities
into sectors or silos hinders local climate planning
and its implementation. Empirical evidence sug-
gests that while climate change policy is an issue
that affects a wide range of departments in local
administrations, the expertise and responsibility for
climate change policy tends to remain concen-
trated in the environmental department which
may lead to problems in implementing compre-
hensive concepts (Kern and Alber 2009). Apart
from these thematic silos, resource allocation and
budgeting practices within silo-oriented adminis-
trative structures contribute to inefficiency and
limited progress. The existence of silo budgets
creates incentives that prioritise sectorial goals
over collective goals, which hinders cross-
departmental collaboration and integrated solu-
tions (Bohman et al. 2020; Dorst et al. 2022). This
is manifested in the reinforcing feedback loop R11
(Figure 3j), where existing structures and beha-
viours become self-reinforcing and resistant to
change, leading to institutional lock-in. Increased
silo-thinking can thus reduce the potential for
planned adaptation action. To improve policy
coherence towards sustainable development,
a mindset that transcends political, institutional
and mental silos is needed, and intervention mea-
sures such as raising awareness of existing

mindsets and integrating informal cross-silo work-
ing into existing training programmes are recom-
mended (Meuleman 2021).

6. Discussion

The integrated QSDM is characterised by being non-
linear, but cyclical, giving the opportunity to con-
sider complex feedback processes between environ-
mental, social, economic, policy and institutional
factors that govern the structure and dynamic beha-
viour of the urban system. The feedback loops that
result from this interaction are of paramount impor-
tance for this study. They are seen as ‘the main
engine of change for the system’ (Kotir et al. 2017,
p. 114). To achieve transformative adaptation and
systemic change in coupled human-environment
systems, it is imperative to first identify the under-
lying drivers of the problems and their interrelations
in order to respond to them. With this work, we
demonstrate that using a system dynamics
approach and integrating multiple disciplinary per-
spectives into a single model allows us to distil
these intricate interactions and provides valuable
insights into the systemic nature of urban flood
risk. More specifically, this work shows that by unra-
velling and understanding the governing feedback
processes, we are able to gain insights into the
vicious cycles of barriers (i.e. reinforcing feedback
loops; Meadows 2008; Zea-Reyes et al. 2021) that
perpetuate and hinder the process of adapting to
climate change in the city. This makes this article an
important contribution to the literature on urban
flood risk management and urban climate change
adaptation.

In the remainder of this section, the vicious cycles of
barriers in the city of Hamburg with regard to flood
risk and their implications for adaptation strategies
are discussed in Subsection 6.1, followed by a critical
reflection on the qualitative modelling framework in
Subsection 6.2

6.1. Overall system narrative - The vicious
cycles of barriers of the coupled urban socio-
ecological system of Hamburg

This study attempts to go beyond a pure description
of the modelled feedback loops by connecting the
individual feedback stories within the system to
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discuss an overall system narrative (Melles et al. 2021;
Rajah and Kopainsky 2024). This feedback narrative
makes the identified feedback structure more con-
crete (Rajah and Kopainsky 2024) and serves as an
invitation to an integrated discussion and debate.
Ultimately, it bridges the abstraction gap of the
model and supports communication of the feedback
processes to stakeholders.

The QSDM of the socio-ecological system of the city
of Hamburg shows that with regard to flood risk the
urban system is dominated by reinforcing feedback
loops (see Figure 2). The dominance of reinforcing
feedback loops indicates that with respect to flood
risk there are ‘sources of growth, erosion, and col-
lapse’ (Kotir et al. 2017, p. 114) in the urban system.
This means that the system is characterised by an
increase of flood risk due to their internal, systemic
feedback processes that cascade and amplify negative
effects within the system, even in the absence of
further flood hazards. This can be associated with
‘systemic risk’ (Sillmann et al. 2022). Without sustain-
able adaptation actions that go beyond conventional
risk management and governance, the system is likely
to reach a state where it becomes challenging to
manage.

Path dependency (feedback loop R3) in relation to
the port of Hamburg poses a major barrier to sustain-
able adaptation. Continuous river engineering mea-
sures on the Elbe River represent lock-in effects that
ultimately pose a threat of reaching a tipping point
towards a regime shift in the entire Elbe Estuary
(Wang et al. 2015). These measures are triggered, on
the one hand, by the demand for ever larger ships in
the port of Hamburg (Schubert 2020) and, on the
other hand, by the constantly increased up-estuary
sediment transport (due to the river engineering mea-
sures; feedback loops R1 and R2). Measures to over-
come this vicious cycle, e.g. limiting the size or
draught of ships, involve trade-offs with other policy
goals, such as economic growth. It is possible that
these management options become more attractive,
the closer the Elbe ecosystem gets to the mentioned
tipping point. London is an example of a global city
with an ‘outplaced port’ (Hein and Schubert 2021,
p. 391). The historical ‘integration of port city func-
tions has given way to separate development paths
for port and city’ (Hein and Schubert 2021, p. 398), i.e.
the seaport has been relocated and only its

administration is based in the city centre.
Cooperation between the North German ports could
also counteract possible future draught restrictions in
Hamburg and strategically exploit the strengths of the
individual ports in European competition.

From a system dynamics point of view, i.e. thinking
in terms of feedback processes, the interrelation
between urban development, economic growth and
migration (feedback loops R4 and R5) represent
sources of increased flood risk in the urban system.
Economic growth usually results in increased job
opportunities and agglomeration of amenities which
are significant factors driving migration into urban
areas. The resulting increased demand of housing is
a major cause of urban development and associated
surface sealing (e.g. Pejchar et al. 2015), which in turn
increases the surface runoff potential of the urban
system and thus the hazard of pluvial floods.
Furthermore, economic growth and new urban devel-
opments, particularly in flood-prone areas, and asso-
ciated increasing values at risk represent a high
impact driver for urban flood risk (Berndtsson et al.
2019). Balancing new urban development in ways of
sustainable urban planning is crucial in mediating
urban flood risk. It is thus important to discuss adap-
tation in a broader framework of sustainable develop-
ment and identify relevant trade-offs and synergies
between adaptation measures and other relevant pol-
icy goals (Dodman et al. 2022; Glavovic et al. 2022;
Gresse et al. 2023) such as the provision of affordable
housing or climate mitigation.

Another major barrier is the lock-in effect triggered
by the continued car dependency of the urban sys-
tem. The regime of automobility envisioned by urban
planners across the US, Europe and elsewhere during
the post-World War period is now widely regarded as
a failure (Haarstad et al. 2022). However, the lock-in
effects of this past failure persist and also hinder
transformative innovations. New technologies are
mostly locked into the infrastructure of the automo-
bilty regime (e.g. by the existing road network), which
justifies further investments in that infrastructure. This
vicious cycle of increasingly car-friendly infrastruc-
tures (feedback loop R6) also exacerbates the land-
use conflict as well as surface sealing. To break this
vicious cycle and reduce the share of car-based mobi-
lity and infrastructures in cities, positive incentives for
car drivers have to be reduced, i.e. the ‘car oriented
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environment’ has to be changed in favour of an envir-
onment optimised for pedestrians, public transport or
bicycles (Knoflacher 1991, p. 81). Examples include
designing parking places in a more responsible way
while investing in a balanced public transportation
infrastructure with a dense network and high-
frequency connections. Some cities are beginning to
address this car dependency loop. In Copenhagen,
the cycling mode share is very high. However, car
ownership is still increasing and the share of cycling
decreases with distance from the city centre.
Although Denmark is a pioneer in sustainable urban
development, car culture is still very widespread and
represents the biggest challenge in working towards
sustainable mobility (Freudendal-Pedersen et al.
2020). The City of Oslo has implemented a new
approach to urban planning that recognises that
streets need to be spaces for recreation that promote
interaction, social functions as well as transport and
travel, and that emphasises the priority of pedestrians,
cyclists and urban quality over cars on the streets (City
of Oslo 2020). For the city of Hamburg, it is likely that
with increasing land use conflicts (limited by the state
boundaries), a change in modal split will become
more attractive, leaving more room for urban blue-
green spaces. A corrected calculation of the costs of
the effects between the modes of transport, e.g.
between car and public transport, from a systemic
perspective would highlight the advantages much
more clearly (i.e. calculating the costs of illness from
air pollution, costs of missing recreational areas, costs
of hospitals, police, fire brigade due to accidents, etc.;
Knoflacher 1991).

Conventional flood management systems such as
dyke improvements are more prevalent in Hamburg.
While institutional adaptation is a critical point to
consider, relying solely on state action can lead to
underestimation of risk by and increased exposure
of the local population. In particular, the reinforcing
feedback loop (R7) associated with the ‘levee effect’
(Climate-ADAPT 2023) indicates sources of risk growth
in the system. This feedback process arises from the
loss of flood memory combined with a complete trust
in technical coastal protection and too great sense of
security. While storm surge protection is relatively
well established in institutional structures and public
awareness, de Guttry and Ratter (2022) emphasise
that the city has so far paid comparatively little

attention to the fact that extreme rainfall events and
subsequent flooding are at least as likely as storm
surges. They underscore the significance of acknowl-
edging pluvial and fluvial flood risk alongside coastal
flood risk and emphasise the crucial role of promoting
individual adaptation measures alongside administra-
tive disaster protection. It is important to address the
possible consequences of a solely institutional
approach. As an excessive sense of security among
the population can lead to complacency and negli-
gence, this could jeopardise preparedness for future
flood hazards. This might be problematic especially
for vulnerable population groups such as children, the
elderly and low-income households. In comparison to
the past (1980-1999), heavy rainfall events in Europe
are already affected by climate change emphasising
the need to consider climate change in today’s risk
assessment and risk transfer (Lang and Poschlod
2024). With the publication of the heavy rain hazard
map (‘Starkregengefahrenkarte’; Freie und Hansestadt
Hamburg 2024), Hamburg is now putting a strong
focus on pluvial flood risk communication. This map
is based on a state-of-the-art high-resolution pluvial
flood modelling, placing Hamburg at the forefront of
pluvial flood mapping. Although the map has no legal
consequences and is for information purposes only,
the heavy rain hazard map shows Hamburg’s citizens
where they could be at danger from heavy rainfall,
enabling them to take precautions. Reconnecting the
society to the importance of water as an integral part
of everyday life, instead of considering water as
a threat (Bell 2015), is the first step towards a holistic
perception of water that can lead to sustainable
transformations.

The reinforcing effects associated with poverty,
social vulnerability and damage (feedback loop R8)
as well as urban health, social vulnerability and
damage (feedback loop R9) also represent sources
of growth of flood risk in the urban system. Flood
damage can be associated with significant financial
burdens, which can lead to or intensify poverty thus
contributing to social vulnerability. On the other
hand, flood damage can be associated with health
damage (both physical and mental health) which in
turn lead to poorer health and contribute to social
vulnerability. Socially vulnerable groups may be
more affected by flood events than others, as they
generally have less means or capacity for individual/
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autonomous adaptation. The reinforcing negative
effects between urban health and income (feedback
loop R10; Eker and limola-Sheppard 2020) could
further exacerbate the problem, particularly among
vulnerable groups. Thus poverty and health issues
can be seen as major barriers to adapting to
a changing climate. To overcome these vicious cycles
of barriers, it is important to bring social aspects
such as equity to the heart of the adaptation pro-
cess (Adger 2003).

Silo-thinking and associated silo-budgeting are
found to reinforce each other in a vicious cycle
(feedback loop R11) and thereby represent
a major institutional barrier to sustainable urban
flood management and climate change adaptation.
Governance on the municipal level is often trapped
in formalised ways of working and constrained by
institutional logics (Coaffee et al. 2018). The phe-
nomenon of silo-thinking is partly generated by
the sector-oriented character of departments and
entities. Apart from these thematic silos, resource
allocations and budgeting practices within silo-
oriented organisational structures contribute to
inefficiency and limited progress. Bohman et al.
(2020) have shown that such silo-structures hinder
the cross-sectoral implementation of sustainable
stormwater strategies, such as multifunctional
stormwater solutions. Breaking down siloed ways
of working requires a mindset that transcends poli-
tical, institutional and mental silos (Meuleman
2021). Measures such as raising awareness of exist-
ing ways of thinking and integrating informal
cross-silo working arrangements are key to getting
started, even in the scientific community. Socio-
ecological systems thinking and system dynamics
modelling can play an important role here, as
they call for an integrative approach that brings
together multiple sectors and disciplines to under-
stand and address complex problems.

Finally, integrated research knowledge (indirectly
represented here by the model as a representation of
the current state of integrated interdisciplinary knowl-
edge on urban flood risk) and thus bringing together
researchers from different disciplines that go beyond
sector-level analyses, is an important way to achieve
sustainability and resilience. The lack of ‘actionable
knowledge’ (Bai et al. 2016, p. 71) can be thus seen
as another barrier to sustainable adaptation. For

example, the impact of individual urban planning
measures to prevent extreme precipitation cannot
yet be reliably demonstrated, despite a wide range
of literature. As precipitation initiation and resulting
damage are not co-located, the demonstration of
such lines of evidence will be essential to generate
societal acceptance for corresponding urban adapta-
tion measures.

As cities are complex socio-ecological systems, mul-
tiple actors and processes interact, often across geo-
graphic, institutional and governance scales.
Hamburg’s situation as a city and federal state
makes the administrative structures more complex
than may be the case in many other cities (see SP 11
in Supplementary Material 1). The complex structures
might be a hindrance to cooperation and commit-
ment to implementing flood management and cli-
mate change adaptation measures. A siloed view of
systemic urban problems and knowledge gaps in
terms of understanding the interfaces, interactions
and interdependencies between sectors and compo-
nents of the urban system can lead to negative side
effects of political actions (Bai et al. 2016). So far,
a holistic and systemic approach to understanding
urban flood risk has been lacking, in particular with
a focus on how internal system dynamics drive this
risk. The lessons learned for the city of Hamburg can
be generalised to other cities with similar geographi-
cal, climatic and socio-economic conditions.

6.2. Reflections on the qualitative modelling
framework

The model building process encouraged the interdis-
ciplinary team of researchers to find common ground
and to focus on the interactions of the system rather
than on disciplinary views. In particular, the system
dynamics perspective was helpful to raise the partici-
pants to a systemic level and to create a holistic view
of the urban system in the team. In addition, the
participatory modelling framework helped to keep
track of and to structure the large amount of ideas,
knowledge and opinions gathered in the group inter-
views and sessions. The QSDM in form of a causal loop
diagram served as boundary object (Voinov et al. 2018)
for the interdisciplinary research team and contribu-
ted to collective meaning-making. However,
a limitation of QSDMs is that they do not allow for
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the representation of tipping points in the system,
such as in the case of the system variables soil moist-
ure and permeability, where both high and low values
of soil moisture are associated with low permeability.
Furthermore, it is not possible to link a causal relation-
ship between two variables to the state of a third
variable. Overall, these limitations of the QSDM
require a certain degree of abstraction by the user,
resulting in a simplified representation of the interre-
lationships. However, this abstraction provided an
excellent object of mediation for exchanging views
and learning from each other while developing
a more thorough and holistic understanding of the
urban system.

Although the QSDM provides valuable insights
into the systemic nature of urban flood risk, it lacks
the predictive capacity of more quantitative models in
the way it is formulated. A quantitative system
dynamics model would offer the possibility of quanti-
fying the system, and this work could provide an
important basis for doing so. Agent-based models
offer another way of modelling complex systems
using agents as elements (e.g. Yang et al. 2018;
Gonzalez-Méndez et al. 2021). However, these models
are also based on a set of assumptions and parameter
estimates, meaning that a holistic representation of
socio-ecological systems remains a challenge even
with these tools (An et al. 2021).

Some valuable lessons for the general design and
application of future group model building studies
were also drawn from this study. In order to examine
the coupled dynamics of urban flood risk and the
associated systemic problems from a holistic perspec-
tive and to develop an integrated model, it is crucial
to involve as many disciplines as possible, including
those that at first glance have nothing to do with
flood risk. Previous studies have highlighted the
importance of active stakeholder involvement at
early stages through participation in the development
of a holistic model of the policy problem at stake (e.g.
Inam et al. 2015; Mafez et al. 2015; Kotir et al. 2017;
Valencia Cotera et al. 2022). However, it is reasonable
to initially develop a QSDM based on interdisciplinary
scientific knowledge and to involve stakeholders at
a later stage (e.g. model evaluation and policy analy-
sis), as the different disciplines already offer enough
potential for conflict and mediation in the form of
differing vocabularies and definitions. With regards

to the system conceptualisation, it was very helpful
not to conduct individual interviews but to group the
researchers by disciplines, since the number of parti-
cipants was quite high. Such sub-group discussions
also helped to narrow down disciplinary ambiguities
and discard unnecessary details. Prior to the inter-
views, sufficient time should be planned to familiarise
the participants with the system dynamics approach.
A short introduction to the method at the beginning
of each interview is not enough. For the intermediate
step of collecting the disciplinary views in the group
interviews, mental models were quite sufficient as
a method, as participants were not yet fully familiar
with the syntax of a CLD at this stage. Due to restric-
tions during the COVID-19 pandemic, all group inter-
views had to be conducted online. This actually
turned out to be an advantage afterwards, because
the online procedure allowed each participant to fol-
low the creation of the model live on screen with the
Vensim software and make corrections at any time.
Another challenge was that participants were
tempted to add too much detail that they felt was
relevant to the model. To avoid an excessively sophis-
ticated model, it is important to keep focus and con-
stantly remind participants of the purpose of the
model and system boundaries.

System boundary setting is an important necessity
in SD modelling, as the boundary encloses the system
of interest and the distinction between dynamically
significant model variables and external variables can
only be made according to this boundary (Vennix
1996). This study focused on urban flooding and pro-
cesses associated with too much water in the city.
Water scarcity in cities is also a problem that is becom-
ing more urgent with climate change. That's also the
case for the city of Hamburg, as compound hot and
dry summers will get more frequent and intense in
a warmer climate (Felsche et al. 2024). However, water
scarcity and droughts are not in the focus of this
study. So far, climate change has been included as
a variable in the model, but it is a variable without
incoming arrows within the system. Climate change
thus represents a system boundary. This is
a (simplifying) assumption of the model, which can
also be explained by the fact that we are focusing on
adaptation rather than mitigation. However, this may
change if further knowledge is integrated into the
model in the next stages. The conceptual model
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reflects the state of knowledge of the interdisciplinary
research team that was involved in the model build-
ing process. As such, it should be noted that it repre-
sents only a ‘dynamic hypothesis’ (Kotir et al. 2017,
p. 116) of the structure and dynamics of the socio-
ecological system of the city of Hamburg.

7. Conclusion and outlook

This paper discusses the first four stages of a long-term
participatory modelling study on urban flood risk and
adaptation under climate change that involves an inter-
disciplinary research team and stakeholders. The study
focuses in particular on urban flood risk in context of
water from 4 sides, taking into account the growing
research field on climate hazard interactions and com-
pound events (Zscheischler et al. 2020; Simpson et al.
2021). A qualitative system dynamics model (QSDM)
was developed using socio-ecological system thinking
and system dynamics modelling approaches to expli-
citly address the complexity of urban flood risk and
adaptation under climate change in the case study
area of the city of Hamburg, Germany. We managed
to distil the interrelations between environmental,
social, economic, policy and institutional factors into
a model that captures both the dynamic and reciprocal
relationships. In particular, the integration of multiple
disciplinary perspectives into a single model adds
depth to this SD modelling process. We identified and
visualised vicious cycles of barriers, i.e. the governing
feedback loops that perpetuate and hinder adaptation
processes and reinforce flood risk within the city. The
study provides valuable insights into the systemic nat-
ure of flood risk, thus expanding the knowledge of
complex flood risk interactions within cities. This is of
direct relevance to policymakers dealing with both
flood risk management and climate change adaptation
in urban areas.

So far, the modelling process was embedded in an
interdisciplinary setting, with transdisciplinary work to
follow in a next step. The long-term goal is to develop
a holistic understanding of the complex dynamics and
feedback processes related to flood risk and adapta-
tion in the urban socio-ecological system of the city of
Hamburg. The first stages (i.e. problem identification
and model purpose, system conceptualisation, model
formulation and analysis of model behaviour) took
place as a team learning process based on the

interdisciplinary scientific knowledge of the research-
ers involved. In the remaining three stages (i.e. model
evaluation, policy analysis and model use) stake-
holders will be explicitly involved. However, the entire
model building process should be understood as
iterative, i.e. it is explicitly intended that the model
will be complemented with local knowledge from
stakeholders in later stages as well. The model devel-
oped in this study represents a preliminary model
based on scientific knowledge and is therefore only
a hypothesis of the overall dynamics of the urban
system. To complete the visual story, local knowledge
from practitioners is needed.

The QSDM developed for the city of Hamburg
indicates that the main engines for increasing urban
flood risk in the system are associated with socio-
economic and institutional processes. The study
showed that climate change affects the city mainly
from the outside through flood hazards, contributing
to flood risk. However, the city also generates flood
risk internally through exposure and social vulnerabil-
ity and even amplifies the flood risk through reinfor-
cing feedback processes. The analysis of the system'’s
feedback structure has highlighted that the chal-
lenges and barriers to flood risk management and
adaptation of the city are linked to the reinforcing
feedback loops of path dependency, river engineering
measures, urban development, car dependency,
‘levee effect’, poverty, urban health and institutional
silo-thinking.

Further work is needed in placing this qualitative
model in the broader context of decision support and
policy analysis (e.g. Egerer et al. 2021; Kunimitsu et al.
2023). The QSDM will be the basis for a joint analysis
by researchers and stakeholders to identify opportu-
nities that can help overcome barriers and advance
climate change adaptation in the city of Hamburg.
A follow-up paper will present the results of the
remaining three stages of the participatory modelling
framework developed here, focusing on model eva-
luation, policy analysis (deep leverage points for trans-
formative adaptation) and model use (scenario
investigation).

Research on individual sub-processes of the QSDM
is and will be based on very different methods ran-
ging form surveys to satellite observations or from
conceptual models to detailed numerical flow simula-
tions. Despite the numerous differences and
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incompatibilities among these individual approaches,
they can all be connected to the QSDM. Thus, the
QSDM is proposed as a common framework to place
these specific research outcomes in a holistic context
and to identify links between the different contribu-
tions. The qualitative modelling framework has
improved the ability to understand the feedback-
based dynamic processes of a dynamically complex
socio-ecological system by incorporating multidisci-
plinary perspectives through the development of cau-
sal loop diagrams and the analysis of feedback loops.
Such an integrated framework could be explored by
local decision-makers to improve understanding of
the dynamic nature of barriers to governmental plan-
ning for climate change adaptation in urban systems
and to identify synergistic opportunities for reducing
flood risk and achieving other Sustainable
Development Goals. In particular, the model can be
used as foundation for a joint discussion of very dif-
ferent interest groups helping participants think holi-
stically to identify social-ecological trade-offs and
multi-dimensional benefits for sustainable urban
development. In such discussions, the model would
serve as a neutral object of knowledge and negotia-
tion bringing together conflicting interests in urban
planning (e.g. flood protection, social justice, space for
housing, ecological integrity, economic efficiency,
etc.) on eye level. Furthermore, this approach, and in
particular the use of QSDMs could be a relevant ana-
lysis method for the growing field of compound events
and integrated climate change risk assessments.

Notes

1. In total, the sample of 13 groups consists of 34 research-
ers from 17 different disciplines (meteorology; physics;
river and coastal engineering; marine sciences; biology;
soil sciences; seismology; geo-hydro informatics; physical
geography; integrative geography; human geography;
urban and regional planning; planning, building and
environmental law; transport planning; environmental
governance; environmental economics; knowledge
transfer and communication), ensuring a wide range of
scientific backgrounds.

2. The approach of Inam et al. (2015) starts with the most
comprehensive model (i.e. the model with the maximum
number of variables), adds the variables from the other
partial models and continues until all complementary,
redundant and controversial elements are accounted for
in the overall merged model.

3. Tides are an important mechanical factor determining
hydrodynamic processes, sediment dynamics and

morphological response in the Elbe Estuary (Rolinski
and Eichweber 2000; Boehlich and Strotmann 2008).
The tidal wave propagates from the mouth of the Elbe
River to the artificial tidal limit at the weir at Geesthacht
(Elbe-km 586). The tidal range varies along the Elbe
Estuary and depends mainly on water depth, bottom
friction and the influence of the Elbe River discharge
(Hein et al. 2021), but changes in the converging estuar-
ine geometry also play a role (Kappenberg and
Grabemann 2001) (see also Supplementary Material 1,
SP 6).
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