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Abstract: Bathymetric data are crucial for benthic monitoring in coastal areas but are tradi-
tionally obtained through costly and geographically limited acoustic methods. This study
uses satellite-derived bathymetry (SDB) in the Eastern Mediterranean, focusing on the
Cretan Sea in Greece. It explores how variations in water surface optical properties affect
SDB models over four years (2019–2022), using Sentinel-2 satellite data. The research covers
two areas with contrasting features: the Chania Gulf and the open waters around Chrissi
Island. Three methodologies were tested: the band-ratio method, the linear-logarithmic
method, and an inherent optical properties linear model. Significant spatiotemporal varia-
tions in the SDB models were found, due to seasonal changes in water surface properties,
such as temperature and suspended organic materials. Linear optical properties-based
methods performed best, achieving a mean RMSE close to 1 m, slightly outperforming
the ratio-based method. The logarithmic method was less effective, with RMSE values
ranging from 1.3 to 1.5 m. A preliminary Kalman filter (KF) analysis increased RMSE to the
decimeter level. This study demonstrates the impact of water surface optical properties
on SDB models. It highlights the value of SDB for cost-effective, high-resolution coastal
mapping in complex coastlines like those in Greece.

Keywords: satellite-derived bathymetry (SDB); water optical properties; Mediterranean
waters; empirical method; Kalman filter (KF)

1. Introduction
Seafloor topography, or bathymetry, is vital for various marine activities. Accurate

bathymetric maps and data are crucial for navigational safety, helping surface ships, sub-
marines, and remote vehicles to avoid underwater hazards and chart safe, efficient routes.
Traditionally, bathymetric data have been gathered using shipborne systems with echo
sounders and airborne systems with LiDAR. While these methods are precise, they are also
expensive, labor-intensive, and geographically limited, restricting the frequency of surveys.
As a complementary approach, satellite-derived bathymetry (SDB) offers additional data
in a fast and cost-efficient way, particularly for shallow waters (less than 30 m deep), by
deriving seabed depths from high- to medium-resolution multispectral satellite imagery.
SDB enhances them by enabling the mapping of remote and hard-to-reach areas, filling
critical gaps in global bathymetric data at the same time [1].
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Advancements in remote sensing technologies have expanded bathymetric research,
mainly through high-resolution satellite imagery [2]. Multispectral sensors, especially the
green and blue bands, can penetrate up to 25 m below the sea surface in clear water [3].
Sentinel-2 MSI sensors, with 10-m spatial resolution, support bathymetric tasks using freely
available datasets. Seafloor topography is dynamic, influenced by natural phenomena like
tides, storms, sediment deposition, and human activities such as dredging, fishing, and
underwater construction. These changes can be spatial and temporal, making studying
spatiotemporal variations in SDB estimates crucial.

The foundational methodology was established in the 1970s [4] and is employed in
high-transparency waters with a homogeneous bottom. The method differentiates the
radiances between pixels due to depth differences. Each radiation wavelength penetrates
to different depths within the water column and decays exponentially, with the bottom
albedo assumed to be constant [5]. In Ref. [3], the satellite spectral bands are considered
to have different attenuation rates, requiring minimal calibration data. The authors of
Ref. [6] analyzed optical water properties, sourcing detailed information on the water
column’s optical properties. Tests in waters with a uniform, sand-type bottom showed
that the method works for any radiation wavelength and water category. Furthermore, the
inherent optical properties derived from satellite imagery are used in Ref. [7] to estimate
SDB, enabling direct analysis without additional sampling.

This study focuses on the Eastern Mediterranean, specifically Chrissi Island and the
Chania Gulf, examining optical properties like absorption, backscattering, and diffuse
attenuation coefficients. Greece’s aquatic environment presents both challenges and op-
portunities for remote-sensing bathymetry, with stable year-round conditions and clear
waters conducive to SDB, which has the potential to revolutionize hydrographic survey-
ing. SDB’s cost-effectiveness and high-resolution capabilities make it ideal for addressing
maritime landscape challenges, from defense and marine trade to scientific research and
environmental conservation [8,9].

The Eastern Mediterranean’s unique geological and environmental characteristics
further complicate these issues. Factors such as seasonal weather patterns, water character-
istics, and human activities can impact the reliability and applicability of SDB estimates.
Therefore, a focused study was conducted on the spatiotemporal variations in SDB in this
region. This study aimed to understand how variations in water surface optical properties
affect SDB estimates over time and space. The research addressed several sub-questions, in-
cluding the impact of seasonal and weather patterns, integrating different satellite-derived
products, and choosing satellite image quality and atmospheric correction processors. To
achieve these objectives, this study followed a structured approach. This began with down-
loading seasonal satellite imagery and merging the best images over five years. The data
underwent rigorous preprocessing to ensure high quality, including atmospheric, sunglint,
and water surface corrections. Bathymetric information was then extracted and compared
with ground truth data for validation.

The study extended beyond bathymetric mapping to evaluate water surface properties,
specifically its inherent optical properties (IOPs) and apparent optical properties (AOPs)
across seasons. This evaluation helped to understand their influence on SDB estimates
and their relevance to hydrographic surveying. Comparative analysis between bathymetry
and seasonal variations in IOPs and AOPs provided valuable insights. For future research,
data assimilation aimed to refine depth estimations with in situ measurements. However,
additional steps, such as error modeling and algorithm adjustments, are needed.
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2. Materials
2.1. Study Area

The study area focuses on Crete Island, located in Greece, which lies in the southern
Aegean Sea, part of the Eastern Mediterranean basin. The island extends approximately
between the meridians 23◦28′E and 26◦21′E and between the parallels 34◦46′N and 35◦40′N.
The broader study area is situated on Crete, surrounded by the deepest basin in Greece,
with a depth of approximately 2500 m in the southern Aegean region. This basin interacts
with the Levantine Basin and the Ionian Sea through the eastern and western straits of
Crete Island [10].

For SDB estimation, the area is classified into two distinct areas of interest (AOI), as
seen in Figure 1. The first study area is an embayment of the Cretan Sea, located northwest
of Crete Island, and is called the Chania Gulf, named after the local city. It has a length
of approximately 22 km, a mean latitude of 35◦33′N, and a mean longitude of 23◦54′E.
The second study area is located on Chrissi Island, in the southeastern (SE) part of Crete,
approximately 15 km offshore from Ierapetra city, with a mean latitude of 34◦52′N and a
mean longitude of 25◦42′E.
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coastal waters, as indicated by the contour line (in meters) with a maximum depth of 30 m.

Generally, the waters are transparent, and the seabed is dominated by sandy substrates
with a few rocky outcrops [11]. The western part is included in the NATURA2000 network,
with the code GR4340003 [12]. In contrast, the marine part is delimited by a depth curve of
50 m and is characterized by the presence of Posidonia oceanica meadows. However, it
should be noted that the bathymetry increases significantly in the area. Hence, only coastal
areas up to 30 m depth are optimal for generating SDB estimates [12]. The tidal signal is
also 15 cm and can be neglected for SDB estimates [8]. The anthropogenic activity is more
dominant than Chrissi Island because Chania is a well-known tourist destination, with
fishing areas and sea sports activities conducted from late spring to late autumn.

A typical Mediterranean climate with mild, rainy winters and hot, dry summers
characterizes Crete Island. The atmosphere can be quite humid, depending on the proximity
to the sea, while winter is relatively mild [11]. The complex ocean circulation patterns
and water mass interactions can result in localized areas of higher nutrient concentrations,
especially in upwelling zones or regions with vigorous vertical mixing [10]. The study
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areas were selected firstly because of the profound water clarity and secondly because of
the different properties of the AOI. The Chania Gulf is a more enclosed area of Crete Island,
while Chrissi Island is in open seas. Hence, investigating SDB estimates under different
hydrodynamic conditions can yield significant insights for the Eastern Mediterranean.

2.2. Satellite Data

Sentinel mission products are freely available for download via the Copernicus Open
Access Hub. This study used Level-1C raw satellite imagery to extract the water’s optical
properties, utilizing adjustable atmospheric correction parameters. As indicated in Table 1,
the imagery for the Chania Gulf and Chrissi Island, spanning from 2019 to 2022, was filtered
by month and limited to images with 2% or less cloud coverage. The selected period aligns
with recent in situ measurements and was extended by five years to capture significant
bathymetry changes. Sun-zenith angle (SZA) products above 70◦ were also excluded to
reduce solar reflection [13]. Additionally, the glint angle was calculated using the view
zenith angle, view azimuth angle, sun azimuth angle, and sun zenith angle, based on the
principles of radiative transfer theory (RTE) [14]. A smaller glint angle indicates more
direct sunglint being reflected in the imagery.

Table 1. Sentinel-2 level 1 C data, curated for SDB modeling.

Year Season Sensing Date
(UTC Time)

Sun Zenith
Angle (Degree)

Sun Azimuth
Angle (Degree)

View Zenith
Angle (Degree)

View Azimuth
Angle (Degree)

Glint
(Degree)

Chania Gulf

Spring 07-March-2019 44.59 152.74 3.05 215.23 43.25
2019 Summer 09-August-2019 25.11 137.32 3.09 215.46 24.65

Autumn 28-October-2019 49.99 164.69 3.13 213.80 47.98

Winter 31-January-2020 56.19 157.58 3.11 213.76 54.50
2020 Summer 28-August-2020 30.05 146.45 3.16 216.21 29.09

Autumn 07-September-2020 33.02 150.82 3.16 216.19 31.82

Spring 06-March-2021 44.77 152.84 3.16 216.12 43.42
2021 Summer 24-June-2021 18.9 125.73 3.12 214.59 19.08

Autumn 07-October-2021 43.03 160.88 3.15 215.14 41.25

Winter 19-February-2022 50.32 154.85 3.14 214.94 48.81
2022 Summer 18-August-2022 27.26 141.65 3.18 216.57 26.59

Autumn 27-October-2022 49.76 164.60 3.14 214.76 47.79

Chrissi Island

Spring 19-March-2019 39.50 149.45 3.56 122.09 36.37
2019 Summer 21-August-2019 27.70 140.30 3.51 123.17 24.37

Autumn 25-October-2019 48.36 163.00 3.51 123.16 45.71

Winter 23-January-2020 57.44 157.70 3.56 122.27 54.56
2020 Summer 30-August-2020 30.28 145.03 3.51 123.42 27.04

Autumn 13-November-2020 54.27 164.79 3.47 123.74 51.69

Spring 13-March-2021 41.63 150.29 3.50 123.10 38.54
2021 Summer 30-August-2021 30.21 144.91 3.49 122.66 27.01

Autumn 24-October-2021 48.20 162.93 3.45 125.80 45.49

Winter 11-February-2022 52.44 154.67 3.50 123.60 49.47
2022 Summer 20-August-2022 27.53 139.93 3.57 122.69 24.14

Autumn 04-October-2022 41.31 158.50 3.50 123.49 28.49

2.3. Field Data

In the empirical SDB estimations used in this study, field data were used to calibrate
and validate the SDB models. For Chrissi Island, ground truth data came from the Hellenic
Navy Hydrographic Service’s Electronic Navigational Chart (ENC) GR3CFDES (scale
1:90,000), last updated on 23 February 2022, with depths referenced to the low astronomical
tide (LAT). For the Chania Gulf, the Hellenic Center for Marine Research collected data
during bathymetric surveys from January 2014 to May 2015. Instruments included a
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Humminbird single-beam echo sounder (SBES) and a Reson 7125 dual-head multibeam
echo sounder (MBES). Positioning errors were reduced using a real-time kinematic (RTK)
solution from the Hellenic Positioning System (HEPOS), with depth corrections applied
for LAT and the sensor’s draught [11]. Calibration data consisted of approximately 20
to 25 points distributed in depths from 2.4 m up to 24 m for both study areas, as shown
in Figure 2.
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Figure 2. The calibration data for both AOIs are presented, illustrating the depth profiles in the
figures on the right and the spatial distribution, with contour units expressed in meters: (a) Chania
Gulf, where the samples were derived from the island’s northern part, where the slope is smoother
compared to the southern part; (b) Chrissi Island, where depth samples were considered in the
middle of the Gulf as the best representation of the area’s geomorphology.

3. Methods
3.1. Empirical Satellite-Derived Bathymetry (SDB)

In the current study, the SDB models under investigation are the linear-logarithmic
algorithm proposed in Ref. [4], the band-ratio transformation developed by the authors
of Ref. [3], and the inherent optical properties linear model (IOPLM) proposed in Ref. [7].
Lyzenga developed a method for studying marine environments with low suspended
particle, chlorophyll, and organic matter levels. This method assumes that the physical
and chemical properties of the water surface depicted in a satellite image remain con-
sistent. The ratio of attenuation coefficients due to light diffusion in two spectral zones
should remain constant across the entire image [15]. However, this assumption may only
hold in some cases, as reflectance from the water bottom may vary depending on the
sediment composition.

For satellite observations, the total radiance signal (Lt) is a sum of atmospheric path
radiance (Lp), specular radiance (Ls), subsurface volumetric radiance (Lv), and the bottom
radiance (Lb), with both Lb and Lv contributing to water-leaving radiance (Lw) in the deep
water [9,16,17]. Proper atmospheric correction to minimize the atmospheric radiance and
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sunglint removal to minimize the specular radiance is critical, as ignoring it can lead to
significant errors in depth estimation [18]. The water-leaving reflectance (R) itself is derived
from the relationship between water-leaving radiance (Lw) and downwelling radiance
(Ed) [19], as expressed by the following equation:

R =
Lw

Ed
(1)

One spectral band’s use for deriving depth estimates is primarily based on the re-
flectivity of the seabed, also known as albedo. If the reflectivity of the seafloor decreases,
it can lead to an overestimation of sea depth. However, shortly after its first use, it was
discovered that analyzing two spectral bands can account for the variability of the seafloor’s
reflectivity [15]. This results in a more precise estimation of depth, which can be calculated
using the following equation:

z = α0 + αi·ln[Rrs(λi)− R∞(λi)] + αj·ln
[
Rrs

(
λj
)
− R∞

(
λj
)]

(2)

where Rrs is the atmospherically corrected value of the water-leaving reflectance R, accu-
mulated as remote sensing radiance for band λi, R∞ is the reflectance of the optically deep
water areas of the image, α0, αi, and αj are the multiple regression analysis coefficients, and
z is the estimated water depth.

A significant disadvantage of the linear-logarithmic algorithm in coastal environments
consisting of underwater vegetation, such as algae or seagrass, is that the bottom reflectance
in shallow water is lower than that in deep water R∞(λi). As a result, in shallower
waters, the difference

[
Rrs

(
λj
)
− R∞

(
λj
)]

is smaller than zero; thus, the natural logarithm
ln
[
Rrs

(
λj
)
− R∞

(
λj
)]

is not defined. The different spectral zones of passive sensors exhibit
distinct spectral absorptions (attenuations), and the depth values in the Lyzenga equation
vary as a function of the logarithm; therefore, the ratio of the logarithms, for example,
between blue and green bands, will also change according to the depth.

A variation in the bottom albedo, caused by changes in underwater vegetation or
sediment, affects both spectral zones similarly, while changes in depth significantly impact
the zone with higher absorption. Thus, the variation in the reflectance ratio between
spectral zones due to depth will be much more significant than the variation caused by
changes in bottom quality [20]. Consequently, when investigating a coastal area with
a constant depth but different bottom compositions, satellite imagery pixels displaying
varying reflectance due to sediment and vegetation will have a nearly consistent logarithmic
reflectance ratio. A ratio transform algorithm to determine the bottom depth has been
proposed in Ref. [3], regardless of the bottom quality or the existing vegetation. It can be
calibrated to actual depths using data from a nautical chart or a bathymetric plot or through
field measurements, using the following mathematical formula:

z = m1·
ln(n·Rrs(λi))

ln
(
n·Rrs

(
λj
)) − m0 (3)

where m1 is an adjustable constant, which serves to tune the ratio to the depth of the chart
or field measurements, n is a constant that is associated with the area of interest, and m0

is an offset constant for the depth that corresponds to 0 m (z = 0). It should be noted
that the constant n is chosen to ensure that the logarithm is always positive, so the ratio
produces linear or proportional results as a function of the change in depth. In addition, the
coefficients m1 and m0 can be determined by statistically correlating the reflectance values
and field data at the corresponding pixel positions.
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The final SDB method tested in this study is based on the IOPs and their fluctuations
with depth, using a model found in the IOPLM that was developed by the authors of
Ref. [7]. This model utilizes the blue and green bands from WorldView-2 multispectral
images, which offer very high resolution, to gather a wide range of water depth data. The
formula consists of the following components:

z = α· u(λi)

u
(
λj
) + b (4)

where α and b are the regression coefficients, and u(λi) and u
(
λj
)

are the inherent optical
parameters of the blue band (i) and the green band (j), related to the absorption and
backscattering coefficient. Lastly, z is the depth estimation.

Finally, the inherent optical property parameter u can be calculated from the follow-
ing equation:

u(λ) =
−p0 +

√
(p0)

2 + 4·p1·rrs(λ)

2·p1
(5)

Here, p0 and p1 are model constants that change with various optical water properties.
Their values may vary with the particle phase function and differ from ocean to coastal
waters. For application to both coastal and open water bodies, the authors of Ref. [6] used
the averaged values p0 = 0.0895 and p1 = 0.1247 to develop the multiband quasi-analytical
algorithm (QAA). This algorithm aimed to retrieve the absorption and backscattering
coefficients from the remote-sensing reflectance of optically deep waters. Because u is
just a ratio of the backscattering coefficient to the sum of absorption and backscattering
coefficients, knowledge of the absorption coefficient enables estimating the backscattering
coefficient and vice versa.

In addition, rrs(λ) is the subsurface remote sensing reflectance. It can be obtained by
the conversion of the atmospherically corrected reflectance Rrs(λ) [21], as follows:

rrs(λ) =
Rrs(λ)

(0.52 + 1.7·Rrs(λ))
(6)

To summarize the steps of the last method, one has to start by calculating the sub-
surface reflectance rrs(λ) from the atmospherically corrected remote-sensing reflectance
Rrs(λ) for both the green and blue bands. In this case, Rrs is treated as equivalent to Rw,
where the remote-sensing reflectance includes contribution from water, atmosphere, and
glint. Then, we derive the inherent optical parameter u from Equation (6) for both blue
and green bands. Finally, the ratio of the u parameter between the two bands is plotted
(scatter plot) against the field measurements, and, after regression analysis, the regression
coefficients are deduced. This linear equation is the SDB estimation for the scene of interest.

In addition, the SDB estimations following the atmospheric correction (AC) were also
subjected to this process. Initially, the Acolite, developed by the Royal Belgian Institute
(RBINS) using a dark spectrum fitting (DSF) [22,23] processor, was used as the main AC
because of its superiority, as highlighted in Ref. [24]. The tool automatically calculates the
water’s optical parameters using the QAA method, by which the linear band response
to the field data can be analyzed. However, the SDB estimations for the summer period
utilized the Case 2 Regional CoastColour (C2RCC) algorithm [25]. The C2RCC showed
better handling in areas where sunglint was found in the images, while the Acolite DSF
returning zero values led to failure in estimating the SDB. Conversely, an important note
is that this IOPLM method was initially developed for very high spatial resolution (~2 m)
satellites such as WV-2, SPOT, and Pleiades. In this study, the Sentinel-2 products belong to
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the high spatial resolution group, and all the tests were executed with a best value of 10 m
of visible bands.

In conclusion, two factors primarily influenced the selection of the three methodologies
mentioned above for remote-sensing bathymetric derivation. Firstly, these methodologies
are based on distinct principles and utilize different techniques for depth estimation, thereby
providing a diverse and comprehensive approach. Secondly, they offer varying approaches
to the relationship with the water’s optical properties, a crucial aspect of this research.
Within this context, the linear transformation technique does not accommodate variations
in the water’s optical properties, operating under the assumption of a state of homogeneous
water properties throughout the testing period. Conversely, the other two methodologies
integrate the variability of the water’s optical properties into their computation, providing
a more dynamic representation of the aquatic environment.

The technique of band ratio transformation accommodates the oscillations In the
water’s optical properties indirectly by measuring the actual responses of the spectral
bands, which encapsulate the influence of these optical properties. Conversely, the IOPLM
method operates on a more direct principle. It is grounded on the inherent optical parameter
’u’, which explicitly incorporates the responses associated with absorption and scattering
phenomena within the water surface.

3.2. Kalman Filter (KF) Smoothing

The Kalman filter is an algorithm used to estimate the state of a linear dynamic system
in the presence of uncertainty and noise. It operates through two main steps: prediction
and update. In the prediction step, the filter estimates the system’s next state, based on the
current state and control inputs [26]. The filter utilized in this study uses the SDB estimates
as the initial state. In contrast, the field data is used as the measurement input for updating
the bathymetry model, as shown in Equations (7)–(11).

Xk|k−1 = FkXk−1|k−1 + Bkck (7)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (8)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(9)

Xk|k = Xk−1 + Kk

(
zk − HkXk|k−1

)
(10)

Pk|k = (I − Kk Hk)Pk|k−1 (11)

The filtering involves calculating the predicted state estimate Xk|k−1 using the state
transition model Fk with the control input model matrix Bk and any control inputs as vector
ck. While factors such as tides, currents, waves, and water properties can be used as control
inputs in bathymetry, this study assumes these values to be negligible. Consequently, the
identity matrix is defined for Bk. The state vector Xk here represents only the vertical
information (depth), omitting the spatial and temporal dependencies. The index k denotes
the predicted state, while k − 1 corresponds to the initial state, where the SDB estimate is
treated as the initial state. It also includes the prediction of the estimate’s uncertainty Pk|k−1
by considering both the previous uncertainty and the process noise Qk.

The update step refines this prediction by Incorporating new measurements, stored as
measurement vector zk. The Kalman gain Kk is calculated to determine how much the new
measurement should influence the updated state estimate, with Hk as the observation model
matrix relating the state vector to the measurement vector. The updated state estimate
Xk|k is then corrected using the Kalman gain, which adjusts the correction magnitude
based on the difference between the predicted and actual measurements, also known as the
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innovation or measurement residual. Finally, the estimated covariance Pk|k is updated to
reflect the reduced uncertainty after incorporating the measurement.

Through these iterative prediction and update steps, the Kalman filter continuously
refines the state estimate, providing a more accurate and reliable estimate of the system’s
state over the number of sample SDB estimates, even in noise and uncertainty. The KF
can be further refined and optimized based on the specific characteristics of the data, the
research objectives, and the use of an iterative KF to model the error and reformulate the
SDB equations.

3.3. Water’s Optical Properties

The ocean’s color is influenced by its optical properties, which are categorized into
inherent optical properties (IOPs) and apparent optical properties (AOPs) [27]. IOPs depend
only on the medium (seawater) and are not affected by external factors. Key IOPs include
absorption, where light energy is converted to heat or chemical energy, and scattering,
where light changes direction or wavelength [14]. AOPs are influenced by both the IOPs
and the geometry of light propagation. AOPs include reflectance and diffuse attenuation
coefficients, which describe how light is scattered or absorbed through water [28].

IOPs and AOPs are connected through the radiative transfer theory [14], where IOPs
are used to calculate radiance, from which AOPs are derived. In remote sensing, inversion
techniques are employed to estimate water surface properties like bio-optical parameters
and seafloor depth from known radiance values [14,29]. Beyond the inversion techniques
mentioned above, alternative, more empirical methods exist to assess the radiation propaga-
tion state within a specific water surface and remove the additive haze effect sourced from
scattering. One such method is dark object subtraction (DOS), initially proposed by the
authors of Ref. [30]. This technique is employed under the assumption that in deep-water
regions, any radiation reflected from the seabed is virtually absent, due to high absorption
levels. Consequently, the sensor’s reflectance recordings in these regions are attributed
solely to sources other than the bottom substrate. By subtracting the deep-water pixel
values from the pixel values across the entire image set, it is posited that what remains is
essentially the bottom reflectance.

In conclusion, the water surface’s inherent and apparent optical properties are pivotal
in determining the precision and dependability of satellite-derived bathymetry. These
optical characteristics present both obstacles and avenues for methodological enhancements.
Although factors such as water clarity, absorption, and scattering coefficients may impose
constraints, this advancement in understanding their impacts and integrating corrective
measures has contributed to the ongoing refinement of accurate and robust SDB algorithms.

3.4. Workflow

Despite the multitude of satellite-derived bathymetry models available for bathymetry
estimate extraction, preprocessing is nearly ubiquitous across all techniques. The prelimi-
nary steps for SDB analysis include atmospheric correction for Level-1C products, image
resampling, clipping the imagery to correspond with the study region, and the application
of a sea–land mask using the NIR band (B8) of Sentinel-2A to spot marine features. After
these preprocessing stages, the comprehensive methodology implemented in this study is
conducted, as presented in the workflow chart in Figure 3.
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The Sentinel-2 mission provides 13 spectral bands, covering the visible near-infrared
(VNIR) and short-wave infrared (SWIR) regions. Three visible bands—red (R), green (G),
and blue (B)—with a spatial resolution of 10 m are essential for generating satellite-derived
bathymetry (SDB) estimates. However, Sentinel-2’s multispectral bands vary in resolution,
necessitating an initial resampling step to ensure uniformity across all bands. To improve
bathymetry accuracy, this study adjusted all bands to the highest possible spatial resolu-
tion (10 m). A subset of Sentinel-2 Level-1C images, covering approximately 100 square
kilometers with a 10-m resolution, focused on the area of interest (AOI). An RGB image
confirmed the AOI and a land-cover mask was applied to highlight the marine features.
Using the NIR band, land areas were masked out based on a threshold or polygon, isolating
the aquatic regions. Following the method used in Ref. [31], linear regression was applied
between the NIR and visible bands to adjust the pixel values and emphasize marine areas.

At this stage, atmospheric correction (AC) is essential, particularly for handling
sunglint, which can obscure the visibility of the seafloor. For atmospheric correction,
the Acolite and C2RCC algorithms were selected. Acolite, developed by the Royal Belgian
Institute of Natural Sciences (RBINS), offers two algorithms: the newer dark spectrum
fitting (DSF) algorithm and the older exponential extrapolation (EXP) algorithm [32]. The
DSF algorithm performs both aerosol and sunglint corrections. It estimates atmospheric
path reflectance by analyzing multiple dark targets within the scene to determine the
best-fitting aerosol model similar to dark object subtraction (DOS) [25]. The DSF method
also includes a sunglint correction step, estimated using SWIR bands and applied to VNIR
bands. This process requires prior knowledge of aerosol optical properties, which can be
obtained from in situ measurements or the Copernicus Atmospheric Monitoring Service
(CAMS) model [33]. Due to its advanced capabilities, the DSF algorithm was chosen for
this study.

In contrast, the AC algorithm for the summer period relies on the C2RCC processor.
The C2RCC processor is an ocean-color algorithm with multi-mission capabilities. It
calculates water-leaving reflectance values from top-of-atmosphere (TOA) data by inverting
radiative transfer simulations through neural networks and applying an inherent optical
property (IOP) model to retrieve water properties [34]. The algorithm is based on a large
database of simulated water-leaving reflectance and the corresponding TOA radiances
(GNU General Public License, 2022). C2RCC offers three pre-defined neural networks
(NNs): C2RCC-Nets, designed for eutrophic to mesotrophic water types; C2X-Nets, which
are suitable for waters with high concentrations of suspended material and chlorophyll;
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and C2X-COMPLEX-Nets, intended primarily for inland waters. In this study, C2RCC-Nets
were chosen because they best matched the conditions of the study area.

This study applied the logarithmic-linear band model [4], band-ratio transforma-
tion [3], and the IOP model [7] to analyze band responses to light attenuation. Acolite and
C2RCC used non-linear least-squares calculations to compute key IOPs such as absorption
and backscattering coefficients, turbidity, and suspended particulate matter (SPM) concen-
trations [35,36]. In addition, chlorophyll-a (Chl-a) concentrations were calculated using
both processors’ blue/green ratio algorithms. These Chl-a estimates provide insights into
biological activity and seasonal variations in water properties, influenced by river runoff,
water mixing, salinity, and temperature [34].

The preliminary Kalman filter (KF) implementation is also employed to mitigate the
depth-related uncertainties derived by the SDB. The KF explicitly models depth-dependent
uncertainties by accounting for increasing state estimation, measurement, and state transi-
tion noise with depth. With the Kalman gain set to depend more on the measurement than
the update state, this approach shifts its reliance from noisy measurements to dynamically
updated model estimates at greater depths, improving the accuracy and reliability of the
bathymetric results.

To evaluate the accuracy of the SDB estimates, several error metrics were used. The
root mean square error (RMSE) measures prediction accuracy, with lower values indicating
closer alignment between satellite-derived depths and field measurements [37]. The mean
absolute error (MAE) quantifies the average magnitude of errors without regard to direc-
tion, while the median absolute error (MedAE) provides a more robust measure against
outliers [38]. The mean absolute percentage error (MAPE) expresses errors as a percentage,
which is useful for comparing performance across different datasets [39]. These discrepan-
cies in the in-depth estimates were compared to the S-44 Ed. 6 standard predictions for the
total vertical uncertainty (TVU) associated with a Special Order survey [40]. Lower values
across these metrics suggest more accurate depth estimations, indicating the effectiveness
of this study’s applied atmospheric correction and SDB methods.

4. Results
4.1. Atmospheric Correction

The Acolite DSF atmospheric processor demonstrated superior consistency, as high-
lighted by Caballero and Stumpf (2020), with repeatability and accuracy in scene-by-scene
analyses, making it the primary AC algorithm used for all imagery. In contrast, the C2RCC
processor showed lower accuracy and higher noise. However, C2RCC proved effective in
retrieving depth information from scenes with moderate to severe sunglint, which is typical
of summer imagery, underscoring its utility in challenging conditions. Figure 4 illustrates
the visual results of atmospheric corrections on winter and summer 2022 imagery using
the Acolite DSF and C2RCC models across both study areas.

It was found that the sunglint affected the performance of the Acolite DSF processor
during the processing of summer imagery. Despite the inclusion of sunglint correction in
the Acolite DSF, the output often resulted in black pixels, returning zero radiance value in
the summer period. This obscured much of the area of interest, resulting in an inability to
derive the SDB estimates using Acolite DSF. Caballero and Stumpf (2020) also reported this
degradation when evaluating AC processors. Given its superior handling of sunglint, the
C2RCC algorithm was chosen for summer scenes, producing minimal visible glint effects.
In other seasons, however, the Acolite DSF processor was more robust, achieving an RMSE
that was approximately 50 cm more accurate than C2RCC.
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4.2. Optical Water Properties Analysis

The diffuse attenuation, absorption, and backscattering coefficients describe the wa-
ter’s optical properties for both study areas. The breakdown of these coefficients shows a
similar pattern for both study areas, as seen in Figure 5. Overall, the diffuse attenuation
coefficient describes how rapidly light diminishes with depth. A higher value indicates
that light diminishes faster, suggesting murkier waters, while a lower value suggests more
transparent waters. Hence, the values show a general decrease for winter datasets as
depth increases. This indicates that the water is more turbid in deeper parts due to light
attenuation. The higher values near the shore or in shallower waters indicate greater
particle concentration due to the influence of river run-off and sediment transport. Like in
winter, the values decrease with depth during spring. This pattern suggests that the surface
waters are relatively murkier, and clarity decreases with depth. The change from winter to
spring might be less pronounced, but the general trend of more transparent waters at depth
remains consistent. Afterward, the absorption represents the fraction of light absorbed by
substances in the water, such as dissolved organic matter, phytoplankton, and detritus. A
higher absorption coefficient suggests that more light is absorbed, decreasing water clarity,
while a lower value suggests more transparent water. During winter, the absorption values
of all bands generally decrease with depth; thus, this trend indicates that the amount of
absorbing substances (like phytoplankton or dissolved organic matter) is higher near the
surface and decreases in the deeper parts.

Similarly, the backscattering coefficient indicates the amount of incident light scattered
back out of the water. A higher value implies more particles that scatter light, while a
lower value means more transparent water. Concerning winter datasets, the backscattering
coefficients decrease with depth, implying that there are fewer particles in deeper waters.
This pattern is consistent with the trend observed for the absorption coefficient. During the
spring, the backscattering coefficients also tend to decrease with depth. As for the summer
season data, the process and outcome were conducted under C2RCC; the optical properties
evaluated were the diffuse attenuation, total absorption, and backscattering coefficients.

The Interplay between these optical properties and bathymetry estimates was evident
with the turbidity variation shown in formazin nephelometric units (FNU), measured
using an infrared spectral band. The multiplot on the right illustrates the SPM fluctuations
in g m−3. The diffuse attenuation increases when there are more water scatterers in the
water, and, therefore, more signal from the water and less signal overall from the bottom
surface—i.e., a smaller fraction of the signal is derived from the reflectance of the bottom,
so there are larger uncertainties.

By scattering light in various directions, high backscattering values can introduce noise
into the satellite data, leading to potential discrepancies in the depth estimates [21]. One can
see that the general pattern variation was stable and could be located up to approximately
10 m in depth. However, a chlorophyll concentration of 3.5 mg/m3 was considered to
indicate a low (not eutrophic) water body; hence, its impact on SDB estimates was assumed
to be minimal and was neglected in the investigation process. Additionally, the summer
variations in Chrissi Island dominated compared to the Chania Gulf, where chlorophyll is
mainly sourced from shallow-water flora. Photosynthesis becomes more active as the days
get longer and the weather gets warmer.
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4.3. SDB Model

The linear method demonstrated outstanding performance in spring and summer,
utilizing the green band, while the band ratio and IOPLM methods showed lower accuracy
in the Chania Gulf results, as shown in Figure 6a. Processing in spring was carried
out after C2RCC’s atmospheric correction, due to the poor performance of Acolite DSF,
which produced dark pixels or zero radiance returns. However, Acolite DSF was used for
atmospheric corrections in autumn. All methods were noted to underestimate the depth
values in deeper areas.
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In summer and autumn, the coastal blue-to-green band ratio was dominant, while
spring favored green-blue and blue-green combinations. In 2020, all methods performed
exceptionally well in winter and summer, but the accuracy declined significantly (by nearly
50%) in autumn, resulting in depth underestimations in deeper regions. Coastal blue-green
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ratios dominated in winter and summer, whereas blue-green combinations were prevalent
in autumn. By 2022, the linear method maintained superior performance in winter and
summer, with winter calculations employing blue and green bands. The other methods
performed consistently across all seasons, using coastal blue-green ratios in winter and
autumn, and green-blue or blue-green ratios during summer.

For Chrissi Island, the linear method demonstrates consistent performance throughout
the year, relying solely on the green band, with its winter predictions being the most accu-
rate. In contrast, the band ratio and IOPLM methods perform well in spring and summer
but degrade in autumn. In 2020, both methods yielded commendable results in winter
and spring but underestimated depths beyond 20 m during spring and showed reduced
efficacy in autumn, as shown in Figure 6b. The summer outputs from the C2RCC processor
highlighted the influence of sunglint on the satellite imagery over Chrissi Island. Across all
seasons, the linear method excelled in spring, while the IOPLM method performed best in
autumn when combining blue, coastal blue, and green bands. However, the results were
inconsistent across different years and seasons.

By 2022, the linear method maintained a stable performance, leveraging the green
band, while the band ratio and IOPLM methods showed strong results throughout the year,
with minor declines in autumn. The IOPLM method primarily used the coastal blue and
green band combination, whereas the band ratio method employed blue-green ratios for
winter and autumn and green-blue ratios for summer. A mild underestimation of depths
was observed with the band ratio method in winter and summer, as shown in Figure 6b,
with all methods estimating depths at around 24 m in autumn.

The results indicate that the band ratio and IOPLM methods performed effectively
across all seasons, while the linear method delivered consistent but less accurate estimates.
Furthermore, IOPLM predicted better depth estimates in almost the entire study period.
Figure 6 represents the average RMSE metrics for every year and every method to provide
a more comprehensive view of their performance. It is noticeable that the linear method
delivered less accurate estimates but was consistent with the mean RMSE of 1.5 m. The
other two methods were also stable over the study period, close to the mean RMSE of 1.0 m,
showing slightly better results with the IOPLM method.

In this study, the MAPE was determined by utilizing the best results over each year
among the three methods for both study sites. The core aim of this investigation was to
evaluate the two water bodies’ unique characteristics and the effectiveness of the SDB
methods, under the premise that using the same passive satellite sensor with identical
filtering options would yield imagery with consistent quality attributes. Figure 7 represents
every method’s calculated mean MAPE value for both study areas.
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Furthermore, the spatiotemporal variations in the SDB estimates of every tested
method were structured in alignment with a season-centric approach. They were also
divided into two parts: the Chania Gulf (Figure 8) and Chrissi Island (Figure 9). The data
encompassed depth profile graphs across the three SDB methodologies, bathymetry maps,
and an investigation of the geolocation accuracy of the satellite products.
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The variability in the optical milieu of Chania Gulf posed challenges for satellite-
derived bathymetry in specific seasons, most notably when influenced by local river runoff.
Despite these challenges, the general transparency of the water remained evident. The linear
method displayed remarkable performance in the Chania Gulf compared to Chrissi Island.
The band ratio transformation likewise showed exceptional and consistent capabilities for
feature mapping across all seasons, albeit with minor fluctuations during instances with
elevated turbidity. The IOPLM method was similarly proficient in capturing bathymetric
variations in the Gulf, yielding dependable outcomes. Nonetheless, the method displayed
heightened sensitivity to changes in IOPs during reduced water clarity, whether caused by
river runoff or wind-induced shallow-water mixing.

The maximum depth estimations were slightly lower across all methods in deeper
areas, particularly during late summer and autumn. The western part of the Gulf, which
primarily comprises a sandy seabed, was mapped more accurately than the eastern half,
which is dominated by rocky outcrops. This disparity could be due to the difference
in bottom albedo, with sandy constituents reflecting more light than the darker, less
reflective rocky areas. In addition, the gradual shift from shallow to deep waters in the
Gulf contributed to better performance, particularly for the linear method. The maximum
reliable depth estimation was less than that of Chrissi Island, at close to 21 m.

5. Discussions
The multispectral image’s coastal blue or blue with green band combinations showed

a closer relationship with depth changes and provided more accurate information. It
can be seen that the linear method tends to overestimate depths, even during its optimal
performance period. This was evident in the western, shallow part of the island, where
the depth variations between 7 m and 10 m were not adequately derived or better than
estimated. Similar behavior was recorded for the southern rocky seabed, where the linear
method tends to produce a misinterpretation of depths. The other two methods that count
the actual band responses described the bathymetry variations more effectively.

In the areas around Chrissi Island featuring steeper depth gradients, the precision of
satellite-derived depth estimates showed a decline, as indicated in the bathymetry plot. This
reduction in accuracy was particularly noticeable during summer and autumn, especially
for depths exceeding 20 m. The impact was most significant in the linear method and band
ratio transformation. Factors like shadowing effects and variations in water surface optical
properties contributed to less accurate estimates. However, the IOPLM method, designed
to account for any inherent optical properties directly, was more successful in mitigating
these challenges.

Considering the SDB methods’ performance, a possible key factor of the inaccurate
overestimations made with midsummer–early autumn products was a temperature gradi-
ent between the near surface (0.5 m in depth) and the bottom (25.2 m in depth) of approxi-
mately 5.2 ◦C (differences obtained from the Copernicus Marine Service (CMEMS)) [41].
The influence of the temperature gradient, as shown in Ref. [42], indicates that when the
temperature gradient exceeds 4 ◦C, the resulting image exhibits greater divergence from the
original image at the initial temperature. Hence, the distortion caused by the temperature
gradient could affect the light path and the backscattering strength and geometry. Addi-
tionally, the IOP and bathymetry estimates correlate with each other, as diffuse attenuation
increases; for example, in shallow waters, satellite-derived depth estimates tend to be less
accurate. The multispectral image’s coastal blue or blue with green band combinations
showed a closer relationship to depth changes and provided more accurate information.
Figure 10 illustrates a set of samples gathered in the island’s northern part (summer 2020),
in waters ranging from very shallow to deep, to investigate the remote sensing response
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with depth changes. The remote sensing reflectance (Rrs) value showed a peak response
in the green band (560 nm) regarding very shallow waters, followed by the blue band
(490 nm) and the coastal blue (443 nm) band with lower values. In contrast, in shallow and
intermediate waters, the transition between the band’s response was smooth, with the blue
band (490 nm) maintaining the highest values, closely followed by bands of green (560 nm)
and lower coastal blue (443 nm). As the depth increased, the responses of the coastal blue
and blue bands converged, while the green band’s response was consistently lower, and, in
deep areas over 21 m, the response of coastal blue dominates against the others; however,
this behavior seemed erroneous.
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5.1. Assessment of Model Accuracy

The most favorable result was obtained using the IOPLM method during autumn
2021, as illustrated in Figure 11. An RMSE value of 0.54 m was achieved compared to the
field measurements, which serve as the reference standard. Additionally, boundaries for
CATZOC B, adjusted to a depth of 24 m under IHO’s guidelines, were incorporated into the
plot to validate the bathymetric estimates. The total number of individual depth estimates
laid within these boundaries was 20 out of 21 (95.24%), delineating the high accuracy of the
SDB outcome, even at depths of 24 m.
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Figure 11. Error classification of the SDB model based on CATZOC: (a) the Chania Gulf and
(b) Chrissi Island.

In assessing bathymetry mapping methods for Chrissi Island, the linear technique
underperformed compared to ratio-based methods, as seen in Figure 12. It overestimated
depths in the western shallow and southern rocky areas, with RMSE values ranging from
1.18 m to 1.90 m. In contrast, the band ratio and IOPLM methods achieved superior
results, with the best RMSE values of 0.76 m and 0.54 m, and worst values of 1.68 m and
1.65 m, respectively. The linear method’s overestimation was likely due to rocky outcrops
absorbing more light, affecting the depth readings, particularly in the northeastern region
(6 to 12 m in depth). The band ratio and IOPLM methods proved more robust, with IOPLM
being the most suitable for the area, especially when using high-quality Sentinel-2 MSI
imagery during winter and spring, which was processed with the Acolite DSF atmospheric
correction algorithm.
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Figure 12. Multi-bathymetric plot for (a) Chania Gulf and (b) Chrissi Island: the first row (1) shows the
linear method’s best performance on the left and its worst on the right. The second row (2) presents
the band ratio method’s best performance on the left and its worst on the right. The third row (3)
displays the IOPLM method’s best performance on the left and its worst on the right.
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In the Chania Gulf, performance varied significantly among the methods, mainly
due to late spring turbidity changes from local river runoff as seen in Figure 12a. The
IOPLM method was particularly sensitive to these variations. The linear method excelled in
summer 2021, with an RMSE of 0.68 m, but struggled in autumn 2019, recording an RMSE
of 2.07 m, indicating major overestimation. The band ratio technique also performed well,
achieving an RMSE of 0.64 m in summer 2018, but its performance declined in summer
2019 (2.12 m RMSE), primarily underestimating depths in the eastern area. IOPLM’s best
performance was in spring 2021 (0.86 m RMSE), while its least effective result was in
spring 2019 (2.40 m RMSE), when it showed significant underestimation, particularly in
the eastern Gulf.

The linear method’s poor performance was attributed to its reliance on a single spectral
band, limiting its adaptability to changing water properties. In contrast, the ratio-based
methods, particularly IOPLM, were sensitive to variations, notably in 2019, capturing depth
estimations that were influenced by river inflows. Given the geographic conditions and the
quality of Sentinel-2 MSI imagery, the band ratio technique emerged as the most versatile
method, especially in late summer or early autumn. While the Acolite DSF algorithm was
effective, the C2RCC processor also performed well in summer, particularly under severe
sunglint conditions, delivering notable results for SDB estimates.

5.2. Kalman Filter (KF)

Data assimilation methods, such as Kalman filtering, effectively extract information
from noisy observations. When combined with a physics-based model, this approach
provides accurate bathymetry estimates and an uncertainty assessment [43]. Applying the
Kalman filter significantly reduces estimation errors and results in smoother data outputs.
Figure 13 illustrates the results after applying the filter to the Chrissi Island study area using
the linear and IOPLM methods. The filter was applied to the linear SDB estimates, which
showed a more significant depth discrepancy to the field data, and the IOPLM method,
which provided more precise depth estimates. The Kalman filter smoothed the best SDB
estimates and improved accuracy at greater distances. However, for linear estimates, only
51% of the data samples fell within the TVU range of the IHO special order, in contrast
with the IOPLM data, wherein 100% of samples fell within the TVU range.

The performance of the SDB estimation methods showed significant improvement
after applying an update, as indicated in Table 2. Initially, the linear method exhibited high
error rates due to using lower-quality sample data, with an RMSE of 1.81, MAE of 1.48,
and MedAE of 1.16. After the update, these errors were substantially reduced: the RMSE
decreased to 0.47, MAE to 0.37, and MedAE to 0.30, reflecting a marked enhancement in
accuracy. In contrast, the IOPLM method started with much lower error rates—an RMSE of
0.54, MAE of 0.40, and MedAE of 0.27—and the update further enhanced its performance,
reducing the RMSE to 0.05, MAE to 0.04, and MedAE to 0.02.

Additionally, applying the KF across all seasonal periods demonstrated a consistent
improvement in RMSE for both study areas, as seen in Figure 14, with an average reduction
of approximately 50 cm and a decrease in uncertainty by about 30%. An exception was
observed in the 2019 dataset for the Chania Gulf, where the initial estimates showed the
largest positional discrepancies. Notably, the process noise was modeled to allow the
prediction covariance to increase proportionally with depth, with an average increment
of around 20 cm. When merging all seasonal SDB estimates to generate an average depth
estimate across periods, the Chania Gulf achieved the best RMSE improvements. The
initial RMSE of 55 cm was reduced to 14 cm after updating, while the updated uncertainty
decreased to 47 cm from the initial 105 cm. A similar trend is observed in Chrissi Island,
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where the initial RMSE of 63 cm improved to 18 cm after updating, and the uncertainty
dropped from 102 cm to 51 cm.

It is important to note that the filter was applied exclusively to SDB estimates that
corresponded directly to the field measurement data (i.e., those with matching spatial
coordinates and depth information). Further investigation is necessary when working with
the entire area generated by SDB and time series data, especially concerning error prediction
and when modeling and refining the SDB algorithms. Nevertheless, the method’s ability to
dynamically adapt is evident.
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Table 2. Metrics response of the linear method before and after KF improvement.

SDB Method Metric Value (m)

Linear

RMSE 1.81
RMSE updated 0.47

MAE 1.48
MAE updated 0.37

MedAE 1.16
MedAE updated 0.30

IOPLM

RMSE 0.54
RMSE updated 0.05

MAE 0.40
MAE updated 0.04

MedAE 0.27
MedAE updated 0.02
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6. Conclusions
This research extensively explored the complexities and nuances of satellite-derived

bathymetry (SDB) in the Eastern Mediterranean. This study’s multifaceted approach, which
considers the region’s unique hydrodynamic characteristics, spatiotemporal variations, and
variations in optical properties, significantly contributes to the knowledge in this specific
field. This study underscored the critical role that spatiotemporal variations play in the
accuracy of SDB estimates. The significance of these variations cannot be overstated; they
serve as a foundation for developing new methodologies and refining the existing ones to
improve data reliability in hydro-spatial applications.

One of the most significant findings of this research was the strong correlation between
water surface optical properties and SDB estimates. Explicitly identifying this correlation
could enable researchers and practitioners to develop more accurate models for bathymetric
estimation. Moreover, the need for concurrent data on optical properties and bathymetry
has been substantiated, offering a more holistic approach to underwater mapping and
analysis. The in-depth comparative analysis of various SDB methods provides actionable
insights into their performance under different conditions over approximately five years.
This study has identified specific methods that offer higher reliability in correlation with the
optical properties of water in the Eastern Mediterranean. This is critical for decision-makers
who must choose the most appropriate method for their specific needs, thereby enhancing
the quality and reliability of hydro-spatial data.

By combining different SDB methods into merged products, this study achieved
unprecedented accuracy and reliability in its bathymetric estimates. This multi-method
approach represents a significant advancement in the field, suggesting a new standard
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for future research and applications. It shows that the robustness and reliability of these
merged products offer tangible benefits for applications that require a high degree of
precision, such as navigation safety and marine conservation efforts. The study’s findings
on the influence of seasonal and weather patterns on SDB estimates provide valuable
insights for future research and applications. These findings have practical implications,
as they assist researchers and practitioners in planning data collection schedules to avoid
times when turbidity or other factors may affect data accuracy. Thus, understanding these
patterns can lead to more strategic data collection and better outcomes.

While the primary focus of the research was to investigate known variables, unex-
pected findings also emerged. These anomalies in SDB method performance under unique
conditions offer opportunities for further investigation. Unpacking these unexpected find-
ings could pave the way for new research directions, leading to a deeper understanding of
SDB methodologies and their limitations. While all three methods offer valuable insights
into Chrissi Island’s bathymetry models, their performance varies with the seasons and the
corresponding optical property fluctuations. The IOPLM method, given its sophisticated
approach, consistently emerges as the most reliable method across both regions. Under-
standing the interplay between these methods, optical properties, and depth profiles is
crucial for informed marine and coastal management decision-making. Correlating the
variations in optical properties with the method statistics reveals that seasons with higher
turbidity or significant suspended matter can hinder the accuracy of satellite-derived
bathymetry, especially with the linear method. Such particles scatter light differently,
affecting the satellite’s ability to discern depth based on reflectance alone.

7. Future Research
While SDB technology has advanced markedly, challenges still exist around fluid dy-

namics, ocean color, and clarity, which impact SDB estimation. Consequently, over the past
two years, many researchers have investigated the feasibility of deriving bathymetric infor-
mation from coastal regions solely through satellite-based spatial data [1,2,9,29,31,44,45].
Launched in September 2018, the Ice, Cloud, and Elevation Satellite-2 (ICESat-2) features
the advanced topographic laser altimeter system (ATLAS), a photon-counting LiDAR sys-
tem operating at a wavelength of 532 nm. Initial data from ICESat-2 have underscored its
capability to provide global bathymetric LiDAR measurements in shallow coastal waters
with depths of less than 40 m, which can be fused with multispectral imagery to generate
SDB estimates. Furthermore, advancements in machine learning (ML) algorithms and
artificial intelligence (AI) could potentially automate processing further and reduce the
limitations imposed by user–software interaction and data volume [2,9,46].

In summary, satellite-derived bathymetry has made tremendous advances, enabled
by improved sensors and algorithms. While challenges remain, continued technological
improvements indicate its increasing role in coastal mapping applications as a supple-
mental survey method, offering cost-effective seabed data for regions not yet covered by
conventional acoustic or LiDAR sensors and generating more accurate data, given the
right environmental conditions. Its cost-efficiency, spatial coverage, and timeliness make
it a strong choice for various hydro-spatial tasks. These include scouting remote areas,
mapping extremely shallow zones that pose navigational risks, and routinely tracking
changes in shallow sea floors [44].
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