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Evaluation of the Modular Design Structure for the

UWB Single Anchor Localization System SALOS

Sven Ole Schmidt and Horst Hellbrück

Technische Hochschule Luebeck - University of Applied Sciences, Germany

Department of Electrical Engineering and Computer Science

Email: {sven.ole.schmidt, horst.hellbrück}@th-luebeck.de

Abstract—In the realm of indoor localization, one challenge is
accurate positioning with minimal infrastructure. The motivation
is a cost-effective and scalable solution for various applications.
In this work, we introduce the modular design structure for our
ultra-wideband single anchor localization system called SALOS.
We demonstrate the structure’s efficacy by evaluating localization
lag, and position update interval, With maximum 561ms total
localization lag and a position update rate of less than 500ms in
98% of measurements, we show the ability for live-localization.

Index Terms—Single Anchor Localization, UWB, DW1000,
Modularity, localization lag, Position Update Interval.

I. INTRODUCTION

Indoor localization research has explored various method-

ologies, including optical, acoustic, and radio frequency (RF)

techniques [1], [2]. RF-based solutions, while effective, often

necessitate expensive setups [3]. Recent trends focus on cost

reduction within a wireless network using a single anchor

sensor node, simplifying the infrastructure drastically [4].

In our previous work [5], we introduce SALOS, an innova-

tive ultra-wideband (UWB) single-anchor indoor localization

system. SALOS contrasts with traditional systems by negating

the need for extensive hardware nor external information during

operation, instead utilizing sophisticated signal processing tech-

niques. It operates by comparing real-time UWB measurements

against a pre-modeled set of signals, generated artificially only

from the environment’s floor plan. In the given evaluation

scenario, correct localization results for more than 73% of

all position estimates. However, a capable positioning system

does not only have to offer high position accuracy. For live

operation, the total processing time from measurement to

estimate, namely the localization lag, and the update interval

of these estimates are vital for real-time localization and the

system’s responsiveness in dynamic environments.

In this work, we re-designed the system’s architecture

modularly to ensure scalability and adaptability due to suitable

implementation and parallel computation. We evaluate the

design in terms of localization lag and overall position update

interval.

The contributions are as follows:

• We introduce the modular structure based on the concept

of our single anchor localization system called SALOS.

• We evaluate the localization lag and the position update

interval for this structure.

• We compare the position update interval with a sequential

non-modular implementation.

II. MODULAR STRUCTURE OF THE UWB SINGLE ANCHOR

LOCALIZATION APPROACH

The objective of UWB localization is to deduce the position

of a tag sensor node by analyzing the signal transmission

between the tag and an anchor sensor node. The anchor’s

received signal y(t) constitutes a superposition of all the

transmitted UWB pulses, encompassing both the direct path and

the paths involving reflections off various surfaces such as walls

or furniture. The received signal is given by the convolution of

the transmitted signal x(t) with the channel impulse response

h(t), as shown below:

y(t) = x(t) ∗ h(t),

where the channel impulse response h(t) encapsulates the

effects of multipath propagation on the signal echo when

passing the distinct paths.

The multipath propagation, when combined with the environ-

mental floor map and the anchor position, furnishes sufficient

data to geometrically deduce the tag’s position.

A. General Concept of the Single Anchor Localization System

To derive a suitable modular structure for SALOS, a closer

look at the system is inevitable to avoid miss-structuring leading

to high position update intervals. Therefore, we briefly explain

the methodology underpinning this concept. Note, that a more

detailed description is covered in [5].

Initialization: The SALOS system requires a singular

external input: a floor plan covering reflective surfaces. Based

on the floor plan, a set of candidate points (CP) is established,

representing the prospective tag coordinates. In [6], we deter-

mine the optimal anchor position results with maximal diversity

in the modeled multipath propagation between itself and all

CPs individually. Subsequently, this multipath propagation is

integrated for generation of multiple modeled received signals

( {yCP,n[kTS ]} per CP, combined in one set.

Localization System: We employ Qorvo’s UWB RF-Chip

DW1000. Even though, the firmware offers easy received signal

storing for communication between anchor and tag, for efficient

storage the DW1000 performs additional processing on the
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A disadvantage of this standard weight function is, that the

influence of an object is solely based on the length of the direct

signal path, which is not representing reality well. Therefore, in

this paper, we investigate and compare other weight functions

that were proposed in the past and shown promising results,

although they have not been tested for MA RTI. In [4], the

authors proposed a distance-based weight function that takes

into account, that objects in the middle of the direct path have

a higher alteration of the radio signal than at the edges of an

ellipse between the transmitter and the receiver [4]:

wij =

{

e−dij,LOS if dij(1) + dij(2) < di + γRTI

0 otherwise
, (3)

where dij,LOS is the distance from the pixel to the direct path.

In [5], the authors propose a second distance-based weight

function that considers the position of the object. An object

close to the radio nodes creates a bigger effect on the MPC.

wij =

{

e−min(dij(1),dij(2)) if dij(1) + dij(2) < di + γRTI

0 otherwise
,

(4)

Another weight model was proposed in [6]. It differentiates,

whether the object is present in the direct path and, therefore

causes non-line-of-sight conditions or not. We will call this

weight function communication-link.

wij =







1/di(k1 + max (dij(1), dij(2))

if dij(1) + dij(2) < di + γRTI, dij(1) + dij(2) ̸= di

1/di(k2 + max (dij(1), dij(2))

if dij(1) + dij(2) < di + γRTI, dij(1) + dij(2) = di

0 otherwise
(5)

where k2 = k1 + β, with k1 empirically determined with 2

and β empirically determined with 0.5 [6].

We solve (1), by utilizing ℓ2-minimization:

v̂LS = arg min
︸ ︷︷ ︸

ṽ∈CJ

||Wṽ − z||22, (6)

this leads to the well-known solution [3]:

v̂LS = W
†
z, (7)

where W
† is the Moore-Penrose pseudo-inverse of W. Each

weight wij for each signal path i and each pixel j is calculated

according to the respective weight function (2), (3), (4), (5).

As device-free localization is an ill-posed inverse problem,

the solution requires regularization of the pseudo inverses

using the covariance matrix Cv of v Cv weighted by the

regularization parameter σ−2
J [3].

Cv[k, l] = σ2
ve

−dkl/δc . (8)

dkl is the distance from pixel k to l, δc is a distance

constant and σ2
v is the pixel variance of the estimation error.

Exponential covariance are a common approximation for a

spatial attenuation modeled as a Poisson process [3].

If the covariance matrix is included in the calculation of the

pseudo inverses, (7) becomes [3]:

v̂ =
(
W

T
W +C

−1
v σ2

J

)−1
W

T
z (9)

We define the input vector zi = z[i] for the i-th MPC on

the (echo) signal path as follows:

zi = |Pi,obs − Pi,idle|, (10)

Here, Pi,· is the signal power of the observed MPC and the

MPC measured in idle mode at the time τi. The stronger the

object influences the amplitude of the MPC on the (echo) signal

path compared to the idle path, the higher the influence for

the MA RTI system.

After calculation of the heatmap v̂, we determine the position

of the object r̂O by searching for the maximum value in v̂:

r̂O = Pos
(
arg maxj∈{0...J−1}v̂j

)
, where the operator Pos(j)

returns the position vector of the jth pixel.

In addition to the previously described weight functions,

we investigate a combined weight function: For this, we

first identify the maximum value, denoted as vj , across

all measurements and weight functions. Subsequently, we

normalize the heatmaps, represented by v̂, to a range between

0 and 1. During each measurement, we evaluate the normalized

peak values across the heatmaps. The highest of these values,

along with its associated position vector r̂O, is then selected

to serve as the estimated position.

III. IMPLEMENTATION

For evaluation, we used the test setup and utilized the dataset

from [2]. Measurements were conducted in a standard office

environment measuring approximately 6m× 7m. We chose

53 reference positions throughout the room, maintaining an

approximate distance of 0.5m between each point. The experi-

mental setup included four radio nodes equipped with Qorvo’s

DWM1000 ultra-wideband (UWB) radio modules. These nodes

engaged in message exchanges over IEEE 802.15.4a channel 3,

operating at a center frequency of 4.4928 GHz and a bandwidth

of 499.2 MHz. Upon receiving a message, each node captured

the UWB channel impulse response (CIR) together with

the required meta data to process the CIR and extract the

magnitudes of each MPC [2]. The radio nodes were strategically

positioned at a height of 1.418 m, equating to half the room’s

height, to optimize the spatial sampling of the radio signals.

To compare the different weight functions, we used the same

parameters: The pixel width of the target area is 0.1m [3];

the width of the weighting ellipse γRTI = 0.01 m [3]; the

pixel variance σ2
v = 0.5 dB2 [7]; the regularization parameter

σ2
J = 0.5 dB2; the pixel correlation constant δc = 0.5m [3].

IV. EVALUATION

Figure 2 presents exemplary outcomes of the study. The

white cross marks the actual position of a person, denoted by

r̂O, within the designated area, while the red cross signifies
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On Options for the Design of Radio

Frequency-based Positioning Systems

Marco Gunia∗ and Frank Ellinger∗†

∗Chair for Circuit Design and Network Theory (CCN) and
†Centre for Tactile Internet with Human-in-the-Loop (CeTI)
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Abstract—This paper examines various alternatives for the
design of radio frequency-based positioning systems. In addition
to the potential signals used, such settings differ in the methods
employed to derive the characteristic parameter like distance or
incident angle. Multiple such measurements are combined into
a raw position by means of a selected positioning algorithm.
Due to measurement errors, these position estimates are subject
to deviations which are eliminated via a chosen tracking filter.
Finally, the results of several of these systems can be merged
at different levels. In addition to highlighting all these options,
the paper also analyses the advantages and disadvantages of the
individual alternatives and aims to provide designers of future
systems with assistance in specification and implementation.

Keywords—Positioning, Localization, Design, Choices, Op-
tions, Alternatives, Distance, Range, Incident angle, Received
signal strength, Positioning algorithms, Least squares, Maximum-
likelihood, Iterative, Kalman filter, Particle filter, Data level fusion,
System level fusion

I. INTRODUCTION

Designers are often overwhelmed by the different alterna-
tives and their impact on performance when analyzing and im-
plementing Radio Frequency (RF) -based positioning systems.
This is usually accompanied by a lack of knowledge of the
pros and cons of individual approaches, with cost and accuracy
often being the most important Figure of Merits (FoM). This
paper attempts a rough classification of the effects of choices at
different level in the design process on the overall performance.
First, various underlying signals are presented. Building on
this, the paper evaluates several methods for extracting the two
parameters range or incident angle from the signal characteris-
tics. By using multiple independent parameter measurements,
it is possible to determine the position, whereby a designer can
choose between simple geometric and complex non-geometric
variants. The resulting estimate is not the true value due to
the underlying error-prone parameter measurement process.
Tracking filters with different properties are applied to smooth
successive estimates and reduce these observation errors. If
multiple systems are available at the same time, the data can
be fused with the goal of improving the final result. In all of the
aforementioned aspects, the paper examines possible options
and presents their advantages and disadvantages.

II. DESIGN CHOICES

In order to consider the following explanations in a
common context, we assume that a Mobile Station (MS) is
localized via stationary Base Stations (BS) of known position.

Table I contains a summary of all variations described below,
together with their pros and cons.

A. Signals

Positioning systems differ in terms of whether the underly-
ing hardware and associated RF signals are specially tailored
for localization or whether existing communication hardware
is adapted [1]. Typical representatives of the first category are
radar systems, e.g. Frequency Modulated Continuous Wave
(FMCW) or Ultra-WideBand (UWB) [2]. Furthermore, these
include Global Navigation Satellite Systems (GNSS) like the
Global Positioning System (GPS). The second category com-
prises the use of Wireless Local Area Networks (WLAN),
Bluetooth and ZigBee, where usually Commercial Off The
Shelf (COTS) components are available. Typically, proprietary
positioning systems are more expensive to design, but often
achieve significantly better accuracy [1]. In addition, Radio
Frequency IDentification (RFID) is also sometimes employed
to determine the position. Due to its typically very short range,
the known position of the base station is used as an estimate
[3]. Last but not least, the radio cells for mobile communica-
tion can be evaluated to obtain a rough approximation [3]. A
classification of typical signal protocols, divided into whether
they are mainly applied indoor or outdoor, is shown in Fig. 1.

Radio standards in the field of localization

Indoor positioning

WLAN /
ZigBee /
Bluetooth

(RSS)

Radar
(FMCW,
UWB)

(ToA, TDoA)

RFID
(Tag ID)

Outdoor positioning

GNSS
(GPS,

Galileo)
(ToA)

Cellular
(2G, 3G,
4G, 5G)
(Cell ID)

WLAN
(RSS)

Fig. 1. Classification with regard to the operation of different radio standards

B. Method

Irrespective of the signal protocols, radio frequency signals
differ on the basis of various characteristics. Firstly, the mea-
surement of the signal propagation time, abbreviated as Time
of Arrival (ToA), between BS and MS is conceivable. This
requires synchronization of the clocks of all stations [3]. If
only the synchronization of all BS is possible, then the use of
the differences in signal propagation time, abbreviated as Time
Difference of Arrival (TDoA), is an option [4]. In addition
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to synchronization, both variants place high demands on the
hardware, as the very short signal propagation times must be
measured. This requires fast clocked counters [5]. One way
of limiting hardware effort is to draw indirect conclusions
from the Received Signal Strength (RSS). Various channel
models proposed in the literature describe the dependence of
that characteristic on the distance. Well known is the log-
normal model [6]. All of the aforementioned concepts allow
conclusions to be drawn about the distance parameter.

Alternatively, it is possible to derive the incident angle, e.g.
by determining the phase shift of a signal when it is received
at multiple antennas. Approaches employing that parameter
are denoted by Angle of Arrival (AoA). Advantageous is
that in general a two-dimensional position can already be
inferred from the intersection of the incident angles of signals
emerging from two BS, whereas at least three observations
are required for distance measurements [1]. The disadvantage
is that, depending on the design, this requires beam steering
or alternatively the use of multiple antennas [7]. In practice,
computationally complex algorithms for spectrum analysis
such as MuSiC ([8]) or ESPRIT ([9]) are often required.

C. Positioning

Regardless if applying ranges or incident angles, a number
of different algorithms are proposed in the literature, which
infer the position by taking into account parameter measure-
ments between multiple BS and the MS. A detailed description
is found in [1]. The approaches can be roughly divided into
geometric and non-geometric concepts. In the first case, exact
measured values are not required. Instead, the estimation is
largely based on the arrangement of the BS. Such an example
employing ranges is Proximity [10], where the estimate is the
BS location for which the measured distance is the smallest.

In contrast, non-geometric methods require exact parameter
measurements. The direct calculation via the system equations
is practically not expedient. Because on the one hand, the
measured values are subject to errors, which means that no
unique solution can be found. On the other hand, redundant
measurements (e.g. for additional existing BS) cannot be
included. Instead, practical methods use either the solution of
a least square matrix equation system [11] or the minimization
of an error function. Due to the direct formulation of this error,
more accurate methods can be expected for the second case [6].
These include Iterative ([11]) or Maximum Likelihood ([12]).
As example, the following equation shows the error function

ε̃ =
N
∑

n=1

[

√

(xn − x)2 + (yn − y)2 − d̃n↔•

]2

(1)

for Iterative assuming distance measurements d̃n↔• to the N
BS, located at position (xn, yn). For Maximum Likelihood,
where the inverse of the statistical distribution density function
serves as a formula for the error, the underlying measurement
error distribution is required. If known, optimal results can be
achieved. A disadvantage of both is that error minimisation is
carried out continuously by gradient descent until the error is
below a certain threshold [11]. On the one hand, this requires
high computing power. On the other hand, the solution can be
trapped in local minima and not in the global one [6].

A completely alternative concept not requiring any BS is
operating an Inertial Navigation System (INS). Here, accelera-
tion sensors and gyroscopes are utilized to deduce the change
in the current position in relation to a starting point [13].

It is only mentioned in passing that, based on the inclusion
in the system equations, positioning is also conceivable directly
by means of tracking filters, which are described next.

D. Tracking filters

The goal of tracking filters is to smooth the measured
values by eliminating the unknown observation error. A simple
option is a moving average filter, in which the sliding mean
value of the last N measurements xk−N+1, xk−N+2, · · · , xk

is used as an estimate at time step k according to [14]

xk =
xk−N+1 + xk−N+2 + · · ·+ xk

N

= xk−1 +
xk − xk−N

N

(2)

where the recursive expression in the last line follows from
introducing the moving average value xk−1 from the last time
step into the first formula [14]. The advantage is the low
calculation effort. In contrast, there is the disadvantage of
having the observations of all previous N time steps being
weighted equally, even though the true output has evolved.

One way to achieve a stronger weighting on the last
measurements is by means of a low-pass filter. It reads [14]

xk = αxk−1 + (1− α) xk with α ∈ [0, 1] (3)

However, the problem here is the fixed parameter α, which
indicates the ratio of the new value to the current estimate.

Kalman Filters (KF), on the other hand, represent an
extension in that this parameter, which is now referred to as
Kalman gain, is selected variably depending on the statistical
values. Hereby, the current measured variable is compared
with the respective value to be expected from the system.
Mathematically, KF are optimal in terms of calculating the
minimum variance estimate, if the observed system is linear,
the expected value and associated covariance of the initial
value, being a random variable, are known and the observation
noise and process noise1 are Gaussian random processes
with symmetrical positive semi-definite covariance matrices.
In addition, the initial state, process noise and observation
noise must be mutually uncorrelated [15], [16]. In practice,
not all conditions are typically fulfilled in this respect, so that
the estimated value then deviates from the optimum result.
Compared to the previous approach, the calculation effort is
higher due to the matrix operations involved.

In the case of non-linearity of the observed system, lin-
earisation of the system in each time step is conceivable
before applying the KF. However, this approach, known as
the Extended Kalman Filter (EKF), only offers the optimal
solution with regard to the linearised system and not the
original system. A method that dispenses with linearisation
is the Unscented Kalman Filter (UKF), in which the statistical
variables are reconstructed taking the functional values of the
non-linear functions for a few selected points [14].

1Process noise is usually not present in positioning systems.
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The consideration of few selected points serves to avoid a
complex Monte Carlo simulation. Nevertheless, such a concept
is the Particle Filter (PF). It is based on initial generating
multiple particles, which represent random samples in the
state space. Subsequently, their propagation is simulated using
the system equations, whereby less probable elements are
discarded and the remaining ones are pursued further [17].

E. Fusion

In addition to individual systems, hybrid systems are also
proposed in the literature. These differ in terms of whether a
single system is duplicated (e.g. installation of the same system
in several rooms) or whether hybrid hardware is applied.
Duplication saves design costs, but with true hybrid hardware
there is the possibility that the weaknesses of one system are
compensated for by the strengths of the other. Irrespective of
this, it is possible to use one system at a time or to employ
them simultaneously. In either case, the systems generate
measurement data, which can be combined into a final position
estimate either at data level or system level. In the former case,
the parameter measurements (e.g. the determined distances or
angles of incidence) are combined in a large system equation.
In the latter case, however, the individual systems determine
position estimates independently, which are then merged into
a final result by means of weighting or filters, e.g. by taking
into account the covariances of the measurements [1]. The
disadvantage for the system-level fusion is that a position es-
timate must be available for each individual system. However,
if there are insufficient measurements for a system to draw
conclusions about a unique position, e.g. if there are too few
distance measurements, then it may be possible to estimate
the position using fusion at data level, taking into account the
alternative parameter measurements.

III. CONCLUSION AND FURTHER WORK

The paper analysed several alternatives for the design
of positioning systems, from the underlying RF signal to
the extracted parameters, the positioning approach, the filter
algorithms and fusing methods. The pros and cons of the
choices, which relate to FOM like accuracy and costs, were
outlined. Together, this offers future designers the opportunity
to select promising options at an early stage and thus support
both the specification and implementation of such systems.
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TABLE I. DESIGN OPTIONS FOR RF-BASED POSITIONING

Approach Advantage Disadvantage

Signals

Communication
•

•

COTS available.

Inexpensive.

• Configuration fixed

(e.g. low accuracy or range).

Proprietary
• Arbitrary configuration

(e.g. accuracy or range).

•

•

Extra hardware design.

Costly.

Method

ToA • High accuracy. • Sync. between BS and MS.

TDoA • Moderate accuracy. • Sync. between BS.

RSS • Inexpensive. • Low accuracy.

AoA
• Less BS necessary. •

•

High hardware efforts.

Computationally complex.

Positioning

Geometric
• Easy set-up. • Very low accuracy (depends on

BS arrangement).

Least squares
• Computationally moderate. • Indirect minimization

of error function.

Iterative
• Direct minimization

of error function.

• Computationally complex.

Maximum-

likelihood

• Optimal solution. •

•

Distribution density

function required.

Computationally complex.

Tracking filter

Moving average
• Computationally simple. • Equal weighting of

measurements.

Low-pass
•

•

Computationally simple.

Non-equal weighting.

• Fixed weighing

of last measurement.

KF
• Optimal solution. •

•

•

Only linear systems.

Only Gaussian noise.

Only mutually uncorrelated.
EKF • Non-linear system support. • Optimal solution not guaranteed.

UCF • Non-linear system support. • Optimal solution not guaranteed.

PF • Arbitrary conditions. • Computationally complex.

Fusion: Duplication vs hybrid hardware

Duplication • Low efforts. • No mutual supplementation.

Hybrid • Mutual supplementation. • High efforts.

Fusion: Data-level vs. system-level

Data-level
• Position calculation even if

data is not sufficient for

individual systems.

• No statistical weighting.

System-level
• Statistical weighting. • Position calculation even if

data is not sufficient for

individual systems.

[5] Z. Sahinoglu and S. Gezici, “Ranging in the ieee 802.15.4a standard,” in 2006

IEEE Annual Wireless and Microwave Technology Conf., Dec. 2006, pp. 1–5.

[6] P. Tarrio, A. M. Bernardos, and J. R. Casar, “Weighted least squares tech-

niques for improved received signal strength based localization,” Sensors 2011,

pp. 8569–8592, 2011.

[7] M. Gunia, A. Zinke, N. Joram, and F. Ellinger, “Analysis and design of a MuSiC-

based angle of arrival positioning system,” ACM Trans. Sen. Netw., Jan. 2023,

Gerade angenommen, ISSN: 1550-4859. [Online]. Available: https://doi.org/10.

1145/3577927.

[8] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE

Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, Mar.

1986, ISSN: 0018-926X.

[9] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational

invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 37, no. 7, pp. 984–995, Jul. 1989, ISSN: 0096-3518.

[10] N. Patwari and A. O. H. III, “Using proximity and quantized rss for sensor

localization in wireless networks,” Proc. 2nd ACM Int. Conf. Wireless Sensor

Networks and Applications (WSNA 03), pp. 20–29, 2003.

[11] P. Tarrio, A. M. Bernardos, and J. R. Casar, “An rss localization method

based on parametric channel models,” in 2007 Int. Conf. Sensor Technol. Appl.

(SENSORCOMM 2007), 2007, pp. 265–270.

[12] M. Laaraiedh, L. Yu, S. Avrillon, and B. Uguen, “Comparison of hybrid

localization schemes using rssi, toa, and tdoa,” in 17th Eur. Wireless 2011 -

Sustain. Wireless Technol., 2011, pp. 1–5.

[13] M. Gunia, Y. Wu, N. Joram, and F. Ellinger, “Building up an inertial navigation

system using standard mobile devices,” J. Elect. Eng., vol. 5, pp. 299–320, 2017.

[14] P. Kim and L. Huh, Kalman Filter for Beginners: with MATLAB Examples.

CreateSpace Independent Publishing Platform, 2011.

[15] K. Brammer and G. Siffling, Stochastische Grundlagen des Kalman-Bucy-Filters:

Wahrscheinlichtkeitsrechung und Zufallsprozesse, 3. verb. Aufl. Oldenbourg Wis-

senschaftsverlag, 1990.

[16] K. Brammer and G. Siffling, Kalman-Bucy-Filter: Deterministische Beobachtung

und stochastische Filterung, 4. verb. Aufl. de Gruyter, 1993.

[17] M. d. T. Peral, F. G. Bravo, and A. MartinhoVale, “State variables estimation

using particle filter: Experimental comparison with kalman filter,” in 2007 IEEE

International Symposium on Intelligent Signal Processing, 2007, pp. 1–6.

11



12



Indoor Localization Using

Commercially-off-the-Shelf-Available Gas Sensors

Marco Cimdins∗, Domenic Hampf∗, Sebastian Hauschild∗, and Horst Hellbrück∗
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Abstract—This paper presents the application of commercially-
off-the-shelf (COTS)-available gas sensors for monitoring indoor
air quality and proposes their integration into an electronic nose
system for indoor localization. The objective is to accurately
identify specific locations within various rooms of a building.
To achieve this, we employ a nearest neighbor algorithm for
fingerprinting. Our initial results are promising, demonstrating
the system’s ability to distinguish between corridors and distinct
rooms or laboratories. However, to advance towards a fully
operational prototype, further research is necessary. This includes
the development of more advanced signal processing techniques
and the extraction of detailed information, such as deciphering
the unique gas composition signatures of different rooms.

Index Terms—fingerprinting, indoor localization, gas sensor

I. INTRODUCTION AND RELATED WORK

Low-cost air quality sensors in buildings are commonly

deployed for monitoring of indoor environments [1]. Our

idea to is to build a mobile electronic nose, equipped with

commercially off-the-shelf (COTS)-available gas sensors for

indoor localization. Such sensors can help identify the type of

room, thus narrowing down the position within a building.

Previous studies explored the concept of a virtual nose for

person localization [2], as well as the detection and localization

of gas leaks [3]. Our research takes inspiration from these

works, particularly the use of aroma fingerprints for indoor

localization, as detailed by Müller et al. [4]. In their study,

a handheld chemical detector from Environics, utilizing ion

mobility spectrometry, was employed. The k-nearest neighbour

algorithm facilitated the classification of various locations, such

as offices, coffee rooms, open spaces, and corridors, based on

their distinct olfactory profiles.

In the paper, we deploy a COTS-available gas sensor

capable of detecting four distinct gases. We aim to determine

whether varying operational modes can yield sufficient data

to accurately localize a room. The potential applications of

this technology are vast, including its integration into indoor

localization systems to provide supplementary information that

could differentiate between floors or specific rooms.

Section II outlines the proposed localization algorithm,

while Section III details the hardware and measurement setup.

Section IV presents and discusses our preliminary findings.

Finally, Section V provides a summary and the implications

of our research.

II. LOCALIZATION ALGORITHM

In this paper, we propose to utilize the nearest neighbor

algorithm to perform fingerprinting for indoor localization [5].

Therefore, we define J positions within the target area, whereby

each position is described by its position index j = 1, ..., J .

Each position in the target area is described by its reference

feature vector rj,r, which contains the reference measurement

values at the j-th position.

To determine the position, the observation feature vector rj,o
is required. This is recorded with an observation measurement

at the j-th position. For localization, a suitable metric is used

to calculate the distance between all reference feature vectors

rj,r and the observation feature vector rj,o. In this case, the

ℓ1-distance serves as an example of a distance metric between

two vectors: dℓ1(rj,o, rj,r) =
∑N

n=1 |rj,o[n]− rj,r[n]|
The most probable position r̂ is then determined by deter-

mining the minimum, here using the example of the ℓ1 norm:

r̂ = arg min
︸ ︷︷ ︸

dℓ1(rj,o,rj,r)

(dℓ1(rj,o, rj,r)) (1)

III. IMPLEMENTATION

In this section, we describe the measurement setup and the

measurement mode.

The sensor system consists of a sensor chamber equipped

with an integrated Grove Multichannel Gas Sensor V2, which is

COTS-available for approx. 40 C. The sensor is a combination

of four MEMS sensors with different cross-sensitivities. The

main sensitivities of the sensors are as follows: nitrogen dioxide

(NO2) for the GM-102B, ethanol (C2H5OH) for the GM-302B,

volatile organic compounds (VOC) for the GM-502B, and

carbon monoxide (CO) for the GM-702B. The sensor values

are processed on the board by a microcontroller STM32F030

with a 12-bit ADC and output the raw data that represents

changes via an I2C interface. The sensor chamber is connected

via silicone hoses to a pump, which is controlled by a Grove

MOSFET CJQ4435. The control of the MOSFET for the pump

and the data acquisition of the sensor values via I2C is carried

out by the WIO terminal with the help of a 32-bit ARM

Microchip microcontroller ATSAMD51. The WIO terminal

supplies the MEMS sensors in the chamber with a voltage

of 3.3 V and the control and load circuit of the MOSFET

for pump control with 5 V. For forwarding the data for later

processing, a UART connection is established over the USB-C

cable with 9600 baud using the EDGE Impulse CLI. The sensor
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Abstract—Identifying structural damage in confined spaces
with restricted access, such as gas pipelines, poses a significant
challenge. This work proposes a concept, that can tackle the
challenges by using a visual Simultaneous Localization and
Mapping (vSLAM) system consisting of a various combined
sensors on a 3D printed platform. The integration of multiple
sensors results in an accurate trajectory and mapping solution.
Damage detection can be then achieved by Machine Learning
(ML) algorithms trained on extracted point clouds.

Index Terms—vSLAM, Visual Odometry, Depth Camera, 3D
Reconstruction

I. INTRODUCTION

Controlling underground pipelines for damage involves ex-

penses and requires high time expenditure. There is also a

risk of blocking the pipe due to unknown geometry and hard-

to-reach systems. Reconstructing a 3D model of the pipe

system requires a platform or autonomous vehicle, that is small

enough and can fit a setup of sensors.

The inspection of pipelines and the detection of dam-

age within them includes a series of challenges: Due the

subterranean position, GPS for localization is not available.

Monotonously build pipes make it difficult for the SLAM

algorithm to match images and construct a 3D model of the

environment. Poor or non-existent light sources prevent the

usage of traditional tracking devices.

A system with the combination of multiple sensors, such as

camera, inertial measurement unit (IMU) and light detection

and ranging (LiDAR) in addition to ML algorithms allow to

resolve those issues. By synchronizing the data in form of

images and various measurements, the surrounding environ-

ment can be mapped in 3D. The large amount of data, that is

generated by the system, requires post-processing on a more

powerful computer. It is also possible to save the collected data

to a computer, enabling a map creation and damage detection

at the end of the inspection time.

We propose a concept for a platform using a dual depth

camera, a LiDAR, an IMU setup using a multi camera vSLAM

and a ML algorithm and resulting in an accurate 3D represen-

tation and tracking solution, in pursuit of post-processing data

analysis and visualization (see Fig. 1). The primary emphasis

of this endeavor lies in sensor fusion, with a particular focus on

integrating multiple sensing modalities into a cohesive system.

The proposed system configuration would be tailored towards

(a) Hardware and Software (b) Experimental Setup

Fig. 1. Current State of the 3D-OLE System Setup (22x15x10 cm)

the development of a prototype capable of accommodating

existing inspection tools.

The next section, Section II lists previous solutions and

achievements. Section III describes the platform and the sensor

setup. Section IV explains the proposed concept. Concluding

with Section V, consisting of a summary and an outlook for

upcoming improvements.

II. RELATED WORK

Precise and expeditious inspection methodologies are im-

perative for ensuring the secure functionality of expansive

pipeline infrastructures. Predominantly employed for peri-

odic surveillance of pipelines, autonomous inspection tools,

including pipeline inspection gauges (PIGs) [1], [2] , and

robotic crawlers [3], [4], play a pivotal role in this endeavor.

The inspection can be done without the support of visual-

based sensors. One way is to use a ”low-cost smart PIG”

that integrates sensing and data collection capabilities within

a disposable foam pig carrier [5], allowing inspections to

be performed more frequently and at lower risk and cost.

Mechanical arms equipped with strain gauge sensors are used

for the detection of changes in the geometrical size and

roughness of the pipes.

A recently published approach is using a dual-function

depth camera array (DF-DCA) installed at the end of a PIG,

for reconstruction and inspection of underground pipelines [6].
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Abstract—An integrated Multiplexer (MUX) and Demulti-
plexer (DMUX) system designed for high-speed data commu-
nication in potential localization applications is presented. Our
proposed system integrates a 2:1 MUX and 1:2 DMUX on a
single chip, leveraging SiGe-BiCMOS technology to achieve data
rates exceeding 200 Gb/s. This integrated approach aims to
optimize signal transmission efficiency and system integration
for future optical communication networks. The paper concludes
with plans for fabrication, measurement, and integration into
practical communication systems, marking a significant stride
towards realizing high-speed communication solutions.

Index Terms— Multiplexer, Demultiplexer, Optical Communica-
tion System, SiGe-BiCMOS

I. INTRODUCTION

High-speed communication systems enhance camera-based

localization systems by enabling the real-time transmission of

high-resolution images which is crucial for applications like

virtual and augmented reality or industrial automation. In these

systems, MUX play a critical role. With optical fiber as a

high-speed data transmission medium with low attenuation,

MUX combine as part of the transmission chain N-input low-

speed channels (e.g. each camera in the localization system)

to 1 channel with N-times the data rate, resulting in a high-

speed output data stream. On the receiver, the DMUX takes

one single input stream and splits it into N-paths, where

the data rate of one output path is divided by N [1]. The

DMUX outputs will be then further processed in the digital

domain. The simplest architecture is a 2:1 MUX. Within this

paper, we present a system integrated MUX and DMUX

for high-speed communication. This is intended to ensure

future measurability and thus enable the characterization of the

individual subsystems in the communication chain. To the best

knowledge of the authors, there exists currently no commercial

data generator which can provide Non-Return to Zero (NRZ)

data rates beyond 200Gb/s. The remaining part of the paper

contains the categorization of related work, followed by the

proposed system, and a conclusion with an outlook for further

work.

II. RELATED WORK

Recent advancement in semiconductor technologies such as

in SiGe or InP results in increasingly reported higher data

rates. This is due to the rising transit and maximum frequency

ft and fmax. Another method to raise the data rate is to use

modulation techniques such as Phase-Amplitude Modulation

(PAM)-4 [2] or Quadrature Amplitude Modulation (QAM)-

16 [3]. To achieve high data rates, the analyzed related work

focuses mainly on the selector circuit. A recently reported

MUX in SiGe-BiCMOS with S-parameter measurements over

110 GHz bandwidth was published in [4] with a data rate of

190 GBaud/s [2]. On the contrast to the high bandwidth, this

MUX requires already pre-synchronized data, meaning the two

input data streams have to be aligned and additionally one data

stream has to be shifted by half a clock period before being

processed by the selector circuit. The highest data rate MUX

was published in [5], realized in InP DHBT technology, but

includes only a selector circuit. The authors are not aware of

any other faster system.

Table I gives an overview over recently reported high-speed

data circuits for MUX and DMUX. These high data rates

stand in contrast to the power consumption, which plays a

subordinate role.

There exists currently no fully integrated multiplexer target-

ing data rates exceeding 200 Gb/s for NRZ-signal modulation.

III. APPROACH

This proposed system contains a 2:1 MUX and a 1:2 DMUX

and will be realized in one Integrated Circuit (IC). A system

overview is given in Figure 1. The signal flow is from left to

right. It has two data inputs, two data outputs and two clock

(CLK) signals for each MUX and DMUX. All signals on-chip

are fully differential. The MUX is composed of five latches (L)

for re-timing purposes, a selector circuit, multiple I/O buffers,

quadruper and active baluns for compact wideband signal

transfer. At the input, the balun converts the single-ended

signal into a differential one, before the signal is transmitted

via transmission lines to corresponding latch inputs (L1 and

L4). To compensate for losses in the signal path, a buffer

stage is incorporated in between. The selector circuit chose
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improved transit frequency ft parameters. The proposed sys-

tem integrates a 2:1 MUX and 1:2 DMUX on one chip.

Emphasizing maximum data rates while addressing critical

design constraints, the proposed design will utilize a SiGe-

BiCMOS technology, pushing the boundaries of high-speed

communication system integration. Future work will concen-

trate on fabricating, measuring and integrating the proposed

system into an optical communication system. This paper

significantly advances high-speed communication systems by

presenting an integrated MUX and DMUX solution tailored

for data rates exceeding 200 Gb/s. Future challenges will come

with characterization and measurement of the proposed design

as supplying ultra wideband high frequency data signals on-

chip is difficult.
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plexer with over 110 GHz Bandwidth in SiGe BiCMOS Technology,” in
2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits

and Technology Symposium (BCICTS), 2021, pp. 1–4.
[5] A. Konczykowska, F. Jorge, M. Riet, V. Nodjiadjim, B. Duval, H. Mar-

doyan, J. Estaran, A. Adamiecki, G. Raybon, and J.-Y. Dupuy, “212-Gbit/s
2:1 multiplexing selector realised in InP DHBT,” Electronics Letters,
vol. 55, no. 5, pp. 242–244, mar 2019.
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Abstract—By dramatically increased applications of Internet-
of-Things (IoT) devices with cheap well-developed narrow-band
technology such as Bluetooth Low Energy (BLE), localization
of those devices in sensor networks is significant in civilian
areas. An accurate ranging estimation between devices is required
for achieving it. Phase-based ranging as an approach has been
investigated in recent research. Two-way ranging as a common
approach in the phase-based ranging has been applied in most of
the related papers. However, due to the system imperfection of
local oscillators in the low-cost IoT devices, the phase bias from
the imperfection leads to inaccurate ranging estimation. In this
paper, a proposed four-way ranging as an improved approach,
is introduced, to alleviate the phase bias during measurement.

Index Terms—phase-based ranging, two-way ranging, four-way
ranging, IoT

I. INTRODUCTION

Nowadays, IoT devices have been widely applied in ubiq-

uitous applications in civilian areas. The need for deployment

of those devices is driven by cheap narrow-band systems with

well-developed technology, such as BLE.

To achieve the location of devices, an accurate ranging

estimation between two devices is the main requirement.

The concept of radio ranging has been studied and these

are classified into three types [1], namely the power-domain

approach, the time-domain approach and the phase-domain

approach.

In the phase-domain approach, tones in a frequency band of

interest are exchanged between two devices named as initiator

and reflector, to form the spectrum in the frequency domain.

Its channel impulse response can be extracted by applying

inverse Fast Fourier Transformation (iFFT) or super-resolution

spectrum algorithms [2].

Due to the less-efficient low-cost local oscillators in the

devices, frequency bias exists with respect to the nominal

frequency. It results in an offset in the extracted phase of the

signal, which leads to an error in the ranging estimation.

II. THEORY

In this section, the basic measurement scheme of the phase-

based approach using two-way ranging [3] is first presented.

Then, the system imperfection is introduced. From this point,

an improved four-way ranging scheme is explained in the

subsequent section.

A. Two-way ranging

The phase of a Radio-Frequency (RF) signal rotates during

its propagation. The relationship between the phase and the

distance between two devices is described as:

φ(f, d) =
−2πfRFd

c
mod 2π, (1)

in which fRF is the radio frequency, d is the distance, c

indicates the speed of the RF signal.

On account of the short wavelength of the RF signal, a

minimized distance range limits the measurement capability.

Hence, to extend the unambiguous range, signal transmisson

between two nodes in multiple frequencies is applied. In this

way, the phase differences measured in consecutive frequen-

cies are calculated. The distance during signal transmission

derives from the idea of group delay, which represents the

transit time through a channel.

The tone exchange at two frequencies between the initiator

and the reflector in two-way ranging is depicted in 1. The

initiator sends RF signal to the reflector at f1. After down-

conversion of the RF signal, the phase of the baseband

complex value ΦI,1 is extracted by the reflector. Then the

roles of both devices are swapped. The same procedure is

repeated from the reflector to the initiator and the phase ΦR,1 is

obtained. In this way, the tone exchange at f1 is accomplished.

Afterwards, the tone exchange at frequency f2 proceeds.

By applying two-way ranging, the synthesized phase from

both initiator and reflector are calculated as [4]:

Φ2wr,1 = ΦI,1 +ΦR,1 = −4πf1
d

c
(2)

Φ2wr,2 = ΦI,2 +ΦR,2 = −4πf2
d

c
(3)

The distance can be calculated as:

∆Φ2wr = −4π∆f
d

c
, (4)

in which

∆f = f2 − f1 (5)

B. System imperfection

Both initiator and reflector contain a local oscillator as their

signal generator, frequency synthesizer, and their own internal

clock. In ideal conditions, both oscillators are synchronized at

the reference frequency fref used to generate f1 and f2 in the
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Abstract—This paper examines three trends in positioning, i.e.
options for determining the location of a remote station in future
communication standards, the transition from primary radar to
secondary radar, and the integration of machine learning. While
the first trend primarily concerns localization systems that are
based on underlying communication infrastructure, the second
trend relates more to proprietary approaches that are specifically
designed for positioning. Apart from this, conventional concepts
can be improved using artificial intelligence, e.g. to increase
accuracy, to integrate results from multiple individual systems
or to predict future trajectories.
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nication, Standard, Primary radar, Secondary radar, Artificial
intelligence, Machine learning

I. INTRODUCTION

Even though many of the basic principles of positioning
have been known for a long time, there is constant research
and progress in the field. The paper examines three such
trends and describes related literature. Arising from the desire
for ever higher data rates, the first trend is the inclusion of
positioning methods in future communication standards. The
aim of the second trend, on the other hand, is to reduce energy
consumption during localisation and to guarantee privacy. Due
to the increased computing power of today’s systems, ever
more complex algorithms are feasible. In this context, machine
learning finds its way into positioning, being the third trend.

II. TRENDS

Below, these trends are described in detail.

A. Future communication standards

Traditionally, a distinction is made between systems that
are intended solely for communication and those that are
created solely for positioning. When designing such position-
ing approaches, it is possible to freely define all parameters,
including the transmission frequency, bandwidth and accuracy.
However, the costs are very high, as in addition to the software,
the corresponding circuits and associated circuit boards also
have to be designed. For this reason, mixed topologies have
emerged in which signal characteristics of systems originally
intended as communication systems are read out and used
for positioning. We described such systems in [1], [2] and
[3]. In addition, individual research works also deal with the
hybridisation of communication and positioning, e.g. [4].

For some time now, there is a visible trend towards in-
cluding corresponding positioning methods in communication
protocols. For example, the IEEE 802.15.4a standard has

explicitly created the possibility of positioning by means of
two optional signal formats, the Chirp Spread Spectrum and
Ultra Wide Band (UWB). We described such a system in [5].
Besides, version 5.1 adds angular localization to Bluetooth.

The need for ever higher data rates for communication ne-
cessitates increasing frequencies and bandwidths, which means
that the antennas used for signal transmission are becoming
more and more directional. The rough position and direction
of the receiver must therefore be known. Thus, simultaneous
sensing and communication is used in modern standards, e.g.
5G includes measures for detecting the remote station [6].

B. Transition from primary to secondary radar

The second trend for radar systems concerns the transition
from passive to active remote stations, i.e. from primary radar
to secondary radar. On the one hand, this enables a reduction in
energy requirements, as the transmission power is proportional
to the fourth power in the first case and proportional to the
square of the distance in the second case [7]. On the other
hand, privacy is guaranteed with the latter, as the user can
switch the corresponding functions on and off as required.

One possible approach is to install such radar systems at
intersections to recognise Vulnerable Road Users (VRU). Cor-
responding information can then be forwarded to approaching
vehicles. As almost every VRU nowadays carries a mobile
device or a key batch, this device can act as a remote station.
Such investigations are to be executed within the DistriMuSe
project proposed for funding by the European Commission.

C. Artificial intelligence

Due to the increased computing power of today’s systems
and ongoing progress in research, the inclusion of artificial
intelligence for positioning is visible in various places. Such
concepts are useful where there is an underlying regularity that
cannot be easily analysed, described or implemented. Machine
learning methods work on either discrete or continuous data.
Concept learning and decision tree learning are typical repre-
sentatives of the first category. They enable to grasp simple
concepts like Boolean conjunctions. In contrast, Bayesian
approaches or neural networks belong to the second category
that allow the representation of complex multidimensional
functions. In either case, sufficient training data is required
to capture the underlying regularities [8]. In the following,
various such methods for localization are described.

The selection of a positioning system in the presence of
multiple alternative systems represents a feasible approach
for the aforementioned first two concepts. For example, it is
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reasonable to set up two individual positioning systems in
neighbouring rooms with a certain overlap in signal ranges.
Depending on the signal qualities, it is now possible to learn a
metric to choose the most suitable system per location, for
example in terms of accuracy [9], [10]. In contrast to the
isolated choice of just one system, learning to weight the
individual results from all approaches is also an option.

Fingerprinting is the process of determining the position
depending on local signal characteristics in an online phase
by comparison with a database. The conventional approach to
initialising that dataset consists of a preliminary measurement
of the signals at every possible position in an offline step. Due
to that time-consuming activity, the database usually contains a
very limited number of entries. Often, signal strength is chosen
as a measure. Since even small changes in the environment,
e.g. moving a chair indoors, have an influence on the signal
characteristics, the measured values will typically not exactly
match the database. Thus, methods for selecting the best fit
are necessary. Classical methods like the K-nearest neighbours
[11] suffer from poor performance, if the record is growing.
Moreover, biased estimates are created, if there are imbalances
in the selected locations [12]. New types of research use
neural networks, both to generate additional virtual points in
the dataset from the recordings in the offline phase and to
seek for the best estimated position in the online phase [13].
Further works also assist the learning process by considering
ray tracing [14] or focuses on learning to recognise the number
of people and their gestures based on the signal properties [15].

In addition to estimating the current location, efforts are
made on predicting all future positions, i.e. the trajectory.
Typical representatives are Recurrent Neural Networks (RNN).
Non-recurrent neural networks represent an acyclic directed
graph which, similar to combinatorial circuits in digital tech-
nology, assigns an output value to the inputs at each point
in time independently of past values [10]. Thus, predictions
depending on successive values of a time sequence cannot
be made by this structure [8]. However, such applications
are realised using RNNs, in which cycles are built into the
network, e.g. by feeding back outputs to the inputs. In terms
of digital technology, RNNs correspond to sequential models
[10]. The problem is that the influence of previous input values
decreases with increasing time [16]. Long Short Term Memory
(LSTM) networks ([17]) are special RNN, where shortcuts
are introduced to maintain the impact of important long past
values. A vanilla LSTM network for estimating the future path
of pedestrians is proposed in [18]. Social interactions are also
analysed there. To further improve prediction, additional data
can be included, e.g. scene layouts as in [19].

III. CONCLUSION AND FURTHER WORK

The paper analysed three current trends in the field of
positioning. Firstly, options for determining the location of
the remote station in future communication standards were
discussed. For communication links, this enables a significant
improvement on accuracy compared to conventional methods
based on evaluating the RSS. On the other hand, steadily in-
creasing frequencies require more directional antennas, which
means that a rough knowledge of the location of the remote
station is beneficial. The second trend is the transition from
primary radar, i.e. systems in which the remote station does not

actively participate in determining the position, to secondary
radar systems, where the co-operation of the remote station is
necessary. Finally, the paper looked at ways of incorporating
artificial intelligence to enhance position estimation accuracy.
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Lübeck, Germany, 2018, pp. 1–4.

[3] M. Gunia, A. Zinke, N. Joram, and F. Ellinger, “Hardware design for
an angle of arrival positioning system,” in 4th KuVS/GI Expert Talk on
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Abstract—The combination of camera and LiDAR technologies
is crucial in autonomous systems. This paper presents an approach
on the fusion of these two sensor modalities, with the aim of
improving the accuracy and dependability of obstacle detection
and localization. With advanced camera-LiDAR calibration
method in the ROS 2 Humble framework, we implemented sensor
fusion between high-resolution images of a camera and accurate
depth measurements of LiDAR.

Index Terms—Object detection, obstacle localization

I. INTRODUCTION

Autonomous systems represent a significant milestone in

development of transportation, both on land and across inland

waterways. These systems introduce a new era where machines

can perceive and interact with their environment independently.

Precise object detection or obstacle localization is essential

for ensuring safe and efficient operation of these systems. The

limitations of traditional single-modality sensors in complex

and dynamic environments are well-known, e.g. low light

performance of cameras. However, there are more sophisticated

solutions available. The fusion of camera and LiDAR sensors

is a particularly promising approach. By combining high-

resolution visual data from cameras with precise depth in-

formation from LiDAR, a comprehensive spatial understanding

of the surroundings can be achieved. The presented approach in

this paper uses camera and LiDAR fusion in combination with

AI detection for object localization in real-world applications.

This paper begins by exploring the current methods of sensor

fusion in ROS 2 Humble. We then discuss the methodologies

employed in the calibration and alignment of camera and

LiDAR data and its integration within ROS 2.

II. RELATED WORK

Various fusion techniques have been proposed to enhance

object detection accuracy and distance measurement precision,

showcasing the potential of integrating camera and LiDAR

data for improved 3D object detection systems. Kumar et

al. highlighted the benefits of combining camera and LiDAR

outputs for object detection and distance estimation in self-

driving vehicles [1]. Caltagirone et al. demonstrate the potential

of LiDAR-camera fusion to significantly improve semantic

segmentation through the use of both supervised and semi-

supervised learning in their study [2]. Liu et al. addressed the

challenge of real-time object detection for autonomous driving

by proposing a LiDAR-camera-based fusion algorithm [3].

Long et al. presented a multi-sensor data fusion system based

on polarization color stereo cameras and LiDAR resulting in a

robust perception system [4]. Further research include a novel

multi-modal Multi-Object Tracking (MOT) algorithm for self-

driving cars that combined camera and LiDAR data [5] as well

as raw data LiDAR and camera fusion in real-time for obstacle

detection [6].

These studies underscore the importance of camera-LiDAR

fusion in advancing perception capabilities for autonomous

systems. For the fusion of raw data several methods are

available. A collection of papers and toolboxes can be found

at Awesome-LiDAR-Camera-Calibration [7] which is part of

the awesome curation [8]. These are mainly dividable into

target-based and targetless methods. The calibration targets for

target-based methods range from checkerboard, chessboard,

cardboard, aruco or a combination of the mentioned targets.

The targetless methods are based on motion or scene using

traditional algorithms or deep learning to calibrate the sensors.

The tools on the list vary from applications in Matlab, ROS

or pytorch to stand-alone applications based on Linux.

In line with the goals of using ROS 2 integrating camera

and LiDAR sensor and performing data processing, only a

few tools from the list meet the requirements. Considering

this lidar2camera [9] from SensorsCalibration toolbox by Open

calib [10] and the targetless direct visual lidar calibration [11]

are the most promising for this project.

III. IDEA

The fusion of camera and LiDAR sensors holds immense

promise for advancing perception systems in various domains.

By calibrating these complementary sensors, we achieve

precise alignment, allowing us to seamlessly integrate their

data streams. The LiDAR sensor provides a dense point

cloud representation of the environment, capturing accurate

depth information. Simultaneously, the camera captures high-

resolution visual imagery, offering rich contextual details.

By associating image pixel with the corresponding LiDAR

measurements, we can accurately estimate the distance to the

object. This fusion approach enhances the robustness of our

perception system, enabling solution for real-world applications

such as autonomous navigation and collision avoidance.

IV. IMPLEMENTATION

The following section covers the integration of hardware

and software systems providing an in-depth examination of

the technological underpinnings that constitute the core of
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Fig. 3: Rectified Image

The sensors undergo extrinsic calibration to deter-

mine their relative rotation and translation. The di-

rect visual lidar calibration method simplifies this process

by providing a general LiDAR-camera calibration toolbox. The

transformation estimation between the LiDAR and camera is

achieved through RANSAC with manually selected key points

based on the previously recorded bag files. It is worth noting

that this calibration is targetless. By inverting the transformation

matrix the LiDAR point cloud is projected from 3D space into

the 2D image plane. Once calibrated, the fused camera-LiDAR

data can be used for specific point depth measurement.

V. EVALUATION

Despite the presence of one missing segment in the LiDAR

scanner, our evaluation of the camera-LIDAR fusion system

on the Trave River in Lübeck yielded promising results. The

prototype sensor box, comprising camera and a LiDAR scanner,

was successfully deployed on an electric boat to conduct a

measuring run along the riverbank. Despite the partial loss

of LiDAR data, the system demonstrated robust performance

in resolution enabling identifying relevant obstacles such as

bridges and the harbor wall. The fusion between camera and

LiDAR is illustrated in Figure 4 showing the projected point

cloud on the rectified camera image. Furthermore, the fusion of

camera and LiDAR data enabled accurate estimation of distance,

allowing for effective navigation based on visual sensors. These

results demonstrate the potential of our prototype system to

provide reliable and accurate environmental perception in

various aquatic environments.

VI. CONCLUSION AND FUTURE WORK

In conclusion, our evaluation of the camera-LIDAR fusion

system on the Trave River in Lübeck has demonstrated

its potential to provide accurate and robust environmental

perception in various aquatic environments. Despite being a

basic visual-based evaluation, the fusion marks a significant

achievement in remote sensing and autonomous navigation in

the context of our project. To further evaluate the precision

of the overlap between camera and LiDAR data, specific

targets and a reference measurement system will be necessary.

Future studies should focus on refining this technology to

Fig. 4: Camera Lidar Fusion

integrate it into diverse applications, setting a new standard

for sensor-based environmental perception. The success of this

project serves as a testament to the transformative potential

of integrating multiple sensor modalities, paving the way for

future innovations in the realm of intelligent systems.
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Abstract—This paper explores the feasibility of enhancing
collaborative robots (Cobots) to perceive their environment au-
tonomously. By integrating a single camera and artificial intelli-
gence (AI) image detection, the Cobot can accurately detect and
locate objects in three-dimensional space. The study investigates
the use of Microsoft’s Kinect for cost-effective depth perception
and the implementation of YOLOv4 object detection to recognize
specific objects. Experimental results demonstrate the reliability
of the proposed approach in detecting and localizing objects, such
as pencils, within the Cobot’s workspace.

Challenges, including automatic coordinate output and coordi-
nate system translation, are discussed, along with potential future
directions for research, such as multi-camera integration and
further development of the image AI for diverse object detection
tasks. The significance of this research lies in its contribution
to the advancement of collaborative robotics, offering practical
solutions for improving efficiency and safety in industrial and
service applications. Practical implications include the poten-
tial automation of assembly processes and enhanced quality
control measures, underscoring the transformative potential of
autonomous perception in collaborative robot systems

Index Terms—Collaborative Robotics, Depth Perception, object
detection, Microsoft Kinect, YOLOv4, Object Localization

I. INTRODUCTION

In today’s rapidly evolving industrial landscape, collabora-

tive robots (Cobots) have emerged as transformative tools, of-

fering unparalleled versatility and efficiency in various manu-

facturing and service sectors. Unlike traditional robots, Cobots

are designed to work alongside human counterparts, augment-

ing human capabilities, and facilitating collaboration. Their

increasing prominence underscores a paradigm shift towards

human-robot interaction, promising enhanced productivity and

safety in diverse work environments [1].

Amidst the growing adoption of Cobots, configuring these

systems presents a multifaceted challenge for researchers and

practitioners alike. The selection of optimal configurations

hinges on a myriad of factors, ranging from budgetary con-

straints to task-specific requirements. At the heart of this

configurational dilemma lies the integration of sensors and AI,

which holds the key to unlocking the full potential of Cobots

in perceiving and interacting with their surroundings [2].

II. METHODOLOGY

The challenge of reliably perceiving a three-dimensional

space using a single camera to accurately determine the

position of an object presents a obstacle. To address this

challenge, we adopted Microsoft’s Kinect as our approach—an

innovative sensor platform renowned for its unique techni-

cal specifications. The Kinect’s standout feature lies in its

affordability, coupled with its built-in infrared and depth

camera capabilities [3]. Leveraging the depth camera option,

it becomes feasible to detect the position of an object within

a three-dimensional space using a single camera setup. This

functionality is achieved through the measurement of light

signals’ runtime. The camera emits light pulses and measures

the time it takes for the light to reflect and return to the sensor

[4].

The next challenge entails developing a methodology to

recognize and detect only the desired object. In the context

of our research, the current target object—such as a pencil

intended for pickup by the Cobot—poses a critical obstacle.

To overcome this challenge, we utilized a prevalent object

detection, You Only Look Once version 4 (YOLOv4), as our

foundational tool and augmented it with additional data. object

detection, in general, must be trained on specific objects of

interest. It functions similarly to a human brain, discerning

which features are crucial for object identification using a

neural network [5]. YOLOv4 boasts high-speed and precise

object recognition capabilities. One of YOLO’s key advantages

is its ability to process up to 155 images per second, depending

on the desired level of accuracy. YOLO operates by initially

dividing the image into a grid. Each grid cell is examined to

determine if an object is present within it. As seen in Figure 1,

bounding boxes are drawn around detected objects, and these

are then reduced to a single box per object, retaining only

those that the model believes best delineate the object [6].

Fig. 1. object detection

The images used for training and validation were captured

using the Kinect in typical operational scenarios. The image
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detection process generates a bounding box, such as around a

pencil in this case, to locate the object accurately. The camera

can determine the precise three-dimensional position of this

bounding box.

III. EXPERIMENTS AND RESULTS

Figure 2 outlines the functional concept of our current

setup. It involves the Cobot being connected to a computer via

IPv4 with a static IP address, ensuring stable communication

between the devices. The connection between the computer

and the Kinect is established via USB. A driver installation

is required to facilitate this connection. Similarly, the com-

munication between the computer and the Kinect follows the

USB protocol, requiring driver installation for compatibility.

Interface integration enables the user interface of the Cobot to

support easy camera integration. Subsequently, the computer

is connected to the Kinect via USB, which is directed towards

the Cobot’s workspace. The camera is then initiated using a

program that can start the camera as a virtual device, allowing

its usage within a Python environment. In our setup, we

utilize the OBS broadcaster software [7] for this purpose,

as it provides a suitable interface for configuring a camera.

An additional advantage is the availability of plugins that

simplifies the integration process.

Fig. 2. Functional concept of the setup

For the output of coordinates, a script has been developed

to access live detection and, upon clicking, retrieve the coordi-

nates of the click from the camera’s perspective. This enables

the precise reproduction of the bounding box’s exact position.

Various camera angles covering the entire workspace were

tested to assess the image detection system’s performance. The

testing encompassed different lighting conditions, including

normal room lighting, sunlight, artificial lighting, and dark-

ness. Results showed that uniform illumination across the

workspace yielded optimal performance. The image detection

system was tested under various camera angles and lighting

conditions. The results indicate that detection works in the

majority of cases.

Following the functional concept, we provide a visual

representation of our actual setup, as depicted in Figure 3.

The laptop is located under the platform on which the Cobot

is installed.

Fig. 3. Experimental setup

Currently, the infrared camera is utilized for detection

purposes. This decision is based on the fact that the infrared

and depth cameras share the same position, whereas the

regular camera is slightly offset, resulting in the coordinates

from the depth camera being slightly offset from those of

the standard camera. However, it is noted that this choice

may affect color accuracy. This aspect is slated for future

improvement, as mentioned in the ”Future Work” section.

Further investigation into the potential identification of objects

other than the target pencil by the infrared camera is deferred

to subsequent sections for comprehensive discussion.

IV. CONCLUSION AND FUTURE WORK

While our initial results are promising, several challenges

remain for the continued advancement of this project. Cur-

rently, the output of coordinates relies on manual interaction

with the bounding box, necessitating further efforts towards

automating this process. Future work includes the development

of a script to automate the central positioning of the bounding

box, eliminating the need for manual interaction. Various

methods for achieving this automation will be evaluated to de-

termine the most effective approach. As previously mentioned,

it is crucial to capture images using a standard camera instead

of the depth camera. This approach increases the robustness

of the AI system and reduces its susceptibility to variations in

lighting conditions. This requires a translation of coordinates

between the depth camera and the standard camera.

Additionally, determining the optimal grasping location for

the Cobot and addressing the translation between the camera’s

coordinate system and the Cobot’s coordinate system are es-

sential for enabling reliable robotic movements. The challenge

lies in determining the optimal grasping point for the Cobot,

as it varies between devices. If automated bounding box posi-

tioning does not yield satisfactory results, alternative methods,

such as training the image AI specifically for grasping points,

will be explored.

Furthermore, future research avenues include expanding the

capabilities of our image AI to detect multiple objects and

integrating it with other AI systems capable of autonomously

learning assembly instructions. Once the issues with image

detection are resolved, the possibilities are limitless. For

instance, AI could be trained on various assembly instructions

with different tools. The image AI would identify the tools,
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while another AI could evaluate the type of assembly and

execute the instructions accordingly.

The implementation of these proposed improvements and

advancements will enhance the capabilities of the system,

paving the way for broader applications in robotics and

artificial intelligence.
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Abstract— In this paper, a work-in-progress hardware
concept for a millimeter-wave (mmWave) frequency-modulated
continuous-wave (FMCW) radar system is presented. Separate,
individual application specific integrated circuits (ASICs) and
a substrate-integrated waveguide (SIW) antenna design allow
flexible configuration of the system, especially with regard to
the number of transmit/receive paths. A major challenge in this
mmWave frequency range is signal distribution, not only within
an ASIC or printed circuit board (PCB), but especially between
ASIC and PCB or SIW antenna. Hence, necessary interconnects
are considered in details and multiple concepts are presented.

Index Terms—bondwire interconnections, mm-wave, radar

I. INTRODUCTION

Contributing towards the goal of reaching zero road

deaths by 2050 in the EU, the project NextPerception

investigates on systems for detection of vulnerable road users

(VRUs), particularly pedestrians. Millimeter-wave (mmWave)

frequency-modulated continuous-wave (FMCW) radar has

emerged as an attractive solution to detect VRUs at

intersections [1]. For this, adaptable and compact radar

hardware is desired. Systems at lower frequencies can be

arranged flexibly due to cable based interconnects but tend

to be bulky, e.g. [2]. On the other hand, highly integrated

systems in the sub-THz range have very limited range [3]. The

V- and W-band can represent an attractive compromise [4], but

requires careful design of radio frequency (RF) interconnects.

This paper proposes a work-in-progress system architecture

for a 77GHz to 81GHz pedestrian detection FMCW radar,

describes the considerations on and implementation of the RF

interconnects and provides work-in-progress results.

II. SYSTEM STRUCTURE

An overview of the proposed hardware system divided into

two parts is given in Fig. 1. The first part is dedicated to

generating the necessary frequency sweep at an intermediate

frequency (IF) as well as the baseband processing of the

received signal. The second part is dedicated to the mmWave

front end with application specific integrated circuits (ASICs)

for transmission (TX) and reception (RX) and a custom

substrate-integrated waveguide (SIW) antenna design. By

placing multiple TX/RX pairs with highly-directive high-gain

antennas facing in different non-overlapping directions, a

larger combined range (distance or angle) can be covered

and coarse angle estimation of targets is possible. The front

end may therefore be implemented on a flexible printed

circuit board (PCB) or composed of multiple TRX PCBs,

each containing one TX/RX pair with antennas. An arbitrary

number of pairs can be supplied with one generator in a

daisy-chain topology. The system is complemented by a digital

control board featuring microcontroller, field-programmable

gate array (FPGA) and analog-to-digital converters (ADCs).

The FMCW signal for TX and RX is generated at

the IF fIF = 25.66GHz to 27GHz because PCB-based

grounded coplanar waveguides (G-CPWs) as well as cables

and connectors required for signal distribution have lower

attenuation at this frequency than at the radio frequency

fRF = 77GHz to 81GHz. For this, a commercial off-the-shelf

(COTS) ADF4169 frequency synthesizer from Analog Devices

is combined with a specifically designed voltage-controlled

oscillator (VCO) ASIC presented in [5]. The VCO outputs

both the IF signal and a divide-by-two signal for the ADF4169,

which has a maximum input frequency of only 13.5GHz. An

active loop filter is necessary to reach the required voltage

tuning range Vtune = 1.7V to 4V of the VCO. Based on

simulation, the active filter increases noise by only 5 dBc/Hz

above 100 kHz offset compared to a passive filter.

The mmWave front end is realized as two separate ASICs.

The transmitter features a frequency tripler that converts the

FMCW signal from fIF to fRF. The resulting differential

RF-signal is subsequently split to two single-ended paths.

One is amplified to 13 dBm by a power amplifier (PA) based

on a modified design of [6] for transmission. The second is

buffered and fed to the receiver as local oscillator (LO)-signal

for down-mixing the received signal reflected by the target to

determine the frequency offset which is proportional to the

distance. Furthermore, the ASIC provides a buffered output

of the IF signal for subsequent TX/RX pair in a daisy-chain

topology. Reception is realized by a zero-IF receiver in a

mixer first architecture based on a Gilbert cell. The baseband

signal is processed on PCB with COTS components. The SIW

slot antenna shown in Fig. 2a is realized on 787 µm Rogers

Duroid 5880 substrate. It is optimized for a high gain around

13 dBi and a narrow half-power beamwidth (HPBW) of 44◦

in azimuth and 28◦ in elevation.

III. RF SIGNAL DISTRIBUTION AND INTERCONNECTS

To realize the proposed system, three crucial signal

interconnects at mmWave have to be implemented: Connecting

the IF signal from PCB to the TRX ASIC at around 26GHz
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Abstract—Software for desktops and workstations, i.e. units
having sufficient processing resources, is increasingly designed
to be variable and extensible, so that changing behaviour is
supported and extensions can be included without any modifi-
cations to already existing application code. This is contrasted
for embedded systems, where memory and computing power
are often limited. For such entities, software is highly tailored
and modifications often require complete redesign. In the area
of positioning and sensors, the paper describes three options for
embedded systems that allow software to be reused on the one
hand and design and testing time being reduced on the other.

Keywords—Positioning, Localization, Object Oriented Program-
ming, Embedded Systems, Reusable Software, Platform Abstraction
Layer, Register Files, Cross-Compiling

I. INTRODUCTION

Nowadays, large software projects are primarily subject to
Object-Oriented Paradigms (OOP) with the aim of supporting
variable behaviour and enabling extensibility for future appli-
cations, since these two objectives in particular are difficult to
realise using alternative programming techniques. One of the
strengths of the OOP is polymorphism, i.e. the ability to treat
objects of different (inherited) classes in the same way. On
this basis, standard solutions for frequently occurring problems
have emerged. These solutions, which are referred to as design
patterns, are easy and smart approaches, which are usually
not found from the beginning, but which are characterized
by providing additional flexibility [1]. In particular, many
patterns deal with variability and extensibility. In this regard,
we presented a high-level software framework for positioning
in [2], which, in addition to these two objectives, also enables
arbitrary nesting, uniform interfaces, push / pull behavior and
platform independence. Such frameworks are assumed to be
run on processing units having sufficient hardware resources.

In contrast, many positioning software is designed for low-
level embedded systems employing proprietary hardware. Due
to the fact, that computing power and available memory of such
entities is limited, implementations are usually subject to pro-
cedural programming with hard-coded parameter sets. Thus,
the corresponding software libraries are based on customised
approaches and are difficult to reuse. We proposed multiple
such highly tailored units in [3], [4], [5], [6]. Small changes,
e.g. the replacement of some circuit of the sensor, often require
the software to be completely redesigned. However, as the
performance of the Micro-Controller Units (MCU) for such
low-level embedded systems continues to rise, the transition
away from the procedural approach is becoming feasible.

Within this paper, we present three innovative methods to
enable reuse of low-level positioning software for embedded
systems and simplification of its design. These are the creation
of virtual register files employing register indexing, the intro-
duction of a Platform Abstraction Layer (PAL), and the set-up
of mockup hardware for cross-compiling. While the first two
employ OOP to addressing different entities in the same way,
the latter allows to reduce time for software engineering and
test, as it enables designing on high-performance platforms and
eliminating the constantly recurring, time-consuming process
of firmware loading onto the embedded system.

II. RELATED WORKS

Many works deal with design patterns or complete software
framework being variable and extensible for high-level ap-
plications where sufficient processing resources are available.
For positioning, however, embedded sensor units often only
have little memory and computing power. For these entities,
much effort is devoted to hardware aspects, e.g. on accuracy,
precision, power, infrastructure and costs [7]. Software pre-
sented in this context often focuses on data processing algo-
rithms that are customised for a specific application. Only few
publications deal with the creation of software that distribute
processing to different layers or combine multiple positioning
approaches. For instance, [8] introduces the abstract fusion
model originating from the US Joint Directors of Laboratories
(JDL), consisting of five consecutive levels. On the lowest
level 0, incoming sensor data is pre-processed. Coordinate
system transformation is applied on level 1. On level 2, the
contextual description of the scenario is elaborated. With the
help of these results, inferences are drawn at level 3. Finally,
system performance is monitored on level 4. Another layered
approach for hybrid indoor geolocation with rigid interfaces is
[9]. It is restricted to indoor positioning and only enables easy
exchange of positioning algorithms. Due to its fixed interfaces
and the lack of support for nesting, layered-based concepts
are somehow restricted. Alternatives providing more degrees
of freedom are cycle-based methods, e.g. the Boyd cycle [10].
Here, the cycle of observation, orientation, decision and action
is constantly repeated. The disadvantage is that this is an
abstract concept not being tailored for localization.

In contrast, in [2] we presented a hybrid localization frame-
work employing general operators, where complex operators
can be composed of simple ones. Positioning algorithms and
data processing elements (like filters) are considered as basic
elements. This enables natural integration of cumbersome real-
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world issues like coordinate transformation or data sampling.
All these frameworks are, however, not intended to be running
on embedded systems, where processing resources are limited.

Operating Systems (OS) usually address completely differ-
ent sensors the same way. For example, the Linux OS works
with file handles, where entities are addressed by opening,
reading, writing, and closing of files [11]. However, this is
a very rigid approach with which complex operations are
difficult to realise, for instance, switching on a transceiver and
configuring a defined transmission frequency.

Various MCU manufacturers now offer high-level access in
addition to low-level hardware access at register level, e.g. the
Hardware Abstraction Laver (HAL) from ST Microelectron-
ics for ARM® Cortex®-M7 [12], [13]. For example, devices
connected via Universal Asynchronous Receiver Transmitter
(UART) can be addressed in the same way by multiple similar
MCUs. The same applies to the Serial Peripheral Interface
(SPI) or Inter-Integrated Circuit (I2C). However, abstraction
to a higher level is not provided, so that selective addressing
of devices optionally via UART, SPI or I2C is not possible.
Our second method in the next section will do exactly that
and enables abstract commands, e.g. output instructions that,
depending on the underlying hardware, either print the output
on a screen of a host PC, address a terminal via UART, or
execute a blinking sequence on Light-Emitting Diodes (LED).

III. APPROACH

In the following, we present three methods for embedded
positioning systems, the first two facilitating software reuse
and the last reducing time to market. These concepts can be
easily implemented with OOP.

A. Virtual register files employing register indexing

The hardware used in embedded systems is often config-
ured by setting registers. Direct access to these registers or
indirect access via corresponding protocols, e.g. UART, SPI or
I2C, is common. Hardware components with similar functions
often have similar register sets, which differ in the identifiers
and the division into fields. For example, transceivers usually
offer the option of defining the transmit or receive frequency,
whereby the specific register configuration depends on the
selected component. For uniform addressing of such units,
we recommend the introduction of virtual registers whose
configuration provided by the application is converted to the
real hardware by register indexing. That indexing can be
carried out using configuration files, which indicate the specific
allocation for each component. Accordingly, the registers are
read using a reverse indexing operation.

The procedure is explained using C++ as an example.
The configuration files, realized as C++ header files, are auto-
matically integrated during compilation and contain multiple
define-statements for each virtual register, which specify its
composition from the non-virtual real hardware register fields.
Fig. 1 and 2 show a possible virtual register and, for the
selected hardware, its composition of two real registers, each
containing some of the bits. The coloured numbers in the
hardware registers denote the corresponding bit indices in
the virtual register and vice versa. Register indexing and its
reverse operation is then simply implemented using a general

Hardware register 1
7 6 5 4 3 2 1 0

7 6 5

Hardware register 2
7 6 5 4 3 2 1 0

4 3 2 1 0

Virtual register

7 6 5 4 3 2 1 0

5 4 3 6 5 4 3 2

(Value & 0xE0) >> 2) (Value & 0x1F)) << 2)

Fig. 1. Example on register indexing for writing data to virtual register

Hardware register 1
7 6 5 4 3 2 1 0

7 6 5

Hardware register 2
7 6 5 4 3 2 1 0

4 3 2 1 0

Virtual register

7 6 5 4 3 2 1 0

5 4 3 6 5 4 3 2

(Value & 0x38) << 2) (Value & 0x7C)) >> 2)

Fig. 2. Example on reverse register indexing for reading data from virtual
register

algorithm for assigning virtual registers to the elements of the
real registers specified in the configuration file. That universal
method operates by masking (&), shifting (>> or <<) and
logically adding (|) bits. For the example shown in Fig. 1 on
register indexing, the values vreg1 and vreg2 of the real hardware
register are composed from the virtual one as

vreg1 = ((vvirt & 0xE0)>>2) , vreg2 = ((vvirt & 0x1F)<<2)

Note the values of the hardware register that are not to
be modified must remain unchanged when writing, i.e. by
previously reading the old values and logically combining
them with the new values. On the contrary, for inverse register
indexing in Fig. 2, the value vvirt of the virtual register reads

vvirt = ((vreg1 & 0x38)<<2) | ((vreg2 & 0x7C)>>2)

If the value range of the virtual and real registers differs,
the introduction of a multiplication factor is also conceivable.

B. Platform abstraction layer

The PAL is an additional intermediate layer so that the
specific implementation of a requirement is separated from its
realisation. This is shown using the example of the template
method design pattern [1] according to Fig. 3 for an instruction
to display an argument, i.e. print. Only the primitive operations
of the ConcreteClass need to be implemented for the respective
hardware. The first primitive method could be the output of
a character string and the second could deal with printing
integers. The display algorithm, which is identical for all
hardware, is realised in the method templateMethod().
This could initially separate a passing argument into characters
and integers and display these in each case using the primitive
operations. Depending on the associated hardware, these could
now be shown on a host PC or sent to a terminal connected to
the embedded system via UART. Alternatively, visualization on
LEDs could discard all characters and only show the numbers.
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